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Abstract

This paper presents an experimental comparison of a number of different algorithms for computing
the Deluanay triangulation. The algorithms examined are: Dwyer’s divide and conquer algorithm,
Fortune’s sweepline algorithm, several versions of the incremental algorithm (including one by Ohya,
Iri, and Murota, a new bucketing-based algorithm described in this paper, and Devillers’s version of a
Delaunay-tree based algorithm that appears in LEDA), an algorithm that incrementally adds a correct
Delaunay triangle adjacent to a current triangle in a manner similar to gift wrapping algorithms for
convex hulls, and Barber’s convex hull based algorithm.

Most of the algorithms examined are designed for good performance on uniformly distributed sites.
However, we also test implementations of these algorithms on a number of non-uniform distibutions.
The experiments go beyond measuring total running time, which tends to be machine-dependent. We
also analyze the major high-level primitives that algorithms use and do an experimental analysis of how
often implementations of these algorithms perform each operation.

1. Introduction

Sequential algorithms for constructing the Delaunay triangulation come in five basic flavors: divide-
and-conquer [8, 17], sweepline [11], incremental [7, 15, 17, 16, 20], growing a triangle at a time in a
manner similar to gift wrapping algorithms for convex hulls [9, 19, 25], and lifting the sites into three
dimensions and computing their convex hull [2]. Which approach is best in practice? This paper presents an
experimental comparison of a number of these algorithms. Many of these algorithms were designed for good
performance on uniformly distibuted sites rather than good worst-case performance, but implementations
of these algorithms are also tested on a number of highly non-uniform distributions.

In addition, we describe a new version of the incremental algorithm that is simple to understand and
implement, but is still competitive with the other, more sophisticated methods on a wide range of problems.
The algorithm uses a combination of dynamic bucketing and randomization to achieve both simplicity and
good performance.

The experiments in this paper go beyond measuring total run time, which is highly dependent on the
computer system. We also analyze the major high-level primitives that algorithms use and do an experimental
analysis of how often implementations of these algorithms perform each operation.

The rest of this section briefly describes the various algorithmic approaches. More detailed descriptions
of the algorithms, including pseudocode, can be found in Chapter 2 of the first author’s Ph.D. thesis [24].�This study was supported in part by the funds of the National Science Foundation, DDM-9015851, and by a Fulbright
Foundation fellowship.
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1.1. Divide-and-Conquer

Guibas and Stolfi [17] gave an O(n logn) Delaunay triangulation algorithm that is asymptotically optimal
in the worst case. The algorithm uses the quad-edge data structure and only two geometric primitives, a
CCW orientation test and an in-circle test. These primitives are defined in terms of 3 by 3 and 4 by 4
determinants, respectively. Fortune [12, 13] shows how to compute these accurately with finite precision.

Dwyer [8] showed that a simple modification of this algorithm runs in O(n log logn) expected time
on uniformly distributed sites. Dwyer’s algorithm splits the set of sites into vertical strips with

pn= logn
sites per strip, constructs the DT of each strip by merging along horizontal lines, and then merges the strips
together along vertical lines. His experiments indicate that in practice this algorithm runs in linear expected
time. Another version of this algorithm, due to Katajainen and Koppinen [18], merges square buckets
together in a “quad-tree” order. They show that this algorithm runs in linear expected time for uniformly
distributed sites. In fact, their experiments show that the performance of this algorithm is nearly identical
to Dwyer’s.

1.2. Sweepline Algorithms

Fortune [11] invented another O(n logn) scheme for constructing the Delaunay triangulation using a
sweepline algorithm. The algorithm keeps track of two sets of state. The first is a list of edges called the
frontier of the diagram. These edges are a subset of the Delaunay diagram, and form a tour around the
outside of the incomplete triangulation. In addition, the algorithm uses a priority queue, called the event
queue to keep track of places where the sweep line should stop. This queue stores two types of events called
circle events and site events. Site events happen when the sweepline reaches a site, and circle events happen
when it reaches the top of a circle formed by three adjacent vertices on the frontier. The algorithm sweeps
a line up in the y direction, processing each event that it encounters.

In Fortune’s implementation, the frontier is a simple linked list of half-edges, and point location is
performed using a bucketing scheme. The x-coordinate of a point to be located is bucketed to get close
to the correct frontier edge, and then the algorithm walks to the left or right until it reaches the correct
edge. This edge is placed in the bucket that the point landed in, so future points that are nearby can be
located quickly. This method works well as long as the query points and the edges are well distributed in
the buckets. A bucketing scheme is also used to represent the priority queue. Members of the queue are
bucketed according to their priorities, so finding the minimum involves searching for the first non-empty
bucket and pulling out the minimum element.

1.3. Incremental Algorithms

The third, and perhaps simplest class of algorithms for constructing the Delaunay triangulation consists of
incremental algorithms. These algorithms add sites to the diagram one by one and update the diagram after
each site is added. They have two basic steps. The first, Locate, finds the triangle containing the new
site. (The algorithms are made simpler by assuming that the sites are enclosed within large triangle.) The
second, Update, updates the diagram.

All of the algorithms perform Update using an approach similar to that in Guibas and Stolfi [17], flipping
edges until all edges invalidated by the new site have been removed. Each edge is tested for validity via an
in-circle test. In the worst case we must do O(n2) in-circle tests and edge flips, because it is possible to
construct a set of sites and insertion order where inserting the kth site into the diagram causes Θ(k) updates.
However, if the sites are inserted in a random order, Guibas, Knuth, and Sharir [16] show that the expected
number of edge flips is linear no matter how they are distributed.

Therefore the bottleneck in the algorithm is the Locate routine. Guibas and Stolfi start at a random edge
in the current diagram and walk across the diagram in the direction of the new site until the correct triangle
is found. The basic step is to perform a CCW orientation step against an edge of a triangle to see if the site
lies on the correct side of that edge. If not, the algorithm crosses to the other triangle that shares that edge.
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If so, it steps to the next edge around the triangle. When the site is on the correct side of all three edges in a
triangle it has been located. This search is expected to perform O(pn) CCW orientation tests per Locate.

Ohya, Iri and Murota [20] bucket the sites and process the buckets in the order of a breadth-first traversal
of a quad-tree. (They do not actually build such a tree, but simply insert sites in that order.) They start a
Guibas and Stolfii-like Locate at an edge created by the previous insertion. The quad-tree traversal order
means that this edge is likely to be close to the correct triangle. They claim that their algorithm runs in
expected linear time on sites that are uniformly distributed, and they provide experimental evidence for this
fact.

Guibas, Knuth, and Sharir propose a tree-based data structure where internal nodes are triangles that
have been deleted or subdivided at some point in the construction, and the current triangulation is stored at
the leaves. A step in the locate algorithm consists of going from a triangle containing the site at one level to
one of a constant number of triangles that might contain the site at the next level. It is not hard to show that
the total expected cost of Locate will be O(n logn) time. Sharir and Yaniv [23] prove a bound of about
12nHn + O(n). This structure is similar to the Delaunay tree described by Boissonnat and Teillaud [5].

1.4. A Faster Incremental Construction Algorithm

We present a Locate variant that leads to an easily implemented incremental algorithm that seems to
perform better than those mentioned above when the input is uniformly distributed. We use a simple
bucketing algorithm similar to the one that Bentley, Weide and Yao used for finding the nearest neighbor
of a query point [4]. This leads to an O(n) time algorithm while maintaining the relative simplicity of the
incremental algorithm.

The bucketing scheme places the sites into a uniform grid as it adds them to the diagram. To find a near
neighbor, the point location algorithm first finds the bucket that contains the query site and searches in an
outward spiral for a non-empty bucket. It then uses any edge incident on the site in this bucket as a starting
edge in the Guibas and Stolfi Locate routine. If the spiral search fails to find a site after a certain number
of layers, the point location routine starts the Guibas and Stolfi Locate routine from an arbitrary edge in
the current triangulation.

The bucketing scheme uses a dynamic table to deal with the fact that sites are processed in an on-line
fashion. The scheme does not bother to store all the sites that fall in a particular bucket, but just stores the
last site seen. This is because the bucket structure does not have to provide the insertion algorithm with the
true nearest neighbor of a query. It only has to find a site that is likely to be close to the query. Therefore, it
makes sense not to use the extra space on information that we do not need. Let c > 0 be some small constant
that we can choose later. The point location maintains the bucket table so that on average between c and 4c
sites fall into each bucket. It does this on-line by quadrupling the size of the bucket grid and re-bucketing
all sites whenever the average goes above 4c.

It is not hard to show that the expected cost of a Locate is O(1) and the total cost of maintaining the
buckets is O(n) if the floor function is assumed to be constant time. Thus, the total expected run time of
this algorithm is O(n) time when the sites are uniformly distributed in the unit square.

1.5. Gift Wrapping Algorithms

Another class of Delaunay triangulation algorithms constructs the Delaunay triangulation by starting with a
single Delaunay triangle and then incrementally discovering valid Delaunay triangles, one at a time. Each
new triangle is grown from an edge of a previously discovered triangle by finding the site that joins with
the endpoints of that edge to form a new triangle whose circumcircle is empty of sites. Several algorithms
in the literature, including ones due to Dwyer [9], Maus [19], and Tanemura et. al. [25] are based on this
basic idea. They all differ in the details, and only Dwyer’s algorithm has been formally analyzed. Dwyer’s
analysis assumed that the input was uniformly distributed in the unit d-ball, and extending this analysis to
the unit cube appears to be non-trivial. However, in the plane the difference is not great, and the experiments
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in the next section will show that the empirical run time of the algorithm appears to be O(n).
The basic approach is to take an edge (a; b) of a triangle on the border of the part of the diagram

constructed so far and to choose a candidate site c for the third vertex of this triangle. Other sites are tested
to see if they fall within the circumcircle of triangle abc. If one does, it becomes the new candidate sitec. When a c is found such that the circumcircle of abc contains no other sites then abc is added to the
Delaunay triangulation. Note that sites lying far enough from the center of the circumcircle of abc need
not be explicitly tested, and “far enough” is just the radius of this circumcircle. Because of this it can be
useful to compute the center and radius of the current circumcircle. Given these it is faster to perform
the in-circle test by computing the distance from a site to this center and comparing it to the radius than
using the determinant method described above. (Actually, the square of the distance is computed to save
computing a square root.)

The trick is to examine sites in an order that allows the correct candidate can be found and verified
quickly, ideally after only a constant number of sites have been considered. Therefore the data structure
that is critical to the performance of this algorithm is the one that supports site searches. Dwyer’s algorithm
[9] uses a relatively sophisticated algorithm to implement site searching. First, the sites are placed in a
bucket grid covering the unit circle. The search begins with the bucket containing the midpoint of (a; b),
where (a; b) is an edge of a current triangle that does not yet have a triangle in its other side. As each
bucket is searched, its neighbors are placed into a priority queue that controls the order in which buckets are
examined. Buckets are ordered in the queue according to a measure of their distance from the initial bucket.
Buckets are only placed in the queue if they intersect the half-plane to the right of (a; b) and if they intersect
the unit disk from which the sites are drawn. Dwyer’s analysis shows that the total number of buckets that
his algorithm will consider is O(n).

The site search algorithm in our gift wrapping algorithm is a simple variant on “spiral search” [4]. It
differs from Dwyer’s in several ways. The main difference is the lack of a priority queue to control the
action of the search routine. Our spiral search approximates this order, but it is not exactly the same.
Dwyer’s algorithm is also careful not to inspect any buckets that are either to the left of (a; b) or outside of
the unit circle. Our algorithm is somewhat sloppier about looking at extra buckets. The advantages of our
scheme are that it is well tuned to the case when sites are distributed in the unit square and it avoids the
extra overhead of managing a priority queue, especially avoiding duplicate insertions.

1.6. Convex Hull Based Algorithms

Brown [6] was the first to establish a connection between Voronoi diagrams in dimension d and convex hulls
in dimension d+ 1. Edelsbrunner and Seidel [10] later found a correspondence between Delaunay triangles
of a set of sites in dimension 2 and downward-facing faces of the convex hull of those sites lifted onto a
paraboloid of rotation in dimension 3. If each site (xi; yi) is mapped to the point (xi; yi; x2i +y2i ), the convex
hull of these lifted points is computed, and the the upward-facing convex hull faces are discarded, what
is left is the Delaunay triangulation of the original set of sites. (This correspondence is true for arbitrary
dimension d.)

Guibas and Stolfi [17] note that their divide and conquer algorithm for computing the Deluanay triangu-
lation can be viewed as a variant of Preparata and Hong’s algorithm for computing three dimensional convex
hulls [21]. Others have also used this approach. Recently Barber [2] has developed a Delaunay Triangu-
lation algorithm based on a convex hull algorithm that he calls Quickhull. He combines the 2-dimensional
divide-and-conquer Quickhull algorithm with the general dimension Beneath-beyond algorithm to obtain
an algorithm that works in any dimension and is provably robust.

2. Empirical Results

In order to evaluate the effectiveness of the algorithms described above, we studied C implementations
of each algorithm. Rex Dwyer provided code for his divide and conquer algorithm, and Steve Fortune
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Name Description
Dwyer Dwyer’s divide and conquer algorithm.
Fortune Fortune’s sweepline algorithm.
Inc Guibas and Stolfi’s naive incremental algorithm.
BucketInc The bucketed incremental algorithm presented in this paper.
QtreeInc Ohya, Iri, and Murota’s incremental using quad-tree insertion order.
Giftwrapping The gift wrapping algorithm described in this paper.
Qhull Barber’s algorithm that uses the Quickhull convex hull algorithm.
Dtree Devillers’s implementation of Delaunay Tree code.
LEDA The version of Delaunay tree code implemented in LEDA.

Table 1: List of the algorithms examined.

provided code for his sweepline algorithm. We implemented the incremental algorithms and the gift wrap
algorithm. Olivier Devillers provided a version of his Delaunay tree-based code, and another version of his
code was available in the programming package LEDA developed at the Max-Plank-Institut für Informatik
in Saarbrücken. Because the LEDA version could have more overhead we tested both. The LEDA code
is available at ftp.mpi-sb.mpg.de. (We have been told that there are plans to replace this algorithm
in the LEDA code sometime in the future.) For the convex-hull based algorithm we used Brad Barber’s
code, which is available via internet at ftp://geom.umn.edu/pub/software/qhull.tar.Z. None of
the implementations are tuned in any machine dependent way, and all were compiled using the GNU C or
C++ compiler and timed using the standard UNIXtm timers. (The Delaunay tree and LEDA algorithms are
in C++.) See Table 1 for a list of the algorithms considered with short names that will be used to refer to
them in the rest of this paper.

Some notes on implementations are in order. First, all numerical primitives use floating point computa-
tions. Using integer or exact arithmetic could greatly change the relative run times. Beyond using Fortune’s
stable in-circle test we did little to handle degeneracies and numerical instabilities.

We tried to share primitives and data structures when this was possible. Dwyer was modified to
use Fortune’s stable in-circle test, which is somewhat more expensive than the standard test. All of the
incremental algorithms use this same stable in-circle test. All incremental algorithms also use a version of
the quad-edge data structure like the one that Dwyer implemented for his divide-and-conquer algorithm.
This array-based structure proved to be substantially faster than a pointer-based structure that we used
earlier. Fortune was not modified, but does not use either in-circle tests or the quad-edge data structure.
Giftwrapping does not use the quad-edge data structure. As was mentioned above it uses an in-circle test
using the radius of the circumcircle rather than computing a determinant. All of these algorithms use the
same CCW orientation test.

Qhull, Dtree, and LEDA were added after the initial series of experiments. The run times of the
unmodified programs were not fast enough to make re-writing them to share data structures and primitives
worth the effort. These run times will be discussed later.

The performance data presented in this section was gathered by instrumenting the programs to count
certain abstract costs. A good understanding of each algorithm, and profiling information from test runs
determined what was important to monitor. Each algorithm was tested for point set sizes of between 1,024
and 131,072 sites. Ten trials with sites uniformly distributed in the unit square were run for each size, and
the graphs either show the median of all the sample runs or a “box plot” summary of all ten samples at each
size. In the box plots, a dot indicates the median value of the trials and vertical lines connect the 25th to the
minimum and the 75th percentile to the maximum.

5



2.1. Performance of the Incremental Algorithms and Dwyer

The cost of an incremental algorithm is the sum of the cost of point location plus the cost of updating the
diagram once the correct triangle is found. The update portion is dominated by the in-circle test, with the rest
of the time going to a CCW orientation test, quad-edge data structure manipulation and loop maintainance.
The loop structure is such that the amount of other work is directly proportional to the number of in-circle
tests, so by counting in-circle tests we can get a number that lets us compare the amount of update work
performed by the various algorithms. (Because of shortcut evaluation it is possible for the CCW evaluation
to be done without the in-circle test being performed, but this happens very rarely. In our tests this happened
a bit less than 0:3% of the time for 1024 sites, but had fallen off to 0:003% of the time for 131,072 sites.)

For all of the incremental algorithms except Dtree the main cost of point location is the walk across the
diagram once an edge has been selected. A CCW orientation step is performed each time through the loop
that performs this walk, and the number of calls to quad-edge manipulation routines and other overhead in
the walk across the diagram is proportional to the number of CCW orientation tests. Therefore we use the
number of CCW orientation calls to stand in for the work done in this loop. (We count these separately
from the CCW orientation tests done in the update portion.)

Finally, Dwyer also is based on the same two geometric primitives. Each quad-edge operation in the
merge loop can be charged to a CCW orientation test or to an in-circle test, so these numbers give a good
way to quantify the work in Dwyer as well. The specific additional operations associated to one of these
primitives in an incremental algorithm is different than in Dwyer, but because profiling shows that the
in-circle routine accounts for more time than any other routine (about half the time for both Dwyer and
incremental algorithms running on the Sparcstation 2 described below) and the CCW orientation test is
a significant part of what remains, looking at these numbers seems reasonable. We also note that this
implementation of Dwyer uses Quicksort to sort the points so is asymptotically Θ(n logn), but that for the
number of sites that we considered sorting was a very small part of the overall work.

We first compare the point location strategies for Inc, BucketInc, and QtreeInc. While Inc spends almost
all of its time doing point location, the point location routines in BucketInc and QtreeInc effectively remove
this bottleneck.

Figure 1 compares the performance of the point location for Inc and BucketInc on uniformly distributed
sites. The plots show that Inc uses an average of O(pn) tests per point location step. Simple regression
analysis indicates that the number of tests per site grows as 0:86n:49. Therefore, we have plotted the curve
0:86

pn along with the data. The curve is a close fit to the experimental data.
The number of tests needed for point location in BucketInc depends on the average density of the sites

in the bucket grid. If the density of sites in buckets is too high, then the point location routine will waste
time examining useless edges. On the other hand, if it is too low the algorithm will waste time examining
empty buckets and will use more space for its buckets. Figure 1d shows the dependence of the density
on the cost of point location. (Here we just added together the numbers of CCW tests, bucket insertions,
and spiral search bucket examinations per site. The three are not equivalent-time operations, but because
the vast majority of these tests are CCW tests this gives a first approximation to the total cost.) The graph
shows the average cost of point location over ten trials with n = 8192 and c ranging from 0.25 to 8. Based
on this data and the actual run times, we used c = 2 for the uniform distribution timing runs. Although the
graph shows a large variation in the number of tests needed per site, the actual effect on the run time of the
algorithm was less than 10%.

Adding the point location heuristic improves the performance of BucketInc substantially. The number
of CCW orientation tests performed per site appears to be bounded by a constant near 10.5. The additional
costs involved in spiral search and bucketing are insignificant. The algorithm almost always finds a site in
the first bucket in the spiral search, and the average number of times that a site gets bucketed is 1.33 for
even powers of two and 1.66 for odd powers. These last two operations are substantially faster than the
CCW orientation test, so they have a very small effect on the run time.
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Figure 2: Performance of QtreeInc.

We note that the average number of times a point gets put into a bucket can range between 1.33 and 2.33,
with the exact value a function of n and c. The best case is just before a re-bucketing is scheduled to occur.
Then every point has been bucketed once, 1/4 of them have been bucketed a second time, 1/16 a third time,
etc. This sum adds up to 1.33. Adding one more point re-buckets every point already bucketed and buckets
the last one, raising the average by the one additional time that (almost) every point has been re-bucketed.

The results in Figure 2 show that QtreeInc’s point location performs somewhat worse than BucketInc’s.
QtreeInc performs about 20% more CCW orientation tests than BucketInc.

For both BucketInc and QtreeInc the cost of point location fluctuates depending on whether log2 n is
even or odd. In BucketInc this is due to the fact that the algorithm re-buckets the sites at each power of
four. Because of this, at each power of four the average bucket density drops by a factor of 4. The implicit
quad-tree structure in QtreeInc gains another level at each power of 4.

We now consider the update operation. Since Inc and BucketInc insert the sites in random order, the
analysis of Guibas, Knuth and Sharir [16] shows that the total number of in-circle tests is asymptoticallyO(n). Sharir and Yaniv [23] tightened this bound to about 9n. Figure 3 shows that this analysis is remarkably
accurate. Figure 2 shows that the quad-tree insertion order in QtreeInc actually leads to 5 to 10% more
in-circle tests than the random order in BucketInc and Inc.

Which of these incremental algorithms should run fastest? Inc’s Θ(pn) point location time make it
impractical for large sets of sites. BucketInc does fewer CCW orientation tests and fewer in-circle tests than
QtreeInc. The extra work that BucketInc does re-bucketing sites and examining buckets during spiral search
is much less important than the reduced number of in-circle and CCW orientation tests. Therefore we can
conclude that for the uniform case BucketInc should perform slightly better than QtreeInc and should be
the fastest of this group.

Both the Dtree and the LEDA versions of the incremental algorithm were many times slower than
BucketInc. (These results will be discussed later in this paper.) The update phase in these algorithms is
identical to the update in Inc and the BucketInc, so we know its performance. The operations in maintaining
the Delaunay tree are different enough from the other insertion algorithms that analyzing them in detail did
not seem worth the effort, given the poor runtime performance.

We now consider Dwyer. Also shown in Figure 3 is the number of in-circle tests performed by Dwyer.
The plot shows that Dwyer performs about 25% fewer in-circle tests than BucketInc. Figure 4 shows that
Dwyer also does a few less CCW orientation tests than BucketInc. (Dwyer does about 16.5 tests per site,
while BucketInc does a bit more than 10 in the locate portion and 9 in the update portion.) There are other
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overhead costs that we are not considering, but as long as they are roughly comparable or a fairly small
fraction of the total time Dwyer should run faster.

2.2. Performance of Giftwrapping

The determining factor in the run time of Giftwrapping is the cost of Site-search. This can be factored
into two parts. The first is the number of times that a site is tested against a circumcircle. The second is the
number of buckets examined. By examined we mean that a bucket is at least tested to see if the algorithm
should search its contents for a new site.

Figure 5 summarizes the behavior of these parameters in our tests. Figures 5a and 5b show the
performance of the algorithm for sites chosen from the uniform distribution in the unit square, while 5c
and 5d show the performance of the algorithm for sites chosen from the uniform distribution in the unit
circle. The reason for looking at both distributions in detail is that the behavior of Giftwrapping is heavily
influenced by the nature of the convex hull of the input. In the square distribution, the expected number of
convex hull edges is O(logn) [22]. The graph shows that the number of points tested per site stays constant
over our test range, while the number of buckets examined actually decreases. This reflects the fact the
number of edges on or near the convex hull of such point sets is relatively small, and that the algorithm only
examines a large number of useless buckets on site searches near the convex hull.

However, it is apparent that this isn’t the case when the sites are distributed in the unit circle, where
the expected size of the convex hull is O(n1=3) [22]. Here, there are a larger number of edges on or near
the convex hull, and this is reflected by the fact that the number of buckets that the algorithm examines
increases dramatically when compared to the earlier case. This sensitivity to the distribution of the input
is an important feature of the algorithm. If the algorithm is to be used for a variety of input distributions a
more adaptive data structure is needed to support the Site-search routine.

Pre-computing the convex hull of the sites and searching from hull edges inward may help to minimize
the effect of this problem. But the bucket-based data structure will still be sensitive to clustering of the sites.
The best way to fix these problems may be to replace the buckets with a nearest-neighbor search structure
that is less sensitive to the distribution of sites, so that it can perform non-local searches more efficiently.
Bentley’s adaptive k-d tree [3] is a good example of such a data structure.
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2.3. Performance of Fortune

The run time of Fortune is proportional to the cost of searching and updating the data structures representing
the event queue and the state of the sweepline. Fortune’s implementation uses bucketing for this purpose.
We would expect that these data structures would perform well on uniform inputs. In fact, for small input
sets the algorithm seems to run in linear time.

Figure 6 shows the performance of the sweepline and priority queue data structures in Fortune’s imple-
mentation. With sites that are uniformly distributed in the x direction, the bucket structure representing
the frontier performs exactly as we would expect. Figure 6a indicates that the search procedure performs
around 11.5 tests per site, on average. (Here we are testing whether the new site should be connected to a
given site on the frontier by a Delaunay edge. This test can be done in constant time.)

The main bottleneck in Fortune ends up being the maintenance of the priority queue. The priority queue
is represented using a uniform array of buckets in the y direction. Events are bucketed according to theiry-coordinate. In addition, it is important to realize that only circle events are explicitly placed in the event
queue. The O(n) site events are stored implicitly by initially sorting the sites.

The problem here is that while the sites are uniformly distributed, the resulting priorities are not. Circle
events tend to cluster close to the current position of the sweepline. This clustering increases the cost of
inserting or deleting events into Fortune’s bucket structure. Each operation requires a linear time search
through the list of events in a particular bucket. With large buckets, this becomes expensive. Regression
analysis shows that the number of comparisons per site grows as 9:95 + :25

pn (see Figure 6b).
Watching animations of large runs of Fortune provides a heuristic explanation for this behavior. Since

the sites are uniformly distributed, new site events tend to occur close to the frontier. If the new site causes
a circle event to be added to the priority queue, chances are that the circle will not be large. Thus the y-
coordinate of the top of the circle, which is the priority of the new event, will be close to the current position
of the sweepline. If the circle is large, so the priority of the resulting event is far above the sweepline, it is
likely that the event is invalid since large circles are likely to contain sites. Eventually some site or circle
event will invalidate the large circle and replace it with a smaller one that lies closer to the sweepline. The
result is the clustering that is clearly observable in the animations (Figure 7).

Given the behavior of the bucket data structure, it is natural to speculate as to whether a different
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Figure 5: Performance of Giftwrapping
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Figure 6: Cost of Fortune. The two main factors determining the performance of the algorithm are the work
needed to maintain the heap and sweepline data structures.

Figure 7: Circle events cluster close to the sweepline in Fortune. The first frame is early on one run in the
algorithm, the second frame is later in the same run. Note how the “cloud” of circle events (+ signs) moves
with the sweepline.
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the event queue. Part (b) plots the ratio of the run time of the old algorithm to the new.

data structure would provide better performance for larger problems. To investigate this possibility, we
re-implemented Fortune using an array-based heap to represent the priority queue. This guarantees that
each operation on the priority queue costsO(logn) time in the worst case, and using the array representation
minimizes additional overhead.

To test the effectiveness of the new implementation, we performed a more extensive experiment. Each
algorithm was tested on uniform inputs with sizes ranging from 1,024 to 131,072 sites. Figure 8a shows
the performance of the heap data structure in the experiment. The line 2 lgn + 11 shows that the number
of comparisons used to maintain the heap is growing logarithmically in n, rather than as

pn. The plot
also shows a more detailed profile of these comparisons. This profile indicates that most of the work is
performed by the extract-min routine. By comparison, insert and delete are relatively cheap.

In actual use, the heap does not significantly improve the run time of the algorithm for data sets of the
sizes that we considered. Figure 8b compares the run times of the two algorithms over the same range of
inputs. In this graph, each data point is the ratio of the run time of the bucketing algorithm to the run time of
the heap-based algorithm. The graph shows five trials for input sizes of between 210 and 217 sites at evenly
spaced intervals.

The timings were taken using the machine and configuration described in Section 2.5. The plot shows
that bucketing tends to be faster until 216 sites, when the heap version starts to dominate. At 217 sites, the
heap version is roughly 10% better. The main reason that the improvement is not greater is that maintaining
the heap seems to incur more data movement overhead than maintaining the bucket structure. The bucket
structure appears to use the workstation’s cache more effectively, and stays competitive, even though it is
doing much more “work”.

An interesting feature of the graph in Figure 8a is the fact that the number of comparisons periodically
jumps to a new level, stays relatively constant, then jumps again. This is due to the fact that the heap is
represented using an implicit binary tree. Thus, the number of comparisons jumps periodically when the
size of the heap is near powers of two. On the graph, these jumps occur at powers of four, rather than two,
because the average size of the heap over one run of Fortune is O(pn) rather than O(n). We can prove that
this is the case for uniformly distributed sites using a lemma by Katajainen and Koppenin [18].
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2.4. Performance of Qhull

Barber’s Qhull algorithm turned out to be much slower than the algorithms analyzed above. It also uses
different primitives from the algorithms described above, so it was not clear how counts of primitives would
aid comparisons between algorithms. We therefore did not analyze it in detail. It will be discussed further
in the next subsection.

2.5. The Bottom Line

The point of all of this is, of course, to develop an algorithm that has the fastest overall run time. In the
following benchmarks, each algorithm was run on ten sets of sites generated at random from the uniform
distribution in the unit square. Run times were measured on a Sparcstation 2 with a 40 Mhz clock speed
using the getrusage()mechanism in UNIX. The graphs show user time, not real time, and all of the inputs
sets fit in main memory, and were generated in main memory so I/O and paging would not affect the results.
Finally, the graph for Fortune shows the version using a heap rather than buckets, since this algorithm was
better on the larger problems, and not much worse on smaller ones.

Figure 9 shows the results of the timing experiments. The graph shows that Dwyer gives the best
performance overall. BucketInc is a bit faster than Fortune, particularly for larger problems where theO(logn) growth of the heap data structure overhead is more of a factor. QtreeInc is a somewhat slower than
BucketInc. Giftwrapping is not competitive with any of the other four. These results are consistent with the
analysis of primitives in the previous section.

The run times of the three other algorithms (Dtree, LEDA, and Qhull) are shown in Figure 10. These
algorithms proved to be several times slower than the other algorithms that we considered. Part of this
is undoubtedly due to implementation details. (For example, they frequently use malloc where the faster
algorithms tend to allocate large arrays.)

The amount of overhead needed to maintain the Delaunay tree is much higher than that needed for the
bucketing scheme so it seems unlikely to be competitive with the faster incremental algorithms no matter
how it is implemented. (The comparison we made actually favors Dtree and LEDA somewhat, because
Dtree and LEDA use the standard in-circle test that they came with, while the incremental algorithms and
Dwyer use Fortune’s stable in-circle test.)

Qhull is actually a program to compute convex hulls in arbitrary dimensions in a provably stable way.
It therefore has more overhead than would be needed if its only task were to compute planar Delaunay
triangulations, and if it were less concerned about stability.

While substantially different implementations could speed up these programs, it seems unlikely that they
would be competitive. In their current form none of these programs can be recommended for its speed.

3. Nonuniform Point Sets

Each of the faster algorithms that we have studied uses a uniform distribution of sites to its advantage in a
slightly different way. BucketInc uses the fact that nearest neighbor search is fast on uniformly distributed
sites to speed up point location. QtreeInc buckets points to get a good insertion order. Dwyer uses the
fact that only sites near the merge boundary tend to be affected by a merge step. Fortune uses bucketing to
search the sweepline. Giftwrapping depends on a uniform bucket grid to support site searching.

In order to see how each algorithm adapts to its input, we will study further tests using inputs from very
nonuniform distributions. In Table 2 the notationN(�; s) refers to the normal distribution with mean � and
standard deviation s, and U(a; b) is the uniform distribution over the interval [a; b].

The graphs show each algorithm running on five different inputs of 10K sites from each distribution.
The uniform distribution serves as a benchmark.

Figure 11 shows the effect of these site distributions on BucketInc and QtreeInc. For these runs we
changed the value of the average bucket density used by BucketInc (see Section 2.1). Before we used a
value c = 2, but for these tests we used a value c = 0:25. This slows down the uniform case somewhat
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Figure 9: Comparison of the expected run times of different algorithms on sites chosen at random from a
uniform distribution in the unit square. Times are in microseconds.
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Name Description
unif uniform in the unit square.
ball uniform in a unit circle.
corn U(0; :01) at each corner of the unit square.
diam t = U(0; 1), x = t+ U(0; :01)� :005, y = t + U(0; :01)� :005
cross n=2 sites at (U(0; 1); :5+ U(�0:005; :005)); n=2 at(:5 + U(�0:005; :005); U(0; 1)).
norm both dimensions chosen from N(0; :01).
clus N(0; :01) at 10 points in the unit square.
arc in a circular arc of width .01

Table 2: Nonuniform distributions.
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Figure 11: Primitive tests for BucketInc and QtreeInc on non-uniform inputs, n is 10K.

(BucketInc’s run time goes from about 240 �secs per site to a bit over 250 �secs) but it gives better times
for the non-uniform distributions.

As expected, site distributions with heavy clustering (such as corn and norm) stress the point location
data structures in each algorithm, increasing the number of CCW orientation tests by up to a factor of ten.
QtreeInc degraded more than BucketInc. Figure 12 shows that the average number of buckets examined
during the spiral search in BucketInc remains small. It is larger for the uniform distributions than it was in
the uniform distribution tests in the previous section because of the change in c, but this is a case where the
more heavily clustered distributions actually do better than the uniform distributions. Some isolated sites
may have to look at a lot of buckets, but clusters mean that most sites are close to a lot of other sites. As
noted earlier, the cost of bucketing and re-bucketing points depends only on c and n, and averages between
1.33 and 2.33 bucket insertions per point.

Figure 11 also shows that the distribution of the input has little effect on the number of in-circle tests
that BucketInc performs, as was predicted by the theoretical analysis. QtreeInc actually uses fewer in-circle
tests on clustered distributions than on uniform ones. This is probably because sites within a given bucket
are inserted in random order, so the clustering of sites in the same bucket makes the site insertion order
more random. Because the CCW orientation tests in the point location routines are substantially faster than
in-circle tests, we will later see that the total run time of the worst cases is not much more than a factor of
two times the best case even though the cost for the locate portion goes up by a factor of 10.

Figure 13 summarizes the performance of Fortune in this experiment. The first graph shows that
the bucket-based implementation of the event queue is very sensitive to site distributions that cause the
distribution of priorities to become extremely nonuniform. In the cross distribution, this happens near the
line y = 0:5. At this point, all of the circle events associated with n=2 sites near the line cluster in the few
buckets near this position. The corn distribution causes a similar problem, but to a lesser degree. Here, all
of the events associated with the O(pn) circles in the event queue tend to stay clustered in one bucket aty = 0 and another at y = 1. In both of these cases, the non-uniform distribution of sites in the x-direction
also slows down site searches on the frontier, but this effect is less pronounced than the bad behavior of the
event queue.

The second graph shows that the performance of the heap is much less erratic than the buckets. The
small jumps that do appear are due to the fact that the event queue does become larger or smaller than its
expected size on some distributions. However, since the cost of the heap is logarithmic in the size of the
queue, this does not cause a large degradation in performance.

Figures 14 and 15 show the performance of Dwyer in the experiment. Dwyer is slowed down by
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Figure 16: Giftwrapping is very sensitive to bad inputs.
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Figure 17: Giftwrapping for the norm and corn distributions.

distributions that cause the algorithm to create many invalid edges in the subproblems, and then delete them
later in the merge steps. This effect is particularly pronounced with the cross distribution because the group
of sites near the line x = 0:5 is very tall and skinny, creating a worst case for the merge routine.

It appears that there are about 9.5 more CCW tests than in-circle tests for every distribution except cross,
where there are about 10 more. Each time through the merge loop the algorithm does two CCW orientation
tests, but can do between 0 and an arbitrarily large number of in-circle tests. Therefore there is no reason
to assume that the in-circle tests would be a fixed fraction of the CCW tests. We do not know why the
difference between them should remain almost constant.

Figure 16 shows how the bad inputs affect Giftwrapping. These figures leave out the two worst inputs
for this algorithm: corn and norm, because the algorithm would have taken several hours to finish the
benchmark. The Θ(n2) behavior of the algorithm on these inputs is shown in Figure 17.

Giftwrapping is easily the most sensitive to the distribution of its input. This is not surprising, since it
depends on essentially the same routine that BucketInc uses for point location, and we have already seen
that the point location subroutine performed badly on bad inputs. This did not handicap to BucketInc to a
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large degree because the point location routine is not the major bottleneck in that algorithm. However, the
performance of Site-search largely determines the run time of Giftwrapping.

Finally, to understand how the abstract measures actually effect performance, Figure 18 shows the
average run time of the five trials with each algorithm except Giftwrapping. Since none of the run times
in the graph are much greater than Giftwrapping’s performance even in the uniform case, we eliminated it
from this graph.

4. Timings on a Different Machine

While the analysis of primitive operations gives some independence from the particular machine we were
running on (a Sparcstation 2), it seemed wise to see whether the run time results held for another machine.
We ported the best three algorithms (Dwyer, BucketInc, and Fortune using a heap) to a DEC Alpha 3000
with a clock rate of 125 Mhz and ran the timing suite for uniformly distributed sites. The results appear in
Figure 19.

The good news is that for both machines Dwyer was fastest, BucketInc was second (for all but the largest
case), and Fortune was slowest. However, there are at least two surprising results from these runs. The first
is how much Dwyer improved relative to the other two algorithms. Instead of having a 10% advantage it
takes half the time of the others.

The second is the way that the run times change as the number of sites increase. The “linear” run time of
BucketInc is not linear, but grows more rapidly than either of the others. Fortune’s run time grows slowly
up to 213 sites and then increases more rapidly.

Profiling shows that in-circle tests now take up only a quarter of the time of Dwyer and BucketInc instead
of half, so data structure manipulation and loop overhead are more significant relative to in-circle testing
and CCW testing. This could explain non-uniform speedups, but not the apparent changes in growth rates.
Such a change would favor algorithms using simpler data structures than the full quad-edge data structure
if this reduced the time spend on data-structure manipulation.

Our suspicion is that the ability of the algorithms to efficiently use the cache is also a factor, but
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determining exactly what is happening will remain as future work.

5. Notes and Discussion

The experiments in this paper led to several important observations about the performance of serial algorithms
for constructing planar Delaunay triangulations. These observations are summarized below:� Dwyer is the strongest overall for this range of problem sizes. This advantage was small on a

Sparcstation 2, but was a factor of 2 on a DEC Alpha. It is also the most resistant to bad data
distributions, with an O(n logn) worst case. On the other hand, it was not substantially faster than
BucketInc and Fortune on the Sparcstation 2. One of these algorithms could prove to be the fastest
on some other system.� A simple enhancement of the naive incremental algorithm results in an easy to implement algorithm
on-line algorithm that runs in O(n) expected time for uniformly distributed sites. It is faster than
previous incremental variants and competitive with other known algorithms for constructing the
Delaunay triangulation for all but very bad site distributions.� On uniformly distributed sites circle events in Fortune cluster near, and move with, the sweepline.
Because the frontier and the event queue are expected to be of size O(pn) this causes his bucketing-
based event queue implementation to perform badly on large inputs. However, for moderate size
data sets (up to 50,000 sites on the Sparcstation that we used for our experiments) the bucketed event
queue is a bit faster than a heap-based event queue.� Dtree, LEDA, and Qhull are several times slower than Dwyer and the other fast algorithms in their
current form.
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5.1. Future Work

A question first raised by Steve Fortune in a discussion at the conference where this paper was presented is,
“How much can you gain by optimizing the best algorithms?” He suggested the idea of modifying the in-
circle test by computing the plane through the lifted versions of the three points defining the circle. Testing
to see if a fourth point lies within the circle then becomes determining whether the lifted version of that point
lies above, below, or on the plane. This can be determined by computing a dot product. For a single test this
would not gain, but it would make subsequent tests against the same circle much faster. Therefore caching
this plane with each triangle in an incremental algorithm could speed things up considerably. Similarly,
during the merge step of Dwyer the same three sites can be tested repeatedly against different fourth points,
so Dwyer might also benefit from this idea. This is only one of many possible optimizations.

Developing such a “best” code and making it available would be a service to the community, but is
beyond the scope of this paper. We hope to work on this in the future.

The timings that appear for the Alpha workstation also bring up many intriguing questions for future
study. As the CPUs in workstations and PCs get faster, the problems facing algorithm designers include
the efficient use of the cache and memory system as well as efficient use of the CPU. While there have
been attempts at theoretical analysis of algorithms on complex memory systems, the models involved are
generally complicated and the analysis of even simple algorithms is highly challenging [1, 26, 14, 27].
Such analysis is also made more difficult by the fact that the “memory system efficiency” of an algorithm
is very dynamic and data dependent. Therefore, finding ways to combine a more tractable abstract analysis
with good tools and methods for experimentally analyzing the behavior of algorithms on different memory
systems should be a fruitful area for future research.
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