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Abstract. Hydrocephalus is a neurological disease which causes ven-
tricular dilation due to abnormalities in the cerebrospinal fluid (CSF)
circulation. Although treatment via a CSF shunt in the brain ventricles
has been performed, poor rates of patient responses continue. Thus, to
aid surgeons in hydrocephalus treatment planning, we propose a geo-
metric computational approach for tracking hydrocephalus ventricular
boundary evolution via the level set method and a mesh warping tech-
nique. In our previous work [1], we evolved the ventricular boundary in
2D CT images which required a backtracking line search for obtaining
valid intermediate meshes. In this paper, we automatically detect the
ventricular boundary evolution for 2D CT images. To help surgeons de-
termine where to implant the shunt, we also compute the brain ventricle
volume evolution for 3D MR images using our approach.

1 Introduction

Hydrocephalus is a neurological disease characterized by abnormalities in the
cerebrospinal fluid (CSF) circulation, resulting in ventricular dilation. The CSF
is formed within the cerebral ventricles by the choroid plexuses and the brain
parenchyma, circulates through the ventricles and within the subarachnoid space
surrounding the brain, and drains into the venous blood by passing through the
arachnoid villi located in the dura matter [18]. Currently, it is believed that hy-
drocephalus may be caused by increased CSF production, by obstruction of CSF
circulation or of the venous outflow system, or due to genetic factors. The
efforts in treatment have been principally through CSF flow diversion. Within
limits, the dilation of the ventricles can be reversed by either CSF shunt implan-
tation or by performing an endoscopic third ventriculostomy (ETV) surgery,
resulting in a relief from the symptoms of hydrocephalus. However, despite the
technical advances in shunt technology and endoscopy, the two treatments show
no statistically significant difference in the efficacy for treating hydrocephalus
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[24]. ETV performs well only in some clinical cases of hydrocephalus [13], whereas
shunt failure happens in over 60% of patients [16]. There is therefore an urgent
need to design better therapy protocols for hydrocephalus.

An important step in this direction is the development of predictive theoret-
ical and computational models of the mechanics of hydrocephalus. The Monro-
Kellie hypothesis [17, 20] reduces the dynamics of the cranium to a competition
for space among CSF, blood, and brain parenchyma. This idea leads to numerous
pressure-volume models [22] (and references within) where the CSF is contained
within one compartment surrounded by compliant walls representing the brain
parenchyma. However, these models provide little insight towards a more fun-
damental understanding of the mechanisms of hydrocephalus. In [15], Hakim
proposed to model the brain parenchyma as a porous sponge of viscoelastic ma-
terial. Nagashima [21] extended this model by applying Biot’s theory of consol-
idation and carried out finite element simulations of the resulting mathematical
model. This introduced one of the two current models of brain biomechanics,
namely the poroelastic model [23, 25], in which the brain is a porous linearly
elastic sponge saturated in a viscous incompressible fluid. The second modeling
approach considers the brain parenchyma to be a linear viscoelastic material [19,
26]. Unlike the linear viscoelastic and poroelastic models which are based on the
assumption of small strain theory, the quasi-linear viscoelastic model proposed
in [14] was the first to successfully predict the large ventricular displacements in
hydrocephalus. Most of the above-mentioned mechanical models, however, use
either a cylindrical or a spherical geometry for the brain.

In order for mechanical models of brain to be of clinical relevance their corre-
sponding computational algorithms and software must incorporate the structural
geometry of the brain as seen in medical images as well as efficient and robust
numerical solvers. In our recent work [1, 12], we used nonlinear constitutive laws
and two-dimensional medical images of brains to simulate the response of hydro-
cephalic brains to treatments. In this paper, we generalize the results from [1] and
propose an automatic computational pipeline for the evolution of the brain ven-
tricles that involves the following steps: image denoising, threshold-based image
segmentation, prediction of the ventricular boundaries via the level set method,
generation of computational meshes of the brain, mesh deformation based using
the finite element-based mesh warping (FEMWARP) method, and mesh quality
improvement of the deformed meshes. We will present three-dimensional changes
in the geometry of the lateral ventricles of a normal brain during simulated de-
velopment of hydrocephalus, in the particular case when hydrocephalus is due
to the occlusion of the interventricular foramina. The interventricular foramina
(or foramina of Monro) are channels that connect the lateral ventricles with the
third ventricle of the brain, and allow the CSF produced in the lateral ventricles
to flow into the third ventricle and then to the rest of the brain.
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2 Computational Techniques for Motion of Geometric
Models and Meshes in Biomedical Simulations

Level-set methods (LSM) (e.g., [9, 27–30]) are computational techniques for track-
ing evolving curves or surfaces and have been used extensively in medical imag-
ing and in other fields. The level set approach delineates region boundaries using
closed parametric curves (or surfaces, etc.) that deform according to motion pre-
scribed by a partial differential equation (PDE). The problem of how to move
the curves is formulated as a front evolution problem. The final contour position
is influenced by the speed of the deformation, which may be controlled by local
curvature of the contour, the intensity gradient in an image, shape, the initial
position of the contour [9], and the intrinsic physics of the problem. One impor-
tant advantage of LSM is that deforming shapes undergoing topological changes
can easily be tracked. This makes the LSM ideal for tracking the evolution of
hydrocephalic brain ventricles.

Persson et al. developed a moving mesh technique [31, 32] for image-based
problems which is based on the incorporation of level sets into an adaptive mesh
refinement technique which uses a Cartesian or octree background mesh to de-
termine the mesh motion. Alternatively, mesh warping algorithms compute the
mesh deformation from the source domain to the target domain based upon in-
terpolation and/or extrapolation of the vertex coordinates. Several mesh warping
techniques for biomedical applications have been developed (e.g., [33–36]). How-
ever, none of these techniques were designed to handle the large deformations
the ventricles undergo due to hydrocephalus.

3 Introduction to the Level Set Method and FEMWARP

In this section, we describe the particular level set and mesh warping methods
we employ in our geometric computational pipeline.

3.1 The Chan and Vese Level Set Method for Curve Evolution

The Chan and Vese method [37] evolves level set curves using minimization of
an energy functional of Mumford-Shah type.

Let u0 denote a given image with domain Ω and C denote a parametrized
curve. Let φ be a Lipschitz function which implicitly represents C. The zero-level
curve of the function at time t of the function φ(t, x, y) is used to evolve C based
on a prescribed speed and direction.

Let c1 and c2 be constants depending on C which are the averages of u0

inside and outside of C, respectively, and let F (c1, c2, φ) denote the energy func-
tional to be minimized by computing the Euler-Lagrange equations and then
solving the resulting PDE. Let µ ≥ 0, ν ≥ 0, λ1, and λ2 be fixed parameters, and
let Hε, δε be regularized Heaviside functions and one-dimensional Dirac mea-
sures, respectively. The curve evolution is obtained by minimizing the following
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regularized energy functional:

Fε(c1, c2, φ) = µ
∫

Ω
δε(φ(x, y))|∇φ(x, y)| dx dy

+ν
∫

Ω
Hε(φ(x, y)) dx dy

+λ1

∫
Ω
|u0(x, y)− c1|2 Hε(φ(x, y)) dx dy

+λ2

∫
Ω
|u0(x, y)− c2|2 (1−Hε(φ(x, y))) dx dy.

(1)

The Chan and Vese technique is also known as the active contours without
edges method, since the stopping criteria does not depend on the gradient of the
image but rather on a particular segmentation of the image in which the given
image is approximated by a piecewise constant function. We solve the energy
minimization problem for (1) using the Matlab implementation by Wu in [40].

3.2 The Shontz and Vavasis Finite Element-Based Mesh Warping
(FEMWARP) Algorithm

FEMWARP is a topology-preserving, tetrahedral mesh warping approach which
was proposed by Baker [38] and was developed by Shontz and Vavasis [39].

First, FEMWARP represents each interior vertex in the mesh as a specific
linear combination of its neighbors by computing the global stiffness matrix A
for the boundary value problem 4u = 0 on Ω with u = u0 on ∂Ω is formed,
where Ω is the mesh domain, and A is computed based on piecewise linear finite
elements on the mesh. Because only A is kept, any u0 may be prescribed.

Let x be a vector containing the x-coordinates of the initial mesh vertices
(and similarly for the y and z coordinates). It follows that

AI [xI , yI , zI ] = −AB [xB , yB , zB ], (2)

where AI and AB are the submatrices of A with the rows indexed by interior
vertices and the columns indexed by interior and boundary vertices, respectively.

Second, FEMWARP solves the above linear system, i.e., (2) with a new right-
hand side vector based on the new boundary vertex positions (i.e., [x̂B , ŷB , ẑB ])
(established by the level set method in our case) for the new coordinates of the
interior vertices of the deformed mesh. In particular, we solve (3)

AI [x̂I , ŷI , ẑI ] = −AB [x̂B , ŷB , ẑB ] (3)

for [x̂I , ŷI , ẑI ].

4 Ventricular Boundary Deformation with the Level Set
Method and FEMWARP for Hydrocephalus Treatment

To track the evolution of the brain ventricles during treatment of hydrocephalus,
we propose a combined level set/mesh warping algorithm. Our approach is de-
signed as a computational pipeline and includes the following steps: image de-
noising, image segmentation, obtaining boundary vertices via the LSM, mesh
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Algorithm 1 Mesh warping with the level set method
1: Input: medical images with source and target ventricular boundaries
2: Image denoising using mask filters
3: Image segmentation via thresholding method
4: Obtain ventricular boundary vertices from segmented source and target med-

ical images via level set method
5: Generate initial mesh with A using Triangle
6: LOOP 1: Deform mesh from source to target using FEMWARP
7: if mesh is valid then
8: Mesh quality improvement on the deformed mesh
9: return mesh

10: else
11: Backtracking line search with small-step FEMWARP until mesh is valid
12: end if
13: Go to LOOP 1

generation, LSM and mesh warping, and mesh quality improvement. Pseudocode
for our combined level set/mesh warping algorithm is given in Algorithm 1. More
details for each step of the algorithm are given in [1].

We performed two simulations based on our combined level set/mesh warping
algorithm shown in Algorithm 1. The first simulation was ventricular boundary
deformation for 2D CT images via the LSM. Unlike our previous study [1],
the evolution of the ventricular boundary was automatically detected via the
LSM in the first simulation. The second simulation was the ventricular bound-
ary evolution of 3D brain images. The motion of the 3D brain ventricles was
simulated based on the LSM with a constant speed movement. The Solaris ma-
chine employed for the simulations was an UltraSPARC-III CPU with a 750MHz
processor, 1GB SDRAM of memory, and an 8MB L2 cache.

4.1 Simulation 1: Automatic Boundary Detection via Level Set
Method

Three CT images [2], i.e., pre-treatment, period 1 (6 months later), and period 2
(1 year later) of hydrocephalus treatment via shunt insertion, are used as inputs
for this simulation. In our previous study, the LSM was applied only to obtain
the ventricular boundary vertices in the segmented images. The intermediate
boundary deformation from pre-treatment to period 1 and from period 1 to pe-
riod 2 was determined by using a backtracking line search.

In this simulation, however, the intermediate boundary vertices were obtained
by applying the LSM instead of using a backtracking line search. When detecting
the boundary vertices in an image, the LSM sets up an initial boundary con-
tour starting as a zero curve. This initial contour moves toward the ventricular
boundary in the image based on the movement computed by the LSM.

In each iteration, the LSM moves the initial contour toward the next target
boundary. The contours of each iteration represent the deformation of the brain
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ventricles. Thus, by tracking the boundary movement via the LSM, the inter-
mediate boundary vertices for the deformation are obtained. Since the variation
of the boundary movement between intermediate steps is very small, the auto-
matic intermediate boundary detection steps generate valid meshes and use of a
backtracking line search is not required.

Image denoising was performed as the first step of the simulation. For the
pre-treatment, period 1 and period 2 CT images, 3 × 3, 6 × 6, and 4 × 4 mask
filters were applied [8]. When segmenting the denoised images, threshold-based
segmentation method was performed [7] with threshold values of 20, 77, and 45
for the pre-treatment, period 1, and period 2 images. After segmentation, the
ventricles in the segmented images were represented as zero-valued pixels, and
the remaining parts were represented as one-valued pixels.

From the segmented pre-treatment image, the LSM was applied to obtain the
boundary vertices of the ventricles in the image. The contour for the zero function
obtained by the LSM matched the boundary of the ventricles in the segmented
pre-treatment image. The ventricular boundary obtained from the segmented
pre-treatment image was used as an initial contour of the LSM for boundary
detection of the segmented period 1 image. For each ventricular boundary ver-
tex, the next vertex is selected from the boundary vertices a fixed Euclidean
distance from the given vertex. The coordinates of the boundary vertices are
computed and ordered by repeating this process. The LSM moved the contour
in the inward normal direction with a constant speed of 13.2e−12 to detect the
boundary of the ventricles in the segmented period 1 image. Since the movement
was slow, all intermediate steps computed by the LSM generated valid meshes.
The level set method evolved until the average of the absolute distance between
the previous and the current contour vertices was smaller than 10−9.

Similar to the process of obtaining the boundary of the ventricles in the
segmented period 1 image, the ventricular boundary of the segmented period 2
image was obtained. The ventricular boundary of the segmented period 1 image
was used as an initial contour of the LSM to obtain the ventricular boundary of
the segmented period 2 image.

An initial mesh for the segmented pre-treatment image was generated us-
ing Triangle [3]. By using the boundary vertices obtained automatically from
the LSM, mesh deformation for the ventricles was performed. Mesh deformation
with intermediate steps from pre-treatment to period 1, and from period 1 to
period 2 was performed by FEMWARP algorithm [39].

Figure 1 shows initial, intermediate, and final meshes generated during ven-
tricular mesh deformation via the LSM with automatic intermediate bound-
ary detection. The boundary deformation in the figure was obtained in reverse
(i.e., from the period 2 segmented image to the pre-treatment image). Since the
LSM detects expanding boundaries better than shrinking ones, the intermedi-
ate boundaries were easily obtained and valid meshes were generated without
the use of a backtracking line search. After each intermediate mesh deforma-
tion step, average mesh quality improvement was performed by feasible Newton
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method [5] in Mesquite [4]. The inverse mean ratio [5] mesh quality distribution
for the intermediate meshes are shown in Figure 2.
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Fig. 1. (a) The mesh having the ventricular boundary vertices matched to pre-
treatment ventricular boundary vertices. The mesh contained 2187 vertices and 4026 el-
ements. ((b) and (c)) the deformed meshes generated by the FEMWARP algorithm [39].
The 60th and 150th intermediate mesh deformation results matched exactly to the
boundary vertices for the ventricles in the segmented period 1 and period 2 images.
Mesh quality improvement was performed to improve the mesh quality at each step of
the hydrocephalus ventricular deformation.
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(a) Initial mesh
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(b) 60th deformation
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(c) 150th deformation

Fig. 2. Inverse mean ratio mesh quality distribution for meshes generated in Simulation
1. Quality distribution for (a) the initial mesh, (b) the 60th deformation, and (c) the
150th deformation.

4.2 Simulation 2: 3D Ventricular Mesh Deformation via Level Set
Method and FEMWARP

We obtained a 3D MR image of the normal brain containing 181 2D brain
MRI slices from [6]. The goal of this experiment was to simulate 3D ventricular
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deformation from the normal to hydrocephalic state. In this simulation, the
intermediate boundaries were computed by expanding the volume of the normal
brain ventricles using LSM [9], as no target image is available in this dataset.
The boundary of the expanded ventricles was used as an intermediate boundary
of ventricular deformation. If a target MR image were available, our approach
could also be used to simulate hydrocephalus treatment.

In order to obtain the brain ventricle volume, the 3D brain is created by
segmenting the 3D MRI. First, all 181 2D MR images were denoised using a 3 × 3
mask filter [8]. After image denosing was performed, the images were segmented
based on threshold value of 50 [7]. In each segmented image, the white parts
represent the brain tissue, and the black parts represent the brain ventricles,
which will be deformed via the LSM. The segmented 2D images were stacked on
top of each other to create a segmented 3D MRI [10]. By extracting the portion
of the image represented as voxels with a value of zero in the reconstructed 3D
MR image, the brain ventricle volume was obtained and is shown in Figure 3(a).

(a) Brain ventricle volume (b) Brain ventricle volume
evolution

Fig. 3. (a) The brain ventricle volume obtained from the segmented 3D MR image.
(b) The brain ventricle volume evolution via the LSM [9].

To obtain the boundary vertices of the volumetric brain ventricles, the Mat-
lab function isosurface was used. With the boundary vertex information, the
initial mesh for the 3D brain MR image was generated by Tetgen [11]. After
obtaining the ventricular boundary vertices, the ventricular boundary deforma-
tion was computed via the LSM. The boundary obtained from the segmented
3D MR image was used as an input zero surface of the LSM. To evolve the
ventricular boundary, the LSM [9] moved the boundary of the 3D ventricles
along their interior normals with a constant speed of 0.01. Once the ventricular
boundary surface was evolved, the normals of the previous boundary vertices
were computed. The next position of each boundary vertex was computed by
selecting the point where the normal meets the evolved surface. In this simula-
tion, the ventricular boundary evolution was terminated after 10 iterations since
the expanded ventricle brain volume was similar to the hydrocephalic state. The
evolved brain ventricular volumes are shown in Figure 3(b).
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(a) Initial mesh (b) Optimized 3rd defor-
mation

(c) Optimized 10th de-
formation

Fig. 4. (a) The mesh having the ventricular boundary vertices matched to the 3D
normal brain MRI. ((b) and (c)) the deformed meshes generated by the FEMWARP
algorithm [39]. Each evolved surface was computed via the 3D LSM with constant
speed of 0.01. The mesh contained 8200 vertices and 40,783 elements. The blue-colored
brain represents the part to be deformed. Mesh quality improvement was performed to
improve the mesh quality at each step of the brain ventricular volume deformation.
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(a) Initial mesh
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(b) 3rd deformation
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(c) 10th deformation

Fig. 5. Inverse mean ratio mesh quality distribution for meshes generated in Simulation
2. Quality distribution for (a) the initial mesh, (b) the 3rd deformation, and (c) the
10th deformation.

When computing the new contour position, the mesh was deformed via
FEMWARP [39]. Also, mesh quality improvement for the intermediate step
was performed once the deformed mesh was obtained. The optimized mesh was
used as input in the computation of the next intermediate deformation step.
Figure 4 shows the initial, intermediate, and final meshes obtained during 3D
brain ventricle boundary deformation. In each iteration, the mesh deformed by
FEMWARP [39] was valid; hence, a backtracking line search was not required.
Feasible Newton [5] mesh quality improvement via Mesquite [4] was performed
after each boundary deformation step. The brain ventricle volume was expanded
three times bigger than its initial volume. Figure 5 shows the inverse mean ra-
tio [5] mesh quality distribution for the intermediate meshes. Unlike the previous
simulation, since the brain ventricle volume was enlarging to establish hydro-
cephalus, the mesh parts to be deformed and analyzed shrunk. Thus, the mesh
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quality distribution for the 10th iteration is worse than that of the previous it-
erations. In spite of this, the mesh quality was constantly monitored to ensure
the mesh quality was good enough for simulation.

5 Conclusions

In our previous research [1], we develop an image-based ventricular evolution
tracking method via the LSM [9] and FEMWARP [39]. In this paper, we pro-
posed two new techniques: the automatic ventricular boundary deformation for
2D CT images and the brain ventricle volume deformation for 3D MR image via
the LSM and FEMWARP. This approach can be used for any types of medical
images such as CT, MR, and ultrasound. Compared to our previous work [1], the
ventricular boundary deformation for 2D CT images was computed automati-
cally via the LSM. There were no invalid meshes in deformed meshes generated
by the automatic boundary detection process via the LSM. Thus, no backtrack-
ing line search was required. Simulation results showed that the 2D ventricular
boundary deformation via FEMWARP with the ventricular boundaries obtained
from the automatic LSM boundary detection was successfully performed.

Also, deformation of the brain ventricle volume for a 3D MRI was performed,
which is an extension of our previous work [1]. Since no target MR images are
available to us, a 3D normal brain MRI was used for computing the ventricle vol-
ume evolution for the simulation. To evolve the brain ventricle volume, the LSM
computed the evolved boundaries. By using the evolved brain ventricle boundary,
the brain ventricle volume deformation was performed via FEMWARP success-
fully. Unlike our previous work, no actual topological changes occurred when 3D
brain ventricular volume deformation was performed. Through our approach, we
aid neurosurgeons in easily determining where to place the shunt and thus in
obtaining better prognosis of hydrocephalus treatment. We will extend our geo-
metric computational approach to incorporate the mechanics of hydrocephalus.
We will also apply our technique to patient 3D MRIs.
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