EECS 739: Scientific Parallel Computing
Spring 2016

Course Description
This course is concerned with the application of parallel processing to real-world problems in engineering and the sciences. State-of-the-art serial and parallel numerical computing algorithms are studied along with contemporary applications. The course takes an algorithmic design, analysis, and implementation approach and covers an introduction to scientific and parallel computing, parallel computing platforms, design principles of parallel algorithms, analytical modeling of parallel algorithms, MPI programming, direct and iterative linear solvers, numerical PDEs and meshes, numerical optimization, GPU computing, and applications of parallel scientific computing.

Course Meetings
TR, 11am-12:15pm, 3150 Learned Hall

Instructor
Dr. Suzanne Shontz
3016 Eaton Hall
Dept. of Electrical Engineering and Computer Science
Office Phone: (785) 864-8816
E-mail: shontz@ku.edu

Office Hours: Tuesdays and Thursdays from 2:30-3:30pm or send e-mail to schedule an appointment in advance. (Note that I have a second office which is 238 Nichols Hall. You may be asked to come to Nichols Hall to meet with me if you request a meeting with me outside of office hours on certain days of the week.)

Teaching Assistant
None

Texts

References
Parallel Programming with MPI, by Peter S. Pacheco, Morgan Kaufmann Publishers, 1997. (Is on reserve at Spahr Library.)
Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn, McGraw-Hill
Publishers, 2004. (Is on reserve at Spahr Library.)

Multicore and GPU Programming: An Integrated Approach by Gerassimos Barlas, Morgan
Kauffman Publishers, 2015. (This is a new book and will be put on reserve at Spahr Library.)

Prerequisites
Math 122 or Math 126; Math 290; experience programming in C, C++, or Fortran. Highly
recommended: Math 127 or Math 223.

Helpful Background
EECS 639 (offered starting in Fall 2016), Math 581, or ME 508.

Course Requirements
Lecture attendance is required, although attendance will not be recorded. The course
requirements for EECS 739 include class participation, five homework assignments, one
midterm exam, and a final exam. The homework assignments will require a combination of
algorithmic design, problem solving, mathematical analysis, and computer programming (using
C/C++ and MPI) (not all on every assignment). *Prior knowledge of C/C++ and MPI is not a*
prerequisite for the course.

Homework assignments will be due approximately 10-14 days after they are assigned. Due dates
for homework assignments will be announced in class. (The dates listed on the course calendar
are simply a guide for me.) *There will be a late penalty of 20% per day for homework
handed in up to 48 hours late. No homework assignments will be accepted which are either
(i) more than 48 hours late or (ii) is not submitted by 11:59pm the day before Stop Day.*

There will be one midterm exam scheduled for Thursday, March 10 and one take-home
final exam scheduled for May 5-12. Please reserve these dates on your calendar. The midterm
exam will be closed-book. The final exam will be non-comprehensive and will be open book
and open notes; outside references may be consulted provided they are cited appropriately. A
make-up midterm or final exam will be given to any student who is absent from an exam for a
compelling reason and gets permission from the instructor.

If you have a mandated religious observance with conflicts with the midterm examination, please
contact me privately at the beginning of the semester so that a make-up examination can be
scheduled at a mutually acceptable time. (The university policy which applies to religious
observances in conflict with examinations does not apply to the final examination since
instructors do not schedule final exams.)

The exams will cover topics drawn from the lectures and homework, and from the underlying
algorithms and mathematics.
Grading
Class participation will count for 5% of the final grade. The homework assignments will count for 25% of the final grade. The lowest scoring homework assignment will be dropped provided no homework assignments have been skipped. The midterm exam will each count for 35% of the final grade, and the final exam will count for 35%.

Because there is currently no grader for the course, I will be grading one problem per homework assignment. Your score on this problem will be your score for the homework assignment. The problem to be graded will not be announced ahead of time. Students are responsible for completing all problems on homework assignments and for understanding the material contained therein.

Class Schedule
The course calendar shows a week-by-week syllabus. The dates and order of topics are subject to change by the instructor. Any significant changes will be announced in class.

Course Website and E-mail
By the end of the week, there will be a course website available at the following URL: http://people.eecs.ku.edu/~shontz/eecs_739_spring_2016.html. E-mail will be used for announcements not given in class.

Computing Facilities
Students will have access to a cluster in the Advanced Computing Facility at Nichols Hall in order to run your C/C++ and MPI codes.

Academic Integrity Policy
Cheating in the course will not be tolerated. Students are allowed to collaborate on the homework assignments with at most one other student of the class. The collaboration should involve no more than the formulation of ideas as a pair. Each student is expected to write up the homework assignment by himself or herself. Students must not hand in homework that represents somebody else’s ideas entirely. Students should do the C/C++ and MPI coding on assignments by themselves—no program code should be shared. No collaboration of any kind is allowed on the midterm or final exams.

Students are permitted to consult outside published material for the homework, although the homework will be fully based on lecture notes, course handouts, and the textbooks. If a student consults a source other than the lecture notes and textbooks, he or she must cite the source—failure to cite the source will be considered cheating.

If you are uncertain as to whether or not a particular behavior is considered cheating, you are highly encouraged to discuss it with the instructor before engaging in such behavior.

Anyone found cheating will receive a 0 on that work (homework assignment) or an F in the class (midterm exam or final exam). A second incident will result in an F grade for the course. These penalties will be received by all parties involved, following a hearing with the instructor. In all cases, reports of academic misconduct will also be made to the dean’s office where further
disciplinary action may be taken in accordance with School of Engineering and University of Kansas guidelines. This may result in much more serious sanctions. It is your responsibility not to let anyone copy your homework assignment or exam; otherwise, you may have to pay the price for others' misconduct.

Academic Achievement and Access

Any student in this course who has a disability that may prevent him/her from fully demonstrating his/her abilities should contact me personally as soon as possible so we can discuss accommodations necessary to ensure full participation and facilitate the educational opportunity.

The Academic Achievement & Access Center (AAAC) coordinates accommodations and services for all KU students who are eligible. If you have a disability for which you wish to request accommodations and have not contacted the AAAC, please do so as soon as possible. Their office is located in 22 Strong Hall; their phone number is (785) 864-4064 (V/TTY). Information about their services can be found at http://www.achievement.ku.edu/. Please contact me privately in regard to your needs in this course.

Suzanne M. Shontz, Associate Professor, Department of Electrical Engineering and Computer Science, University of Kansas, shontz@ku.edu
EECS 739: Scientific Parallel Computing
Week-by-Week Syllabus

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topics</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 19 and 21: Introduction to Scientific Parallel Computing and Its Applications</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan. 26 and 28: Parallel Computing Architectures</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Feb. 2 and 4: Design Principles of Parallel Algorithms</td>
<td>Homework #1 handed out on February 2</td>
</tr>
<tr>
<td>4</td>
<td>Feb. 9 and 11: Direct Linear Solvers</td>
<td>Homework #1 due on February 11</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 16 and 18: Iterative Linear Solvers</td>
<td>Homework #2 handed out on February 16</td>
</tr>
<tr>
<td>6</td>
<td>Feb. 23 and 25: MPI Programming/Reading assignment on February 25</td>
<td>Homework #2 due on February 25 (submit via EECS office); Homework #3 handed out. No class on February 25 per Dean Branicky’s request.</td>
</tr>
<tr>
<td>7</td>
<td>Mar. 1 and 3: MPI Programming/Analytical Modeling of Parallel Algorithms</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mar. 8 and 10: Analytical Modeling of Parallel Algorithms/Midterm Exam</td>
<td>Homework #3 due on Tuesday, March 8. Midterm Exam on Thursday, March 10.</td>
</tr>
<tr>
<td>BREAK</td>
<td>Mar. 15 and 17: Spring Break</td>
<td>No class this week.</td>
</tr>
<tr>
<td>9</td>
<td>Mar. 22 and 24: Numerical PDEs and Meshes</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mar. 29 and Mar. 31: Numerical PDEs and Meshes</td>
<td>Homework #4 handed out on March 31</td>
</tr>
<tr>
<td>11</td>
<td>Apr. 5 and 7: Numerical Optimization</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Apr. 12 and 14: Numerical Optimization</td>
<td>Homework #4 due on April 14</td>
</tr>
<tr>
<td>13</td>
<td>Apr. 19 and 21: GPUs</td>
<td>Homework #5 handed out on April 21</td>
</tr>
<tr>
<td>14</td>
<td>Apr. 26 and 28: GPUs</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>May 3 and 5: GPUs</td>
<td>Homework #5 due on May 5; Take-home final exam handed out on May 5.</td>
</tr>
<tr>
<td>FINAL</td>
<td>Take-home final exam from May 5 (12:15pm) through May 12 (1pm)</td>
<td>Final exam due at 1pm on May 12</td>
</tr>
</tbody>
</table>