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Abstract Solving partial differential equations using finite

element (FE) methods for unstructured meshes that contain

billions of elements is computationally a very challenging

task. While parallel implementations can deliver a solution

in a reasonable amount of time, they suffer from low cache

utilization due to unstructured data access patterns. In this

work, we reorder the way the mesh vertices and elements are

stored in memory using Hilbert space-filling curves in order

to improve cache utilization in FE methods for unstructured

meshes. This reordering technique enumerates the mesh el-

ements such that parallel threads access shared vertices at

different time intervals, reducing the time wasted waiting

Shankar P. Sastry

Scientific Computing and Imaging Institute,

The University of Utah,

Salt Lake City, UT, 84112, U.S.A.

E-mail: sastry@sci.utah.edu

Emre Kultursay

Department of Computer Science and Engineering,

The Pennsylvania State University,

University Park, PA 16802, U.S.A.

E-mail: euk139@cse.psu.edu

Suzanne M. Shontz

Department of Mathematics and Statistics,

Department of Computer Science and Engineering,

Center for Computational Sciences,

Graduate Program in Computational Engineering,

Mississippi State University,

Mississippi State, MS 39762, U.S.A.

E-mail: sshontz@math.msstate.edu

Mahmut T. Kandemir

Department of Computer Science and Engineering,

The Pennsylvania State University,

University Park, PA 16802, U.S.A.

E-mail: kandemir@cse.psu.edu

to acquire locks guarding atomic regions. Further, when the

linear system resulting from the FE analysis is solved using

the preconditioned conjugate gradient method, the perfor-

mance of the block-Jacobi preconditioner also improves, as

more nonzeros are present near the stiffness matrix diagonal.

Our results show that our reordering reduces the L1 and L2

cache miss-rates in stiffness matrix assembly step by about

50% and 10%, respectively, on a single-core processor. We

also reduce the number of iterations required to solve the

linear system about 5%. Overall, our reordering reduces the

time to assemble the stiffness matrix and to solve the linear

system on a on a 4-socket, 48-core multi-processor by about

20%.

1 Introduction

Meshes play a vital role in the numerical solution of par-

tial differential equations (PDEs) on a given geometric do-

main. Accuracy of the solution depends on parameters such

as the shape and size of the mesh elements [1]. With the

advent of multicore processors, larger meshes can be used

to solve the PDEs within a prescribed amount of time by

solving the resulting large system of linear equations in par-

allel. In this paper, we study a mesh vertex- and element-

reordering technique to exploit the memory architecture in

shared-memory, multicore processors. We propose using a

Hilbert space-filling curve (SFC) reordering technique [2]

to order the mesh elements and vertices to improve the tem-

poral and spatial locality in the data access patterns. The

reordering also improves the efficiency of the block-Jacobi

preconditioners used to solve the system of linear equations

arising from a finite-element (FE) formulation to solve the

PDE associated with mesh warping [3].

A mesh may be used several times to solve a PDE with

different boundary conditions, and its elements and vertices

may be accessed many times for mesh quality improvement.

In some applications, a mesh may need to be warped sev-

eral times [4–6]. In such cases, reordering the elements and

vertices of the mesh can bring overall performance improve-

ment, as the overhead of reordering is typically less. In ap-

plications involving large deformations, several time steps

may be necessary to obtain an accurate solution to the cor-

responding PDEs [7]. In such applications, involving mul-

tiple passes through mesh vertices and elements, reordering

techniques can help in improving the cache utilization. In

this paper, we demonstrate the improvement in performance

that is observed for one such application, namely the finite

element-based mesh warping (FEMWARP) technique [3].

In order to numerically solve a PDE, a stiffness matrix

is constructed from the discretize form of the PDE and the

mesh. The boundary conditions are then applied, and the re-

sulting linear system is solved. In this paper, we focus on

parallel algorithms for solving a PDE using the FE method.
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Parallel techniques have been developed in order to assem-

ble the stiffness matrices associated with PDEs [8–11]. To

improve the cache utilization for solving linear systems, ver-

tex reordering techniques have also been developed [12, 13].

For improving cache performance for both constructing the

stiffness matrix and solving the linear equations, Zhou et

al. [14] developed a breadth first search (BFS)-based vertex-

and element-reordering technique. Run-time techniques have

also been developed [15, 16] to improve cache utilization in

unstructured data access. These techniques are briefly de-

scribed in Section 2.

Oliker et al. [17, 18] studied the reordering techniques

mentioned above for two-dimensional meshes and found that

a geometry-aware reordering technique, namely the self-av-

oiding walk (SAW) [13] technique, performs better than graph

partitioning and BFS-based techniques. As the SAW tech-

nique has not been developed for three-dimensional geome-

try, we use a geometric, SFC reordering technique to reorder

our mesh vertices and elements.

In order to assess the performance improvement due to

the reordering technique, we warp our meshes using a par-

allel implementation of FEMWARP [3] on shared-memory

processors. FEMWARP solves Laplace’s equations to warp

the mesh. The linear equations arising from the discretized

Laplace’s equations using our meshes are solved using a

parallel implementation of the block-Jacobi preconditioned

conjugate gradient (PCG) method. The SFC reordering al-

gorithm, the FEMWARP technique, and the PCG method

are described in detail in Section 3, and their implementa-

tions are described in Section 4.

We carry out numerical experiments for three different

types of geometric domains using meshes that each have

more than 10 million elements. In our experiments, we use

a 48-core shared memory multi-processor. In this system,

each core is assigned around 20,000 degrees of freedom to

compute, which is sufficient to show the effectiveness of

our method. We also perform simulations to demonstrate hit

rate improvement in the L1 and L2 caches. The experimen-

tal setup and our results are described in Section 5. The re-

ordering shows about 20% improvement in the run time of

FEMWARP implementation on a 4-socket, 48-core multi-

processor. We strongly believe that our method can improve

the performance of many real-world applications, such as

the one described in [7] which assigns nearly 40,000 degrees

of freedom to each of the 960 target processors.

Our conclusions and future work directions are given in

Section 6.

2 Related Work

Several parallel algorithms have been proposed to assem-

ble the global stiffness matrix associated with finite element

methods. Since the global stiffness matrix is shared by many

processors, graph-partitioning techniques have been used [8,

9] to partition mesh elements among all the threads. The

corresponding rows of the global stiffness matrix are assem-

bled in parallel by the threads. Synchronization constructs

(i.e., semaphores and monitors) are used to obtain the cor-

rect global stiffness matrix when race conditions arise. An

alternate method is to store the shared data of the global

stiffness matrix in a distributed manner and to update the

corresponding rows separately after those rows are assigned

to each of the threads. The latter method avoids synchroniza-

tion constructs. Rezende [10] proposed a different technique

in which the mesh vertices, instead of the mesh elements,

were assigned to each thread. This enables the correspond-

ing rows to be assigned to each thread, and since each row

is updated by a single thread, no synchronization steps are

necessary. Note that a separate data structure must be main-

tained to store all the elements associated with every vertex.

Chien and Sun [11] proposed an element reordering al-

gorithm in which mesh elements are renumbered and as-

signed to processors such that the last element of the previ-

ous thread and the first element of the next thread have com-

mon vertices. This ensures that the threads access the shared

data at different times, and, thus, synchronization is theo-

retically not necessary. However, in practice, when many

threads are operating on a mesh, synchronization constructs

are necessary to obtain an accurate global stiffness matrix.

Cuthill and McKee [12] developed a BFS-based vertex-ren-

umbering algorithm that reduces the bandwidth of the ad-

jacency matrix of a graph. In their algorithm, a BFS deter-

mines the order of vertices, but this ordering also depends

on the degree of each of the vertices. The newly-discovered

vertices at each level of the BFS are listed in increasing order

of their degrees. Heber et al. developed a self-avoiding walk

(SAW) technique [13] to reorder mesh elements and vertices

based on the element and edge connectivity of a mesh. These

algorithms have been used for accelerating sparse matrix-

vector multiplications and other sparse matrix computations

[17, 18]. Oliker et al. [17] observed that the SAW reorder-

ing technique performs better than the Cuthill and McKee’s

reordering technique [12] for sparse matrix computations.

Zhou et al. developed a reordering technique [14] that re-

orders both mesh elements and vertices. This technique ex-

ploits the cache memory hierarchy while assembling the gl-

obal stiffness matrix and also while solving the linear sys-

tem that results from the FE formulation. Han et al. devel-

oped an algorithm [15] that constructs a hypergraph from

the data-access pattern and applies hierarchical clustering.

Strout and Hovland [16] developed a data- and iteration-

reordering technique that uses spatial- and temporal-locality

hypergraphs to improve the cache performance. These algo-

rithms can be very expensive, as the underlying graph struc-

tures are computed at run time. There have been no studies
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on the effectiveness of the algorithms when they are applied

before the execution of the program.

Mesh vertex reordering techniques have also been used

in the context of mesh quality improvement [19, 20]. The

objective of the vertex reordering technique is to reduce the

total time required to improve the mesh quality. Shontz et

al. [19] considered both a priori and dynamic reordering,

whereas Park et al. [20] considered a priori vertex reordering

We use a Hilbert space-filling curve (SFC) element- and

vertex-reordering technique to ensure that both temporal and

spatial locality can be exploited while mesh elements and

vertices are being accessed to compute the global stiffness

matrix. An SFC naturally partitions a mesh geometrically

and orders the elements such that the threads access ele-

ments with shared vertices at the same time very rarely. There-

fore, synchronization does not significantly reduce the per-

formance of the algorithm when scaled to a large number of

processors.

SFCs have been used previously before in the context of

structured data access [21] and unstructured meshes. Cache-

oblivious layouts have been proposed [22] for volume ren-

dering, surface mesh simplification, and isovalue extraction

based on the Morton SFC. SFCs have also been used to per-

form parallel adaptive mesh generations [23] and parallel

anisotropic mesh adaptation [24]. SFCs have also been pro-

posed for sparse matrix-vector multiplications [25]. Mellor-

Crummey et al. [26] also studied the effect of data reorder-

ing using SFCs on the data locality in multiple levels of

cache memory hierarchy.

With the exception of [14], prior work has focused just

on cache utilization for solving linear equations, i.e., the ma-

trix is given as an input to the algorithms using a suitable

data structure, but the construction of the matrix or the data

structure has not been taken into account. Gerhold et al. [27]

proposed a parallel mesh warping method that uses a spring

analogy to move vertices to their new locations, and Tsai

et al. [28] have proposed a multiblock spring- and trans-

finite interpolation-based parallel mesh warping technique,

but they have not studied the cache utilization of their tech-

niques. In this paper, we study the effect of the Hilbert SFC

reordering technique on both the stiffness matrix assembly

and the linear solution process for three-dimensional do-

mains. This paper also presents the effect of the reordering

on the efficiency of block Jacobi preconditioner.

3 Background

In this section, we provide background on some of the fun-

damental concepts and methods we refer to throughout the

rest of this paper.

3.1 Data Structure to Store Meshes

Mesh vertices and elements are stored in two separate ar-

rays. The vertices are indexed, and their x−, y−, and z−coor-

dinates are stored in an array. The indices of four vertices

in each of the tetrahedral elements are stored in another ar-

ray. As a vertex can be shared by many elements, its index

may be found in many entries of the array.

3.2 Space-Filling Curves

Space-filling curves are mappings from a one-dimensional

interval to a region in an n-dimensional space. Space-filling

curves pass though every point in the region in the n-dimens-

ional space [2]. Since a space-filling curve does not intersect

itself, an ordering of the points in the n-dimensional space

can be obtained through its use. Fig. 1 shows the evolution

of a space-filling curve for a two-dimensional region. Such

curves are usually constructed through recursion, but infi-

nite recursive calls are necessary to construct the ideal curve

(that contains every point in the domain) to find the order-

ing of all the points in an n-dimensional space. Since only a

finite number of elements are present in a mesh, it is possi-

ble to determine an ordering of the mesh elements through a

finite number of steps. As space-filling curves order the ver-

tices based on their spatial proximity, it is possible to extract

spatial locality in their access pattern by ordering mesh el-

ements and vertices appropriately. Since adjacent elements

share one or more vertices, traversing mesh elements in the

SFC order can also result in a higher temporal locality.

3.3 Reverse Cuthill-McKee Ordering

Cuthill and McKee [12] developed a reordering algorithm in

order to reduce the bandwidth of sparse symmetric matrices.

Their algorithm constructs a graph from a symmetric ma-

trix, and BFS is used to determine the ordering of the matrix

rows and columns. In each level of the BFS, graph nodes are

arranged in increasing order of their degrees before proceed-

ing to the next level. The reverse Cuthill-McKee (RCM) or-

dering [29] reverses the ordering obtained from Cuthill and

McKee’s BFS.

3.4 FEMWARP

FEMWARP is a finite element-based mesh warping algo-

rithm [3], which solves Laplace’s equations, ∇2u = 0, (i.e.,

there is one equation in each of the three dimensions), in or-

der to warp a mesh from an initial domain to a target domain.

The algorithm takes the initial mesh and the boundary de-

formation (target vertex positions) as the input, and deforms
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Fig. 1 Evolution of a space-filling curve (SFC) for a two-dimensional, square domain.

the mesh in three steps. First, the stiffness matrix obtained

from the source mesh is used to compute the weights for

each interior vertex such that the weighted sum of the posi-

tions of all of its neighboring vertices gives the position of

the interior vertex. Second, the boundary elements are then

transformed using the target vertex positions. Third, the new

positions of the interior mesh vertices are computed by solv-

ing the system of linear equations obtained from the stiffness

matrix and target vertex positions. The solution of the sys-

tem of equations corresponds to the solution of Laplace’s

equations with Dirichlet boundary conditions given by the

target vertex positions of the boundary vertices. A mesh may

need to be deformed multiples times during the course of a

simulation. Each time the mesh is deformed, the stiffness

matrix remains the same, but the right-hand side, b, of the

system of linear equations, Ax = b, is different. For a 3-

dimensional mesh, FEMWARP solves Laplace’s equations

for each of the three dimensions in an uncoupled manner

using the finite element method. The portion of the stiffness

matrix that describes the connections of interior vertices to

their interior neighbors is symmetric and positive definite.

This submatrix and the boundary conditions form a set of

linear equations, which can be solved using the precondi-

tioned conjugate gradient (PCG) method described below.

3.5 Stiffness Matrix Assembly

The FE stiffness matrix contains the same number of rows

and columns as the number of vertices in the corresponding

FE mesh. Each row and column in the matrix corresponds to

a vertex in the mesh. If vertex i and vertex j are connected

by an edge in a tetrahedral element, the tetrahedral element

contributes to the value of the stiffness matrix element in

row i and column j of the matrix. The value depends upon

the geometry of the element as well as the PDE being solved.

The tetrahedral element also contributes to the value of the

diagonal elements (in row i and column i, for instance) in the

matrix. The contributions from all the elements are added

to assemble the stiffness matrix. More information on FE

techniques to solve Laplace’s equations can be found in [30].

3.6 Preconditioned Conjugate Gradient Method

In order to solve a set of linear equations denoted by Ax = b,

where A is a symmetric positive definite matrix and b is a

vector, the CG method may be used. The CG method theo-

retically converges in n iterations, where n is the number of

interior vertices in the mesh, and A is n×n. However, if A is

sparse, the CG method needs fewer iterations to converges.

If A is ill-conditioned, a preconditioner P may also be used

to improve the conditioning and to solve the equivalent sys-

tem:

P−1Ax = P−1b, (1)

which has a lower condition number if P is well chosen.

The preconditioned conjugate gradient (PCG) algorithm is

shown in Algorithm 1.

Algorithm 1 Preconditioned conjugate gradient (PCG) al-

gorithm for solving a system of linear equations, Ax = b,

using a preconditioner P.

r0 = b−Ax0

Solve Pz0 = r0

d0 = z0

for k = 0,1,2, ... do

αk =
zT
k rk

dT
k

Adk

xk+1 = xk +αkdk

rk+1 = rk −αkAdk

Solve Pzk+1 = rk+1

βk+1 =
zT
k+1rk+1

zT
k

rk

dk+1 = zk+1 +βk+1dk

end for

4 Implementation

Mesh vertex- and element-reordering techniques are effec-

tive only when the mesh is used several times. We incur

cache misses in the process of determining an efficient or-

dering. If mesh vertices and elements are accessed only once,
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the same cache misses are incurred. The overhead cost of re-

ordering elements is low when the mesh elements and ver-

tices are accessed several times. Thus, the reordering tech-

niques should be used only when the mesh vertices and el-

ements are accessed several times. In this paper, we focus

on the improvement in running times for the mesh warp-

ing application after the reordering technique is used. Since

the overhead cost of reordering is low, a naive, serial im-

plementation of the SFC reordering technique is used. An

efficient parallel implementation of the mesh warping algo-

rithm is used to report the improvement in run times. The

implementation techniques are described below.

4.1 Hilbert Space-Filling Curve Reordering

Our serial implementation of the Hilbert SFC reordering al-

gorithm reorders the mesh elements recursively. The loca-

tion of a tetrahedral element is defined to be its centroid.

The centroids are recursively subdivided into eight octants

until at most one centroid point is present in every octant.

These octants are ordered according to the Hilbert SFC [2].

After obtaining the order of the mesh elements, the vertices

are reordered such that they follow the ordering of the el-

ements, i.e., if an element, A, is ordered to appear before

an element, B, the vertices of the element A would appear

before the vertices of the element B.

4.2 Reverse Cuthill-McKee Reordering

We construct a graph with mesh elements as its nodes, and

a pair of nodes are connected by an edge if the two corre-

sponding elements share a face. The RCM ordering is ob-

tained for this graph, and the elements are ordered accord-

ingly. The vertices are ordered in the same way as above,

i.e., if an element, A, is ordered to appear before an element,

B, the vertices of the element A would appear before the ver-

tices of the element B.

4.3 Stiffness Matrix Assembly

After reordering the mesh elements and vertices, we com-

pute the finite element stiffness matrix that is used to solve

the discretized form of Laplace’s equations. The stiffness

matrix is sparse, and the nonzero matrix elements corre-

spond to the edge-connected vertices in the mesh. A local

stiffness matrix is computed in parallel for every mesh ele-

ment, and this matrix is added in parallel to the global stiff-

ness matrix. Each thread is assigned a set of elements (i.e.,

contiguous blocks in the reordered array) for which the lo-

cal stiffness matrix is computed. The global stiffness ma-

trix is stored in an array of arrays. We construct an array

of pointers in which each element points to an array, which

corresponds to a row in the global stiffness matrix. Each

of those row-assigned arrays stores the nonzero elements

in their respective rows. The row-assigned arrays store the

column data and the value of the element at the respective

row-and-column location in the global stiffness matrix.

Computation of the local stiffness matrix for each ele-

ment is distributed across the threads. As two elements may

share an edge, and the vertices connected by the edge may

be accessed by two threads in parallel, race conditions will

arise when the global stiffness matrix is being updated in

parallel. To avoid incorrect assembly of the global stiffness

matrix due to race conditions, locks are employed to guar-

antee mutual exclusion. Our parallel global stiffness matrix

assembly algorithm is shown in Algorithm 2.

When a matrix element in the global stiffness matrix is

to be updated by a thread, the corresponding column entry

in the row-assigned array is searched. If an entry for the col-

umn is found, a lock is acquired for that element, the entry is

updated, and the lock is released. If the column entry is not

present in the array, then a lock for the entire row-assigned

array is acquired. Other threads may have added a matrix

element corresponding to the row and the column after the

search is complete but before the lock is acquired by our

thread. Therefore, the row-assigned array is searched again

to ensure that no other thread has added an element cor-

responding to the row and the column. If the element was

added, the array is accordingly updated. If the element is

still not present, a new entry is created, and the lock is re-

leased. This technique is efficient because the matrix is very

sparse. The maximum number of nonzero elements in a row

is typically only 20 or 30 even for meshes containing a bil-

lion vertices, and very few tetrahedral elements are updated

by more than one thread.

4.4 Parallel Preconditioned Conjugate Gradient Method

In order to solve the symmetric positive definite linear sys-

tem (1), we employ the PCG method as described in the pre-

vious section. The method was parallelized using OpenMP

constructs as shared-memory processors were used for our

numerical experiments. The implementation of most of the

steps in the CG method is embarrassingly parallel. The PCG

method involves sparse matrix-vector multiplication, which

is parallelized by assigning to each processor a block of rows

upon which to operate. The computation of the norm and dot

product both require addition of elements in an array. They

are both parallelized using the reduction operator construct

in our OpenMP implementation.

Most preconditioners are parallelized efficiently by par-

titioning the mesh or coloring the vertices using graph-theo-

retic techniques [31], and the rows and columns (correspond-

ing to the vertices) are reordered accordingly. Our intuition
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Algorithm 2 Algorithm for synchronization of global stiff-

ness matrix assembly in parallel

Input: myRow, myCol, myValue, vector<vector<double>>

myMatrix

Output: Update the stiffness matrix element (myRow, myCol) with

myValue

n = length of the row myRow

for i = 1 to n do

if myMatrix[myRow][i].col == myCol then

Obtain a lock for the element

Update myMatrix[myRow][i].value+= myValue

Release the lock for the element

Return

end if

end for

Obtain a lock to add an element to the row

nnew = length of the row myRow.

for i = n+1 to nnew do

if myMatrix[myrow][i].col == myCol then

Update myMatrix[myRow][i].value+= myValue

Release lock for the row

Return

end if

end for

Add a new element to myRow

Release lock for the row

Return

is that such reordering techniques are not efficient with re-

spect to cache utilization for stiffness matrix assembly. For

this reason, we use the block-Jacobi preconditioner in our

implementation. It is a common, effective preconditioner

that can be easily implemented in parallel. We will show

that our reordering technique lowers the number of itera-

tions required to converge to a solution if the block-Jacobi

preconditioner is used, i.e., when compared to the mesh with

the default ordering of vertices and elements, the reordered

mesh converges in fewer iterations. Note that a different pre-

conditioner may be used for solving linear equations if it is

found to be more efficient.

4.5 Parallel Block-Jacobi Preconditioner

The block-Jacobi preconditioner is constructed using square

matrix blocks which form submatrices in our global stiffness

matrix, and the union of the diagonals of the square subma-

trices form the diagonal of the stiffness matrix. We construct

the submatrices using consecutive rows and columns and en-

sure that they do not overlap. This preconditioner results in

a large number of independent linear systems, which can be

solved in parallel using the Cholesky factorization technique

followed by forward and backward substitution.

5 Numerical Experiments

We implemented the parallel FEMWARP algorithm using

OpenMP constructs in C++ and executed it on the three do-

mains shown in Fig. 2. The cube is a regular domain; the

gear is topologically different, as there is a hole in the do-

main; the inferior vena cava (IVC) filter [32] is a medical

device used to capture blood clots that are formed in deep

veins in the human body; it is a domain with a small local

feature size at any point in the domain. These diverse do-

mains were chosen to characterize the performance of our

SFC reordering algorithm on such domains. We generated

tetrahedral meshes with more than 10 million elements us-

ing Tetgen [33]. As each core is assigned more then 20,000

degrees of freedom to compute, the meshes were sufficient

to show the effectiveness of our technique. In order to simu-

late cache behavior, we also generated smaller meshes with

more then a million elements and used the Simics [34] full-

system simulator for our simulations. Smaller meshes con-

taining a million elements were used because the simulation

of the cache behavior for larger domains (with 10 million

elements) takes an excessively long time (about 48 hours

each).

Fig. 3 shows matrices with vertex connectivity informa-

tion for the three domains with the default ordering obtained

from Tetgen. Each row and column corresponds to a vertex.

Fig. 4 shows the same information for the reordered meshes.

The SFC reordering technique orders the vertices such that

most of the elements move closer to the diagonal. There-

fore, we expect better cache utilization and preconditioner

efficiency while assembling the stiffness matrix and solving

the linear equations, respectively.

A set of preliminary experiments was carried out to de-

termine an optimal block size for the block-Jacobi precon-

ditioner. The results from these experiments were used for

all the subsequent experiments, which includes cache uti-

lization, performance improvement due to the SFC reorder-

ing technique, and scalability. For all our experiments, we

perturbed the boundary vertices of our meshes by a unit dis-

tance in each of the three axes. Note that the last set of rows

(and columns) correspond to boundary vertices. We chose

the simple perturbation, as stiffness matrix assembly takes

the same time regardless of the perturbation, and the PCG

method takes sufficiently long to compare the results of our

reordering technique with the results from the default order-

ing of vertices. The FEMWARP algorithm moves the inte-

rior vertices to warp the mesh from the initial domain to the

new domain.

Table 1 reports the overhead time for reordering a mesh

on a single core, Table 2 provides the number of vertices

that are shared by multiple cores when the stiffness matrix is

parallely assembled. Clearly, the overhead time is not signif-

icant when a mesh is used multiple times during the course
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(a) cube (b) gear (c) IVC filter

Fig. 2 Domains on which the SFC reordering technique was applied and for which the meshes were warped.

(a) cube (b) gear (c) IVC filter

Fig. 3 Spy plots of the stiffness matrix for the three domains with the default ordering.

(a) cube (b) gear (c) IVC filter

Fig. 4 Spy plots of the stiffness matrix for the three domains with the SFC ordering of both vertices and elements.

of an iteration for the SFC reordering. The number of shared

vertices increases with the number of cores as expected in

most cases. For smaller number of partitions, the SFC or-

dering generally results in fewer shared vertices when com-

pared to the RCM ordering. For larger number of partitions,

the SFC ordering results in more shared vertices.

5.1 Block Size Experiment

A preliminary set of experiments are carried out on the de-

fault and reordered gear domains to determine the optimal

block size to solve (1). We vary the block size for the pre-

conditioner from one to eight, and the number of cores are

varied from one to 48. Both the number of iterations and the

time taken to solve the linear system are obtained for run-

ning the PCG algorithm.

Fig. 5 shows the number of CG iterations needed for the

solution to converge as a function of the block size. For the

default gear mesh, the block size does not play a signifi-

cant role in reducing the number of iterations. However, for

the reordered meshes, increasing the block size reduces the

number of iterations needed to converge. Since more nonze-

ros are present near the diagonal for the reordered meshes,

increasing the block size is effective.
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Domain # Vertices # Elements Ordering Overhead Time

cube 1,718,389 10,777,036

default -

SFC 51.6

RCM 419

gear 1,991,261 12,196,347

default -

SFC 55.7

RCM 459

IVC filter 1,790,304 10,669,653

default -

SFC 55.2

RCM 414

Table 1 The overhead time (in seconds) for reordering the vertices and elements of a mesh for both the SFC and RCM orderings.

Domain Ordering

Number of Shared Vertices

Number of Cores

2 4 8 12 16 24 32 48

cube

default 1,557,890 1,698,416 1,714,838 1,716,623 1,717,509 1,718,003 1,718,137 1,718,265

SFC 27,311 57,057 81,565 219,930 199,915 343,528 320,307 488,600

RCM 35,482 87,352 186,534 283,767 381,414 574,044 766,376 1,123,533

gear

default 1,841,827 1,968,056 1,986,396 1,989,356 1,989,890 1,990,631 1,990,796 1,990,974

SFC 6,948 15,776 70,237 466,122 427,617 687,256 914,044 1,099,137

RCM 8,817 28,469 67,567 104,512 142,829 217,517 293,254 442,543

IVC filter

default 1,537,630 1,743,836 1,781,755 1,788,116 1,789,403 1,789,990 1,790,204 1,790,262

SFC 96,352 467,400 1,055,949 1,235,017 1,244,286 1,379,797 1,427,270 1,493,447

RCM 3,094 14,348 34,561 50,297 63,456 98,689 129,059 195,667

Table 2 The number of shared vertices when multiple cores are used to assemble the stiffness matrix in parallel.
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Fig. 5 The number of PCG iterations to solve the system of linear

equations to determine the x-coordinates of the vertices in the reordered

gear mesh as a function of the block size of the Jacobi preconditioner.

The results are similar for the y- and z-coordinates.

There are three factors that determine the total time to

solve the system of linear equations when the block size is

changed. First, the time taken to solve the system of lin-

ear equations depends upon the time per iteration. As block

size increases, more time is required to solve each of the

independent systems of linear equations. Second, the num-

ber of those independent systems of equations, and third,

the number of PCG iterations both reduce with increasing

block size. Fig. 6 shows the time required to solve the equa-

tions on eight cores for the SFC reordered mesh. Typically,

a block size of four elements takes the least amount of time

to solve the system of linear equations. For the rest of the

experiments, we use a block size of four elements.
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Fig. 6 Time taken to solve the system of linear equations to deter-

mine the x-coordinates of the vertices in the reordered gear mesh as a

function of the block size of the Jacobi preconditioner. The results are

similar for the y- and z-coordinates. Note that the y axis does not start

from 0.

5.2 Cache Utilization Experiment

We simulate cache behavior using Simics [34] for a shared-

memory processors with a shared L2 cache and private L1

caches for 1-, 2-, 4-, 8- and 16-core processors. In our sim-

ulations, 4 MB shared L2 caches and 64 KB L1 caches are

used. For PCG, the sparse matrix-vector multiplication step

is the only step in which cache utilization improvement can

be seen due to the reordering technique. As there has also

been prior work [35] showing such results, we simulate the

cache behavior only for the stiffness matrix assembly.

Table 3 shows the number of cache misses incurred dur-

ing each of our simulations. The results for the L1 cache hit

rates for a 1-core processor are shown in Fig. 7. The data

read miss rates for the L1 cache are reduced by almost 50%
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Fig. 7 Private L1 cache data read hit rate for the three domains for

1-processor execution. Note that the y axis does not start from 0.

in some cases due to the reordering. We find very similar

results for 2- and 4-core simulations. The shared L2 cache

performance also improves due to the reordering in most

cases. The results for the L2 cache simulations are shown

in Fig. 8. Note that the data transaction on the L2 cache

happens only when an L1 cache miss happens. Therefore,

where there is an L1 cache hit rate improvement, compara-

ble hit rates of the L2 cache for the default meshes and the

reordered meshes will result in improved performance for

the reordered meshes.

We only find one case (the cube mesh on a 1-core pro-

cessor) where the L2 cache hit rate slightly reduces due to

the reordering. But since the number of data transactions on

the L2 cache for the default mesh are twice as many as for

the reordered mesh, the run time for the reordered cube mesh

is lower than that for the default mesh. Between the two re-

ordering techniques (SFC and RCM), we see that the SFC

technique is more effective for the cube and gear meshes,

whereas the RCM technique is more effective for the IVC

filter mesh. This is because the IVC filter domain contains

regions with a small feature size, and the space-filling curves

lead to ordering in which elements that are geometrically far

apart to be become next to each other.

5.3 Performance Improvement with the SFC Reordering

Technique

We also measured the improvement in the run time due to

the reordering on a real system. We ran our experiments on

a 48-core multiprocessor system with four AMD Opteron

6174 processors connected using AMD Hypertransport links.

Each processor has 12-cores running at 2.2 GHz. In each

processor, each core has a 64KB private data cache, a 64KB

private instruction cache, a 512KB private L2 cache, and all

12 cores share a 12MB L3 cache. The results for the rela-

tive time of execution for the reordered mesh with respect to

the default mesh for stiffness matrix assembly are shown in

Fig. 9. For a greater number of cores, the improvement ob-

tained by reordering is nearly 15-20% for all three domains.

The performance mostly improves with the increasing num-

ber of processors. Fig. 9 also shows that the SFC reordering

algorithm is more effective for the cube and the gear mesh.

For the IVC filter mesh, the RCM technique was found to be

more effective.

When solving the system of linear equations, we see fa-

vorable results, i.e., a reduction in run time by about 5-15%

in most cases due to the reordering. The results are shown

in Fig. 10. The use of the SFC reordering technique takes

less time than the RCM technique to solve the system of lin-

ear equations in most cases. The use of the SFC reordering

technique improves the performance of the parallel imple-

mentation of the FE-based algorithms.

5.4 Scalability

We examined the strong scaling of the parallel implementa-

tion of the FEMWARP algorithm. Both the default and the

reordered meshes are used in our experiments. The results

are presented for the two stages of the algorithm, which are

the a) stiffness matrix assembly and b) solution of the sys-

tem of linear equations. For stiffness matrix assembly, the

results for the gear mesh are presented in Fig. 11(a). The re-

sults for the other two domains are similar. For the default

mesh, the efficiency of scaling is around 75% for 48 cores.

Whereas, for the SFC reordered mesh, it is around 82%. For

the RCM reordering, the efficiency is around 81% for 48

cores. Clearly, improvement in cache hit rates plays a major

role in reducing the run time of the FEMWARP algorithm.

For solving the linear system of equations, the scaling

is not as good as in the previous stage due to the serializa-

tion in computing quantities such as the vector norm and the

dot product. The results are shown in Fig. 11(b). They are

comparable to results in [36]. There is a slight improvement

(about 2%) in the results for the SFC reordered meshes due

to the reduction in the number of iterations as well as the

improved cache utilization due to reordering. However, the

RCM reordering technique does not help in scaling for the

gear mesh. The efficiency is nearly identical to that of the

default ordering.

6 Conclusions and Future Work

We demonstrated the effectiveness of the SFC reordering

technique for FE methods in improving the cache utiliza-

tion in parallel stiffness matrix assembly and in reducing the

number of iterations via the use of the block-Jacobi precon-

ditioner for solving the linear system using the PCG method.

Due to reordering, synchronization constructs in the algo-

rithm do not significantly affect the running time. About

20% improvement in the run time is obtained from reorder-

ing the mesh elements and vertices on shared-memory, mul-

ticore processors. We also showed that the strong scaling
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Fig. 8 L2 cache data read hit rate for the three domains for 1-, 2-, and 4-core execution.

Mesh Ordering Cache
Number of Cores

1 2 4 8 16

cube

Default
L1 62,668,490 145,524,243 194,529,938 143,294,518 123,144,562

L2 28,098,680 25,434,250 23,630,539 7,356,511 3,889,960

SFC
L1 31,105,850 127,395,303 174,836,885 115,138,039 104,446,498

L2 14,258,469 11,152,992 8,504,900 1,072,793 476,748

RCM
L1 34,458,635 117,785,545 175,507,731 120,261,125 110,329,527

L2 16,437,792 14,313,189 11,443,342 2,243,899 1,369,829

gear

Default
L1 66,756,315 146,833,342 190,927,402 275,122,598 268,291,370

L2 41,676,355 36,244,728 33,869,673 11,205,708 6,158,739

SFC
L1 31,302,744 121,136,092 167,718,249 195,709,247 104,602,420

L2 1,725,6801 11,122,832 8,670,348 1,245,778 615,127

RCM
L1 33,557,100 114,427,214 168,859,365 197,644,124 109,980,945

L2 13,753,467 11,569,333 9,101,523 1,096,128 646,180

IVC filter

Default
L1 68,896,503 139,589,822 190,125,522 212,265,141 191,230,089

L2 38,363,790 36,225,347 32,325,440 12,022,282 6,090,045

SFC
L1 37,077,173 124,940,594 171,336,297 213,125,900 106,670,298

L2 19,184,474 13,040,197 11,029,769 2,598,272 1,030,516

RCM
L1 31,286,358 114,789,113 167,432,540 208,318,077 106,841,248

L2 13,197,298 10,785,404 7,820,276 1,365,152 379,618

Table 3 The number of data read misses (NOT miss rate) for each of the domains for the L1 and L2 caches. The total number of misses are

provided for all private L1 caches and for the shared L2 cache for each simulation. Note that the ratio of the total number of L1 misses to the

number of L2 misses gives the miss rate for the L2 cache. For some cases, the miss rate for L1 and L2 caches can be also computed using Figs. 7

and 8. Those figures provide the hit rate, and thus, subtracting the hit rate from 1 gives the miss rate.

efficiency also improves due the reordering technique. The

SFC reordering technique is most effective when multiple

iterations of computations or several time steps are carried

out (such as in [4] and [7]) for accurately solving PDEs.

The termination criteria for recursion in the SFC reorder-

ing algorithm can be modified to a cache topology-aware

condition in which the memory space occupied by storing

the elements and vertices in each sub-octant is slightly less

than the L2 cache size. Further reordering would likely pro-

vide diminishing returns.

In their paper, Oliker et al. [17] showed that combin-

ing a graph-partitioning technique and the SAW technique

to reorder elements and vertices yields superior performance

over each of the individual techniques. Since the SFC-based

technique and the SAW technique are both geometric in na-

ture, we expect that combining the SFC technique with a

graph-partitioning technique would yield even better perfor-

mance.

Graph coloring-based preconditioners are widely used [31]

for solving sparse linear systems. An SFC-based reorder-

ing technique may also accelerate an algorithm that colors

mesh vertices, and thus helps in solving the systems of lin-

ear equations much faster. Also, both the geometry and the

algebra could be taken into account to develop a new pre-

conditioner that can be used to solve the linear system more

efficiently.
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Fig. 9 Relative time taken to assemble the stiffness matrix for the reordered gear mesh with respect to the default mesh for various numbers of

cores.
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(c) IVC filter

Fig. 10 Relative time taken to solve the system of linear equations to determine all the vertex coordinates in the reordered mesh with respect to

the default mesh for various numbers of processors.
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(b) Linear Equation Solution

Fig. 11 Strong scaling results for the gear mesh for the three ordering schemes. The results for the other two domains are similar.
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