The rules for this exam are as follows:

- Write your name on the front page of the exam booklet. Initial each of the remaining pages in the upper-right hand corner. Sign the front of the exam booklet. Your exam will not be graded if you have not signed the front page of the booklet.
- This exam will last for 50 minutes.
- Show ALL work for partial/full credit. This includes any definitions, mathematics, figures, etc.
- The exam is closed book and closed notes.
- No laptops, ipads, or other types of non-medical electronic devices are allowed.
- Calculators are allowed provided that they are only used to perform basic computations (and not programmed with algorithms or notes, for example).
- No collaboration of any kind is allowed on the exam.

1. ______ (10 points) 5. ______ (10 points)
2. ______ (10 points) 6. ______ (10 points)
3. ______ (10 points) EC. ______ (10 points)
4. ______ (10 points) T. ______ (60 points)
1. (10 points) By assuming that all basic operations require the same constant cost C, compute the cost of the resource function, $R_w(n)$, in closed-form for the following program segment using the simplified approach as discussed in class:

\[
x = 325; \\
y = -x; \\
\text{for } m = 1 \text{ to } n \text{ do} \\
\quad \text{for } k = 1 \text{ to } m^2 \text{ do} \\
\quad\quad y = x \cdot y - \sin(x \cdot y) + 3 \cdot y + 591; \\
\quad \text{endfor; } \\
\quad x = 3 \cdot y; \\
\text{endfor; }
\]

2. (10 points) Using the definition of big-Ω, prove that

\[
n \log n = \Omega(n).
\]
3. (10 points) Using the hash function $x \mod m$ and quadratic probing, construct a hash table H with $m = 7$ buckets by inserting a set of 6 records with keys $\{69, 79, 47, 14, 8, 22\}$, in the given order, into H.
4. (10 points) Construct the (unique) binary tree corresponding to the given pair of tree traversals if possible. If not such tree is possible, state that is the case.

Inorder: G, D, H, B, E, I, A, F, J, C
5. (10 points; 5 points each)

(a) (5 points) Insert items with keys 9, 8, 17, 1, 3, 51, and 6, in the given order, into an initially empty binary search tree. **Show the BST after each insertion.**

(b) (5 points) Next delete 1 and 9, in order, from the above binary search tree. **Show the BST after each deletion.**
6. (10 points; 5 points each)

(a) (5 points) Specify how to store the following network as an adjacency matrix. In doing so, please first specify your labeling of the nodes. **Any labeling of the nodes is OK.**

(b) (5 points) Describe how to reduce the storage of the adjacency matrix based on its sparsity and the implementation.
1. (10 points) You are going on a one-way indirect flight trip that includes an unknown very large number of transfers.

Here is what is known about your trip:

- You are not stopping twice in the same airport.
- You have 1 ticket for each part of your trip.
- Each ticket contains src and dst airports.
- All of the tickets you have are randomly sorted.
- You forgot the original departure airport (first src) and your destination airport (last dst).

Design an algorithm (based on the use of a hash table) to reconstruct your trip with minimum big-O complexity. You do NOT need to specify the computational complexity for your algorithm.