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ABsTRACT | This report gives a detailed description of a channel capacity approaching forward error correction (FEC) system for use
in aeronautical telemetry. The system is based on low density parity check (LDPC) codes that are designed for (matched to) the specific
continuous phase modulation (CPM) schemes used in telemetry. The LDPC-CPM system is described in full detail herein. The step-by-
step method by which the LDPC codes were designed and constructed is summarized and referenced. Additional details are given on
the sparse representations of these quasi-cyclic LDPC codes. A check-node splitting/puncturing scheme is outlined, which can be used
to make the LDPC-CPM decoder more robust against undetected errors. The LDPC decoder and CPM soft-input soft-output (SISO)
decoder are described in detail, with additional comments on applicable parallelization techniques. And finally, numerical results are
presented on the bit error rate/frame error rate performance of the various LDPC-CPM combinations and their average and maximum
iterative behavior, with comparisons to the AR4JA codes currently adopted in telemetry and a design alternative (serially concatenated
convolutional codes, or SCCCs) that was abandoned early in this study. The appendix provides additional background information on
the log-domain processing that takes place in the decoders. The appendix also lists each LDPC generator and parity check matrix along

with the random interleavers used in the system.

1| INTRODUCTION

Forward error correction (FEC) codes are a technology that
has become standard in nearly all digital communication set-
tings, althought it was absent for the first few decades of aero-
nautical telemetry operations. The first FEC option was added
to the IRIG-106 telemetry standard [1] about a decade ago. This
option was based on the family of accumulate repeat-4 jagged
accumulate (AR4JA) low density parity check (LDPC) codes.
These codes were originally designed by researchers at the Jet
Propulsion Laboratory (JPL) [2], [3] for use in deep-space com-
munication. In terms of modulation type, the AR4JA codes are
matched to the information theoretic characteristics of binary
phase shift keying (BPSK).

In aeronautical telemetry, the modulations that are used al-
most exclusively are the family of three continuous phase mod-
ulation (CPM) waveforms specified in IRIG-106 [1]. These CPM
waveforms have progressive degrees of spectrum efliciency rel-
ative to each other. The least efficient of these (spectrum wise)
is original (legacy) CPM waveform commonly known as pulse
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code modulation/frequency modulation (PCM/FM), but for
convenience herein we will adopt the name “ARTMO.” This is in
reference to the Advanced Range TeleMetry (ARTM) program
of the early 2000s, which developed two “tiers” of spectrum
efficiency relative to the ARTMO (PCM/FM) baseline. The first
of these is known as the telemetry group version of shaped
offset quadrature phase shift keying (SOQPSK-TG), hereafter
referred to as “ARTMI1” The second and most spectrum-efficient
is known as ARTM CPM (or multi-h CPM), which we call
“ARTM2” ARTMI and ARTM2 were adopted into IRIG-106
shortly after they were developed.

ARTMI has the fortunate distinction of being a member of
the most widely-used family of CPMs, known as “MSK-type”
(MSK refers to minimum shift keying). Any CPM with a binary
information alphabet and modulation index & = 1/2 belongs
to this family. MSK-type CPMs have the unique property of
allowing either a recursive or a non-recursive formulation [4],
whereas CPM in general is recursive-only. In a non-recursive
scenario, information is transmitted by phase position (a +1 or
a -1, as in BPSK), as opposed to a recursive scenario where
information is transmitted by phase changes (a phase shift of
+180°, as in differential BPSK). Thus, with ARTML it is possible
for its information theoretic characteristics to be made similar
to BPSK [5], which in turn allows it to be used with codes
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designed for BPSK,' such as the AR4JA codes. The pairing of x | LDPC | Y I ASM 2 cpPM  |s(5w)
the AR4JA codes with non-recursive ARTMI (a system we call Encoder {U,}| Modulator | {C.}

AR4JA-ARTMI-NR) was explored in [6], along with serially
concatenated convolutional codes (SCCCs) paired with recur-
sive ARTML. Shortly thereafter, the AR4JA- ARTMI-NR option
was adopted into IRIG-106 [1], making it the first standardized
use of FEC in aeronautical telemetry, as noted above.

The AR4JA-ARTMI-NR system has proved its value on test
ranges over the past decade. This has motivated the fundamental
question contemplated by the present study, namely: Does a
comparable option exist for ARTMO and ARTM2? As implied
above, the answer to this question cannot sidestep the recursive
information theoretic properties that are inherent to CPM. This
issue was tackled head-on in a companion paper [7], which
fully documents the “design phase” of this study. The main
contribution of [7] is the development of a step-by-step design
process for matching a capacity-approaching LDPC code with
the information-theoretic properties of a given CPM scheme.
As design case studies, [7] focused on ARTMO, ARTM]I, and
ARTM2.

In this report, we build on [7] by documenting the inner
workings of the LDPC-CPM system in fine detail. In Section 2
we describe the LDPC-CPM system model, including details on
the transmitter, CPM waveforms, and random interleavers. In
Section 3 we summarize the necessary aspects of LDPC codes,
including the design and construction of the proposed LDPC-
CPM codes, a sparse (compact) representation format for these
codes, and a novel check-node splitting/puncturing technique
that improves the performance of the LDPC-CPM system. In
Section 4 we pivot toward the operation of the receiver. We
give a complete description of a quasi-cyclic LDPC decoder in
Section 5 and do likewise for the CPM soft-input soft-output
(SISO) module in in Section 6; Sections 5 and 6 include com-
ments on parallelization strategies for these decoders. The main
portion of this report concludes in Section 7 where we provide
numerical results on the performance of the proposed LDPC-
CPM schemes. This includes a characterization of the average
and maximum iterations required by the proposed system, with
expanded results and real-time decoder architectures presented
in another companion paper [8]. It also includes direct com-
parison of the proposed LDPC-CPM system for ARTMI vs.
the existing AR4JA-ARTMI-NR system, where we find that
AR4JA-ARTMI-NR is superior by a mere 0.4 dB. The closeness
of this advantage underscores the effectiveness of the design
methodology in [7] and extends confidence to the results pre-
sented for ARTMO and ARTM2. We also compare the proposed
LDPC-CPM codes with a SCCC-CPM system, which received
early consideration in this study. This comparison highlights
the fact that the proposed LDPC-CPM codes do not exhibit
“error floors,” which is a highly-desirable property shared by
the AR4JA codes. As such, the LDPC-CPM codes proposed
herein represent a FEC solution for ARTMO0 and ARTM2 that
is complementary to the AR4JA-ARTMI-NR system in many
ways.

This report also contains an extensive Appendix. The first part
of the Appendix provides background mathematical develop-
ment on log-based probabilities and log-based soft processing,
which is helpful in understanding the LDPC and SISO decoders.

FIGURE 1 | LDPC-CPM Transmitter model.

The second half of the Appendix give a comprehensive (but
sparse) listing of the random interleaving tables, parity check
matrixes, and generator matrixes that are proposed for ARTMO
and ARTM2 (ARTMI is included, but these codes are not rec-
ommended as replacements for the AR4JA codes).

2 | LDPC-CPM SYSTEM MODEL
2.1| Transmitter Model

The transmitter model is shown in Figure 1. Without loss
of generality, we will assume the transmission of a single code
word. The information word (sequence) is denoted as x =
{x: 1%}, where K is the number of bits contained in the infor-
mation word and each bit has a duration of Tj seconds. The
LDPC encoder accepts x as its input and returns the code word
(sequence) y = {y;}¥! as its output, where N is the number
of bits contained in the code word and each coded bit has a
duration of T, seconds. The LDPC encoder has a rate R = K/N
and we have the relationship T, = RT},. We assume a systematic
LDPC code, and thus the first K bits in y are the information
bits, y; = x;, 0 < i < K—1, and the last (N — K) bits are the parity
(redundant) bits generated by the encoder.

The code word y is fed to an interleaver (denoted by the
symbol IT) that permutes the order of bits within the input word
like so:

ut‘:yn(i) 0<i<N-1 (1)

The interleaver is defined by the interleaving table, I1(i), which
is simply a look-up table (LUT) that contains a one-to-one map-
ping (permutation) between integers in the range 0,1,..., N -1.
The output of the interleaver is concatenated with a known
data sequence called the attached sync marker (ASM), which
is Nagy bits in duration. Over time, code words and ASM
sequences form an alternating pattern, which means there is an
ASM sequence on either side of (i.e. before and after) the single
code word that is assumed herein. Thus, the sequence u can be
indexed to a certain extent on either side of the strict code word
boundaries, i.e.

ASMi+NA5M> —Naspy <i<-1
Ui =\ Yud) 0<i<N-1 (2)
ASMifN: NSiSN+NASM—1
where {ASM; ﬁ\;’})m_l is the ASM bit sequence. The sequence u

is fed to the CPM modulator, which produces the transmitted
signal s(t;u).

2.2| CPM Signal Model

The CPM modulator is shown in block diagram form in
Figure 2. The bits in the CPM input sequence, u, are grouped
into no-tuples (the CPM schemes in this report use ny = 1 and
no = 2), and these ny-tuples assume an M-ary alphabet, where
M = 2" The ny-tuples can be expressed as individual bits or as
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FIGURE 2 | CPM Modulator.
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FIGURE 3 | The finite state machine that comprises the CPE.

symbols drawn from an integer alphabet, U; € {0,1,..., M -1}
(when ny = 1the bit and symbol formats are the same). The sym-
bol format can be converted to the antipodal pulse amplitude
modulation (PAM) alphabet via the antipodal function

an(U) =2U—(M-1), ap(U) € {£L,43,...,+(M-1)} (3)

The complex envelope of the CPM signal can be expressed as

s(t;u) :exp{jZHZhiaM(Ui)CI(t‘iTs)} (4)

where T, = noT, = noRT), is the duration of each U; (which
ignores the additional overhead of the ASM). The set of Ny,
modulation indexes, {hi}fi”o_l, are constrained to be rational
numbers of the form h; = k;/p, where p is the least common
denominator. The subscript for the modulation indexes is un-
derstood to be taken modulo-Nj,. The phase response g(t) is
the time-integral of a frequency pulse g(¢) that is normalized to
have area 1/2 and is constrained to be non-zero only during the
interval [0, LT;]. Due to the limited time support of g(¢) and its
normalized area, g(t) is understood to have an initial value of
zero for t < 0 and a terminal value of 1/2 for t > LT;. The block
containing 8 (¢ — nT, ) in Figure 2 provides the interface between
the symbol domain (discrete time) and the signal domain (con-
tinuous time), where the current symbol time, #, is defined as as
nTy<t<(n+1)T,.

During the current symbol interval, the CPM signal can be
factored into three terms by applying the initial and terminal
values of g(t) and also expanding (3)

s(t;u)zexp{ert Zn: h,-aM(U,»)q(t—iTs)}

i=n—L+1
xexp{jzn » kiUi}exp{—jZ 3 k,»(M—l)}
i<n—-L i<n-L

= Q(t;U,,)exp{j[Gn,L +vn,L]} (5)

and these three terms are functions of, respectively, the correla-
tive state vector, U, which has an alphabet of M* unique values;
the phase state, 0,_1+1 = 0, + 2mwhy,_+1U,_+1, which has an
alphabet of p unique values when taken modulo-(27); and the
data-independent phase tilt, v,,_y+1 = v,—p —h,_1 1 (M -1) [9],
which has an alphabet of 2p unique values when taken modulo-
(2m). It is convenient to express the phase state in terms of a
phase state index, 6,,_; = 27/p - I,_;, where I,_; 1y = [[,- +

ky-1+1Uy-1+1] mod-p. Thus, during the current symbol time,
the CPM signal can be fully described by a continuous phase
encoder (CPE) whose output “code vector” is defined as

Cy = [In—L’ U415+ Upo1s Un] (6)
= [In—L: Un] (7)
= [Sn) Un] (8)

which also encompasses the definition of the state vector, s,,. The
CPE state machine is shown in block diagram form in Figure 3.

The code vector is somewhat cumbersome to work with as
an (L + 1)-tuple. It is more convenient to devise a one-to-one
mapping between the code vector and an integer, C,;, which we
call the code symbol. The code vector can assume Ng = pM?’
possible values in its L+1 positions,and so C,, € {0,1,..., Ng-1}.
If we view the CPM modulator as a CPE, the sequence {U, } is
the input to this encoder and the sequence {C,} is its output.
The {U,} - {C,} viewpoint is also used in Figure 1. The CPE is
a finite state machine, which can be demodulated/decoded using
trellis processing.

At the receiver, a matched filter (MF) is required for each
possible value of U, and in fact, the MF responses are defined
by the time-reversed complex conjugate of 8(#;U,,) in (5) [10].
Therefore, the numbers of matched filters, Ny, trellis states, N,
and trellis edges (branches), Ng, respectively, are given by

Nyp = M* )
Ng = pM*! (10)
Ng = pM* = M - N (1)

Each edge in the trellis is labeled with a unique value of ¢, (or,
more conveniently, C,,). When referring to edges in the trellis,
we will use e as the index, where 0 < e < Ng —1. The various sub-
components of ¢, can be collected from each edge and stored in
various trellis LUTs, indexed by e, as follows: s°(e) is the starting
state for a given edge, s*(e) is the ending state for a given edge,
U(e) is the correlative state for a given edge, U;(e) is the i-th
symbol in the correlative state for a given edge (0 < i < L -1
with i = 0 belonging to the “least significant symbol”), and 6(e)
is the phase state for a given edge; we use vector notation for
U(e) to distinguish it from U;(e), however, as with the other
LUTs, it returns an integer that represents its variable. The LUT
C(e) can be viewed as the code symbol for a given edge, but
such a LUT needs only to exist conceptually (and not in actual
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storage) because the code symbol and the edge index have the
same values, i.e. C(e) = e.

As indicated above, the parameters M, L, and p are what
determine the state processing complexity of the demodula-
tor/decoder. In [6], a variety of complexity reducing techniques
were applied to one of the CPMs of interest in this report (but
with general applicability to other CPMs as well). In this present
study, the sole complexity-reducing technique we will draw
from [6] is known as frequency pulse truncation (PT), which
approximates the CPM signal at the receiver using a shortened
value of L, i.e. Ly, < L. When applied to a moderate degree, this
technique does not drastically alter the minimum distance and
near-minimum distance properties of the signal (its “distance
spectrum”) nor does it require implementation strategies such
as decision feedback [6]. The same cannot be said for techniques
that reduce the value of M or p [6]. For our coded application,
the low operating SNRs exacerbate the penalties faced by tech-
niques that drastically alter the distance spectrum of the signal
or that require decision feedback [11].

With the PT approximation, the transmitter uses the CPM
model as described above; however, the demodulator/decoder
uses the smaller value of Ly, in place of L in the expressions
given in (5)-(11). The new MFs are obtained from the 6(t;U,)
that results, which has a U, that is shortened by (L — Lg,) ele-
ments. The receiver also uses a shifted definition of the current
symbol time, (n+ (L —Lry)/2)Ts <t < (n+1+(L-Lpy)/2)Ts,
when forming the MFs and also (looking ahead in our develop-
ment) when processing the received signal in (20).

2.3| CPM Schemes

IRIG-106 [1] specifies three CPM schemes that are used in
aeronautical telemetry. The most recent two were developed in
the early 2000s under the Advanced Range TeleMetry (ARTM)
program in order to provide progressive “tiers” of spectral ef-
ficiency relative to the original/legacy CPM scheme. We will
present them in the same spectral efficiency ordering as in [1].

ARTM “Tier 0” (ARTMO). The least spectrally efficient CPM
scheme we will use as a case study has the following parameters:
M = 2, h = 7/10, 2RC. At the receiver, we will apply the PT
approximation to model the signal as having Lr, = 1. This
results in a demodulator that requires Ny = 2 MFs and a
trellis with Ng = 10 states and Nz = 20 edges. This CPM
scheme is a close approximation to the predominant wave-
form used in aeronautical telemetry since the early 1960s: pulse
coded modulation/frequency modulation, or PCM/FM. There
is a slight mis-match between the 2RC pulse shape assumed
here and the analog specification in [1]; however, such a mis-
match is negligible relative to the mis-match introduced by the
Lgx = 1 approximation, which itself results in a performance
degradation that is so small it is difficult to measure.

ARTM “Tier I” (ARTM1). The next CPM scheme we will use
as a case study has the following parameters: M = 2, h = 1/2,
9TG. At the receiver, we will apply the PT approximation to
model the signal as having Ly, = 2. This results in a demodulator
that requires Nyy;p = 4 MFs and a trellis with Ng = 4 states
and Ng = 8 edges. This waveform is known in IRIG-106 [1] as
the telemetry group version of shaped-offset quadrature phase

shift keying (SOQPSK-TG). In this report, we are using the
SOQPSK signal model first presented by Othman et al. [12] and
further discussed in [13]; the 9TG pulse shape is defined in either
reference [12], [13]. The advantage of this relatively new model
for SOQPSK is that strips away much of the description com-
plexity of SOQPSK and results in simple and conventional CPM
description. As with any CPM waveform, there is an inherent
“differential encoding” aspect to this new signal model, which
was proven in [13] to fit precisely into the differential encoding
specification for SOQPSK-TG in IRIG-106 [1]. There already
exists an LDPC specification in IRIG-106 [1] for SOQPSK-TG
with differential encoding turned off, which essentially treats
SOQPSK as an OQPSK-type modulation. As such, the purpose
of SOQPSK-TG’s inclusion in the current study is to provide an
LDPC solution for SOQPSK-TG when it is treated as an ordinary
CPM. The findings in [5] serve to foreshadow our findings in
Section 7, which is that the existing LDPC schemes in IRIG-
106 [1] with differential encoding turned off outperform the
LDPC schemes proposed herein with differential encoding on.
ARTM “Tier II” (ARTM2). The most spectrally efficient
CPM scheme we will use as a case study has the following pa-
rameters: M = 4, {hy, h1} = {4/16,5/16}, 3RC. At the receiver,
we will apply the PT approximation to model the signal as having
Lg, = 2. This results in a demodulator that requires Ny = 16
MFs and a trellis with Ng = 64 states and Ny = 256 edges.
This waveform is also known as ARTM CPM in the literature
(e.g. [6]) and in IRIG-106 [1]; it is an instance of multi-h CPM.

2.4| Interleaver Operation

There are three desired code rates (R) and two desired infor-
mation block sizes (K), as listed in Table 1. Thus, a total of six
different interleaving tables (IT) must be specified, one for each
possible code word length (N).

We design our interleaving tables as S-random inter-
leavers [14], where the parameter S denotes the fact that el-
ements that were adjacent prior to interleaving are at least S
spaces apart in either direction after interleaving, but aside from
this constraint the connections are randomly chosen. An ap-
proximate upper bound on this spacing is S < \/N/2. We were
able to achieve S = 26, § = 28, and S = 32, respectively, for
N = 1280, N = 1536, and N = 2048. These are the values of N
that correspond to the shorter block length K = 1024 (“1K”). We
denote these 1k interleaving tables as 7z(i), to differentiate them
from the actual interleaving table that will be used in (1), which
is TI(i). This distinction is unnecessary for K = 1024 because
I1(i) = n(i). However, we will show how these 1k interleaving
tables can be reused for the K = 4096 (“4K”) case.

Before doing so, we illustrate the operation of (i) in Figure 5.
The input to the interleaver is the length-N word (sequence) y,
which appears at the top of the figure. The interleaver output is
the length-N word (sequence) u, which appears at the bottom of
the figure. As stated in (1), uis formed sequentially for 0 < i < N,
by accessing y at the “random” locations indicated by 7(i). We
have depicted only the first three time steps, i = 0,1, 2.

Figure 4 shows the shorter 1k interleaving table 7(i) being
used to operate a longer 4k interleaver. One advantage of this
arrangement is that only the shorter 1k interleaving tables need
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FIGURE 4 | Operation of a “4K” interleaver, with input y and output u.
) #0) ) respectively.
y
| | | | | 3 | LDPC CODES
/V 3.1| Design and Construction
u | | || | The process undertaken to design and construct the LDPC
SN codes is thoroughly documented in our companion paper [7].

FIGURE 5 | Operation of a “1K” interleaver, with input y and output u.

to be tabulated in a document such as this! An additional advan-
tage of this arrangement is that it allows the longer 4k interleaver
to be parallelized by a factor of 4. In the lower-left corner of
Figure 4, the first quarter-section of u is formed sequentially for
0 < i < N/4, while the three remaining quarter-sections of u
are simultaneously formed in their respective sequential orders.
Along the top of Figure 4, 7(i) is used to “randomly” access 4-
tuples of y, the four elements of which are “broadcast” to the
quarter-sections of u. We have depicted only the first three time
steps, i = 0,1, 2, which fill twelve elements of the output u.

An alternative form of the arrangement in Figure 4 is to fill a
4 x N /4 array column-by-column with the input y. Once filled,
the column order of this array is permuted by 7(i). The output
u is then formed by emptying the array row-by-row. The load-
by-column, empty-by-row arrangement is similar to a so-called
“block interleaver”

Figure 4 takes a “hardware” point of view, and the actual 4k
interleaving table IT(7) is never referenced. If such a table is
desired, a 4k I1(i) can be generated from a 1k 7(-) by

4n(i), 0<i<N/4
_J4n(i-N/4)+1, NJ/4<i<N/2
() = 4n(i-NJ2)+2, N/2<i<3N/4 (12
47(i-3N/4)+3, 3N/4<i<N

This interleaving table, II(i), can be used directly in (1) and it
follows the “ordinary” interleaver behavior depicted in Figure 5.
We note that the S-random property of 7(i) is not preserved in
I1(i) in (12). However, in extensive simulations of (12) vs. true
length-N interleavers generated specifically for the K = 4096
cases, we observed no performance degradation when (12) was
used. As such, we use 1k interleavers exclusively going forward.

The contents of the 1k interleaving tables, 7(i), for R = 4/5,
R =2/3,and R = 1/2 are listed in the Appendix. These interleav-
ing tables have lengths of N = 1280, N = 1536, and N = 2048,

A set of six codes were designed for (matched to) each of the
three CPM schemes (ARTMO0, ARTMI, and ARTM2), i.e. 18
codes were designed in total. The six codes are divided into
the different rates (R) and information block sizes (K) listed in
Table 1.

The code construction process begins with the protomatrix B,
which is relatively small and has My rows and Ny columns. The
columns of B correspond to “variable nodes” and we index the
columns with 0 < n < Np — 1. The rows of B correspond to
“check nodes” and we index the rows with 0 < m < Mg - 1.
The design process allows the elements of B to be drawn from
a 4-ary alphabet, ie. by, , € {0,1,2,3}. The sum, or “weight,”
of the n-th column is referred to as the variable node degree,
dn; likewise, d,, is the degree of the m-th row, or check node
degree.! The aim of the design process is simple: assign values
to the elements of B in such a way that the “SNR decoding
threshold” is minimized given the information theoretic charac-
teristics of each CPM scheme [7]. This “matches” B to the given
CPM scheme and minimizes the anticipated SNR at which the
eventual LDPC code will yield good performance. As discussed
in [7], the B matrixes that emerged from this design process have
SNR thresholds within 1 dB of the theoretical limits predicted
by channel capacity, thus it is fair to say that these are capacity-
approaching codes. Although B is relatively small and dense, it
serves as a template for the distribution of variable and check
node degrees that yields the best performance, and the way in
which these nodes are interconnected.

Throughout this section, we will use the R = 1/2, K = 4096
LDPC code that was designed in [7] for ARTM2 as our running
example, which has the protomatrix

00000012
00000111
00012010
33321211

B= (13)

For d, and d, their subscripts (n and m, respectively) serve a dual purpose:
(1) they help us distinguish which d we are referring to, and (2) they serve as
an index from one variable (or check) node to the next. We will always use n
when indexing d,;, and m when indexing d,,,, and thus it will always possible to
distinguish which type of d (variable or check node) we are referring to.
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FIGURE 6 | Tanner graph of the example protomatrix B in (13).

Figure 6 shows the Tanner graph depiction of this protomatrix.
The Ny = 8 variable nodes are drawn as circles on the left, and
the My = 4 check nodes are drawn as squares on the right. Every
non-zero element b,, , means that an edge (or edges) must be
drawn to connect the n-th variable node with the m-th check
node. There are a total of Ny = 26 edges? in Figure 6, and this
number corresponds to the sum of all row (or column) weights
of this B. There are many parallel edges in this Tanner graph due
to the entries of b, , =2 and b,,, ,, = 3 in this B.

Once B has been designed, the next steps in the construction
process produce progressively larger and less-dense matrixes
that preserve the degree distribution and interconnections of
B, a process known as lifting in the literature. These larger ma-
trixes are quasi-cyclic, meaning that they are composed of square
sub-matrixes known as circulants, where each row is a right-
hand circular (barrel) shift of the row above. As such, an entire
circulant can be specified by providing only the first row. The
“weight” of a circulant is the sum of the elements in the first row.
Thus, if element b, , is replaced by a circulant whose weight is
equal to b, ,, and likewise for all elements in B, then the degree
distribution of B is preserved in the larger matrix that results.

The best results were achieved with a two-step lifting pro-
cess [2], [7], [15]-[17], where a smaller “pre lift” was followed by
a much larger final lift. This was the same approach taken with
the AR4JA codes [2], although a pre-lift by 4 was used for the
ARA4JA codes and we used a pre-lift by 2 [7]. In the pre-lift by 2,
each element of B is replaced by the following 2 x 2 expansions
depending on the value of b, ,:

00 10 11 21

Parallel edges may still be present after the pre-lift because the
2 x 2 expansion that replaces b,, , = 3 still contains values of
2. However, any parallel edges that remain will be completely
eliminated by the final lift.

In order to yield a final LDPC code that is systematic, the
parity check matrix must be of the form H = [ Q | P ], where
P is a square matrix that is full rank (invertible). In terms of
the intermediate (pre-lifted) matrix D, whose dimensions are

2We permit ourselves to use overlapping notation for the internal descriptions
of the trellis diagram and the LDPC code (for example, the use of Ng in both
settings), because there is a clear differentiation due to context.

Mp x Np, a systematic code is achieved if the last Mp columns
are full-rank (using modulo-2 arithmetic). In other words, the
columns of D must be arranged such thata Mp x Mp square sub-
matrix partition on the far-right is invertible. This rearranging
of columns does not affect the overall performance of the code.
In fact, the interleaver and deinterleaver already introduce a
random permutation between the SISO module and the LDPC
decoder. Thus, this step can be viewed as an aspect of the overall
interleaving function, with the side benefit of ensuring that the
code is systematic. The procedure followed in the design process
is simple: (1) randomly permute the order of the columns of D;
(2) proceed from the far right and collect columns one-by-one if
they add to the rank (modulo-2) of the collection, and skip those
columns that do not, and stop when a rank of Mp, is achieved;
and (3) the final form of D is with the columns in the rank Mp
collection placed on the far-right end of D with the remaining
columns to the left. The reordering of columns erases the quasi-
cyclic structure of D, which is not essential.

In our running example, the pre-lift by 2 on B in (13), followed
by the column permutation procedure that was just described,
results in the intermediate protomatrix

0010000001001 000
0010100001000000
0010000010001 000
0000100001000010
D_1000000000011001 (14)
1100100000000001
0111012210111211
1102121111210110

A Tanner graph for D is not provided, but the pre-lift by 2
essentially doubles everything, i.e. there are Np = 16 variable
nodes and Mp = 8 check nodes, connected by Ny = 52 edges.
Although D has lower density than B, it remains quite dense.

In the second and final lifting stage of the design process,
D is lifted by a factor of M, by assigning random phases to
M;, x My, circulants using the ACE algorithm [18]. Because of
the pre-lift, the entries of D are drawn only from the alphabet
{0,1,2}, and so this second lifting stage results in weight-2,
weight-1, or weight-0 (all-zeros) circulants. A weight-1 circulant
can be specified simply by its phase, ¢ € {0,1,..., My — 1},
which is the location of the non-zero element (i.e. the 1) in the
first row. We simplify the discussion by considering a weight-
2 circulant to be the superposition of two weight-1 circulants
with different phases, where each phase is assigned one at a time
via the ACE algorithm. Thus, the final low-density parity check
matrix that emerges, H, contains entries drawn only from the
binary alphabet {0,1} and is completely free of parallel edges.

Figure 7 shows the low-density parity check matrix H that was
constructed from the intermediate protomatrix D in (14) using
My = 512. Each 512 x 512 weight-1 circulant is displayed as a
diagonal “stripe” that wraps around in a modulo-512 fashion (the
different color stripes will be explained later). A weight-2 circu-
lant has two such stripes (with different phases) superimposed
in the same 512 x 512 cell.

The dimensions of H are My = My Mp rows and N = M1 Np
columns. The companion to this is the generator matrix, G, with
dimensions K = N—Mg and N (i.e., both G and H have the same
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FIGURE 7 | Low-density parity check matrix for the ARTM2, R =1/2, K = 4096 code. It is constructed from D in (14) using My, = 512.
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FIGURE 8 | Low-density parity check matrix with puncturing for the ARTM2, R =1/2, K = 4096 code.

TasLE 1| Dimensions of the Final LDPC Codes and Coding Gains Realized [in dB].

Native Punctured Coding Gains
K R |diy, M, |Mp Npb N Ino| Mp Np Np I, | Ag| A Al A
1024  4/5 6 32 8 40 1280 1 10 42 1344 1 76179 82|71
1024  2/3 8 64 8 24 1536 1 10 26 1664 2 8.6/91 95|86
1024 1/2 12 128 8 16 2048 1 10 18 2304 4 9199 10593
4096 4/5 12 128 8 40 5120 1 10 42 5376 4 87191 95| 81
4096 2/3 12 256 8 24 6144 1 10 26 6656 4 9.6/10.1 10.5| 9.5
4096 1/2 12 512 8 16 8192 1 10 18 9216 4 9.9110.9 11.3 | 10.2
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number of columns, N). We point out that K as was just defined
is the same as the number of bits contained in the information
word. To obtain the generator matrix, we first partition H as [19]

H=[Q|P] (15)

where P is an My x My square matrix and Q has dimensions
My x K. We next compute

T

w=(PQ) (16)

using modulo-2 arithmetic, where (-)7 denotes the matrix

transpose and (-)~! the matrix inverse; P is invertible because
of our intermediate steps with D. We then construct G as

G=[1Ix | W] 17)
where I is the K x K identity matrix and W is a dense matrix
of high-weight size- M|, circulants and has dimensions K x My.

3.2| Sparse Representations of G and H

A sparse representation of G focuses on a sparse representa-
tion of W, which is a (K/Mp) x Mp “grid” of dense circulants.
The top row of each circulant (M, bits in total) is all that must
be stored in advance or written in a document such as this.
These can be expressed as length-(M; /4) strings of hexadeci-
mal characters. As listed in Table 1, all codes discussed herein
have Mp = 8, and thus each group of 8 such character strings
represents one row of circulants of W. Figure 3-2 of [19] shows
how such a sparse representationof G can be used to realize an
efficient encoder in hardware.

Although H in Figure 7 is enormous—4096 x 8192—the struc-
tural similarities it shares with D in (14) are readily apparent.
We now describe a sparse representation that can be used to
communicate H in a document such as this or in a computer
program. We then show how this sparse representation can be
converted into a form that is most useful to the quasi-cyclic
LDPC decoder we describe in Section 5.

The essential elements needed to fully describe H are the
locations of the non-zero elements (i.e. the ones) along the rows
at the top of each block of circulants. These bit locations are
integers drawn from the set {0,1,..., N - 1}. Such a location
can be decomposed into a column index belonging to D, n =
|location/M; |, and a circulant phase ¢ = mod(location, M),
where |-| and mod(-, M) are the floor and modulo- My, opera-
tors, respectively.

In H, the row indexes of interest are multiples of My ,i.e. mM,
where 0 < m < Mp — 1. The m-th such row is completely speci-
fied by the (d,, +1)-tuple {d,,, location, location, . .., location},
which is the weight d,, of that row in D followed by that many
non-zero element locations in H. Therefore, the entire H matrix
can be specified by a long list of numbers beginning with M,
and followed by the (d,, + 1)-tuple for each row. Concatenated
together, this results in a comma-delineated list, £, with individ-
ual elements £(1), for 0 < I < Lje — 1. The length of the list is
Lien =1+ Mp + Ng, where Ng belongs to D.

For H in Figure 7, whose D in (14) has Mp = 8 and N = 52,
the length-61 comma-delineated list £ is:

512, // My,

3,1233,5107, 6614, // row =0

3,1303,2058, 4874, // row =1

3,1332,4204, 6172, // row =2

3,2553,4973,7175, // row =3

4,2,6036,6537,8171, // row=4 (18)

4,273,657,2263,8110, // row =5

16,1012, 1398, 1555, 2844, 3260, 3294, 3763, 3914, 4495, 5567, 5780,
6205, 6961, 6986, 7217, 8111, // row =6

16, 8,734,1569, 1857, 2467, 2631, 3000, 3139, 3621, 4294, 5082, 5466,
5550, 5644, 6675,7607, [/ row =7

where we have added “comments” and line breaks for ease of
reading, but these formatting elements are not necessary (the
colored text will be explained shortly).

Table 1lists 2 information block sizes (K € {1024,4096)}) and
3 coderates (R € {1/2,2/3,4/5)}), plus there are 3 CPM schemes
of interest in this study (ARTMO, ARTM1, and ARTM?2). This
amounts to 18 distinct LDPC-CPM pairings. The Appendix
gives a comprehensive listing of the sparse representations of the
18 parity check matrixes, H, and the 18 generator matrixes, G,
that were designed in [7] for these LDPC-CPM pairings.

3.3| Sparse Representation Needed by the LDPC Decoder

The quasi-cyclic LDPC decoder we describe in Section 5
needs the following information:

o The variable node degrees for the intermediate protomatrix
D,d,,0<n<Np-1

« The set of edge indexes that are associated with the n-th
variable node of D, &, = {eg, €1,...,€4,-1},0 <n < Np-1
The cardinality of the n-th setis d,, = |E,].

« The check node degrees for the intermediate protomatrix
D,dm,OémSMD—l.

« The set of edge indexes that are associated with the m-th
checknode® of D, &, = {ep, €1,...,¢€4,-1},0 <m < Mp-1.
The cardinality of the m-th set is d,,, = |E,,].

o The set of circulant phases that are associated with edges
in the m-th check node, ®,, = {$o, ¢1,...,¢4,1}, 0 <
m < Mp - 1. The cardinality of the m-th set is d,, = |®,,].
These phases belong to the circulants of H, but as with the
other variables, their groupings are driven by D. The LDPC
decoder is formulated such that phases are needed only for
the check node update. For the variable node update, the
decoder views all edges as having a phase of zero.

Although parallel edges may be present in D, the LDPC decoder
as it is formulated in Section 5 is unaware of such a distinction. It
merely sees sets of edges associated with each variable and check
node.

The simple comma-delineated list, £, can be parsed to gen-
erate all of this information using Algorithm 1. Because L is
organized row-by-row, the row-based information (d,,, £, and
®,,) can be fully determined one m at a time, and Mp is simply
the final tally of the index m (plus one). The column-based
information (d, and &,), on the other hand, evolves one edge ata

3As with d, and d, the subscripts for £, and &, will be used both to
differentiate between the two and as an index.
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Algorithm 1 List Parsing Routine for Sparse H.

TABLE 4 | Row-based information, d,, and £, for H in Figure 7.

1: Input: A comma-delineated list, £, with individual ele-
ments £(1),for 0 <1 < Lien - L

2: Outputs: My; d, and &€, for 0 < n < Np - 1;d,, €y, and
(Dm for 0 < mSMD—l;NE.

3: Initializations: My = L£(0);Np = |max;{L(])}/ML] + L
d,=0and &, ={@}for0<n<Np-le=-1,m=-1,and

lnext =L
4: while [ eyt < Lien do
5 m=m+1l
6 dpm = E(lnext)§
7: lnext = lnext + 1;
8 fori=0,1,...,d, —1do
9: n= L‘C(lnext)/MLJ;
10: ¢) = mod(ﬁ(lnext, ML);
11: lnext = lnext +1
12: e=e+1;
13: Addeto &, and &,,;;
14: Add ¢ to D5
15: d,=d,+1;
16: end for

17: end while
18: Mp=m+1;
19: Np=e+1;

TaBLE 3 | Column-based information, d,, and &,, for H in Figure 7.

n 01234567 8910112131415

d,| 334343333 4334333

1217 022 4 232426 7 12913 2321115

16 20 3 38 9 41252728 5 4730 8 333419

36 37 6 39 18 42 43 44 45 10 48 49 14 50 51 35
21 40 46 31

En

time, anywhere in the range 0 < n < Np -1, and thus it is helpful
to know Np at the very beginning, which can be determined as
Np = |max; {L()}/Mr]| + 1L

The output of Algorithm 1 for the comma-delineated list
in (18) is shown in Tables 2—-4. This is the information needed
to describe the H in Figure 7 to the LDPC decoder. While
unimportant, a careful inspection of the sets £, in Table 3 reveals
the harmless parallel edges that are present, which appear as
consecutive edge indexes in a given set (e.g. see £, for n = 5
and n = 6).

m|d, Em

03|01 2

11313 45

21316 7 8

31319101

41 4 (121314 15

5| 4 |16 17 18 19

6|16 |20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
7 | 16 |36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

3.4| Puncturing Via Check-Node Splitting

A check node can be split into an equivalent graph with two
check nodes that are connected by a non-transmitted (punc-
tured) variable node. Check node splitting is one of the tech-
niques that was used to construct the AR4JA codes in [2]. Al-
though the new graph (code) is equivalent to the original, the
iterative behavior of its decoder is slightly different. In [7], this
technique was shown to improve the robustness of the LDPC-
CPM decoder against undetected errors. These are instances
where the decoder converges on a valid code word, albeit a
different one than was transmitted. When this occurs, the parity
check passes (because a valid code word was found) and thus the
decoder is unaware that bit errors are present.

The splitting procedure itself is straightforward. In terms of
the original protomatrix B, we split the check node with the
highest degree, i.e. the bottom row of (13) or the bottom check
node in Figure 6. The edges connected to this check node are
divided in alternating fashion into two groups and assigned to
two nodes, i.e a new check node is created (a new row in B is
created). The two check nodes are then connected to each other
via one edge each to a new non-transmitted (punctured) variable
node (a new column in B is created). Figure 9 shows the new
Tanner graph that emerges from the original Tanner graph in
Figure 6 after the check node splitting procedure.

These arguments can be translated to the intermediate pro-
tomatrix D, i.e. the bottom two rows of (14) are split and two
new columns are created. Likewise, the two highest-degree rows
of circulants in H are split and two new columns of circulants are
created. For the example H in Figure 7, the bottom two rows of
circulants are the ones involved in the check node splitting and
are displayed with blue and green stripes. Figure 8 shows how
the blue stripes are divided in alternating fashion into two rows,

TaBLE 2 | Row-based phase information, @, for H in Figure 7.

Dy

3 1209 499 470
31279 10 266
3 308 108 28
3 1505 365 7
4 | 2 404 393 491
4 |273 145 215 430

NV A W~ o3

16 |500 374 19 284 188 222 179 330 399 447 148 61 305 330 49 431
16 | 8 222 33 321 419 71 440 67 37 198 474 346 430 12 19 439
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FIGURE 9 | Tanner graph of the example protomatrix B in (13) after the check
node splitting procedure (compare with the original Tanner graph in Figure 6).
The non-transmitted (punctured) variable node is drawn with an open circle.

and likewise for the green stripes. At the far right of Figure 8, two
new circulants (with zero phase) are added to H to connect the
blue rows (displayed in blue and red) and likewise for the green
stripes (displayed in green and red).

And finally, these arguments can be translated into some
simple editing steps on the comma-delineated list £. To split
a check node, the bit locations for that node are divided in
alternating fashion into two row-lists, a new bit location is added
to each row-list (with zero phase), and the row-degree is updated
accordingly. For the original comma-delineated list in (18), the
edited list for the equivalent split-and-punctured code is

512, // My,

3,1233,5107, 6614, // row =0

3,1303,2058, 4874, // row=1

3,1332,4204, 6172, // row =2

3,2553,4973,7175, // row =3

4,2,6036,6537,8171, // row =4 (19)
4,273, 657,2263,8110, // row=>5

9,1398, 2844, 3294, 3914, 5567, 6205, 6986, 8111, 8192, // row =6
9,1012, 1555, 3260, 3763, 4495, 5780, 6961, 7217, 8192, // row =7
9,734,1857,2631, 3139, 4294, 5466, 5644, 7607, 8704, // row =8
9,8,1569, 2467, 3000, 3621, 5082, 5550, 6675, 8704, // row =9

where two row-lists are shown each in blue and green, the new
zero-phase edges are shown in red, and the updated row-degrees
are also displayed in red.

The original (“native”) code has an H with dimensions My =
MiMp and N = M Np. The H for the punctured code has
dimensions My = My (Mp+2) and Np = My (Np+2), using the
dimensions belonging to the original D. We note the difference
between the punctured code length, Np, and the transmitted
code length N. A new generator matrix, G, could be created with
dimensions K = Np — My and Np. However, the right-most 2M},
columns of this larger G matrix could simply be discarded be-
cause they correspond to the punctured information. Thus, the
original G is used regardless of puncturing. For completeness,
Table 1 lists the dimensions of the native and punctured codes
for all code rates and information block lengths.

4 | LDPC-CPM RECEIVER MODEL
4.1| Block Diagram

We now switch our focus to developing the receiver that
is the counterpart to the transmitter in Figure 1. The receiver
model is shown in Figure 10. The various modules exchange
vectors (sequences) of soft information in the form of L-values
whenever the underlying variable is binary (i.e. u and y, but
not {C,}). An L-value is defined as the log of the ratio of the
two elements in a binary probability mass function (PMF). It is
the most convenient soft format for binary sequences because
only a single value (a scalar) is required for each time step.
Because {C,} is drawn from an Ng-ary alphabet, a full Ng-
ary PMF (a “sub-vector”) is required for each time step n [i.e.
the soft information for {C,} is a sequence (vector) of PMFs
(sub-vectors)]. As explained further in the Appendix, all soft
information is formulated in the log domain due to its greater
numerical stability. The input vectors are denoted with “I” and
contain a priori information. The output vectors are denoted
with “O” and contain a posteriori information. In cases where
an output is later connected to the input of another module,
we compute the extrinsic version of such outputs, which will be
defined later.

The received signal is modeled as

r(t) = \/Es(t;u) +w(t)

where E is the energy per symbol and w(t) is complex-valued
additive white Gaussian noise (AWGN) with zero mean and
power spectral density Ny. The energy per symbol is subject to
the identity E; = noE; = noREj, where E, is the energy per
coded bit (y;) and E, is the energy per information bit (x;) (as
before, these relationships ignore the additional overhead of the
ASM).

The receiver processing for CPM can be subdivided into a
traditional CPM demodulator that is positioned outside the it-
erative decoding loop, and a CPM decoder that is located inside
the iterative decoding loop. Both of these are responsible for
generating a soft output for u and thus they are labeled as soft-
input soft-output (SISO) modules.

The traditional CPM demodulation process is well under-
stood and entails familiar tasks such as matched filtering
and synchronization. We assume that symbol, carrier, and
frame/ASM synchronization [20] are perfectly known, which
are reasonable assumptions given the similarities between the
transmission model in Figures 1 and 10 and the existing AR4JA-
ARTMI-NR system in IRIG-106 [1], which has been in opera-
tion for over a decade. It is important to emphasize that this
more-intensive demodulation process takes place only once and
is positioned outside the iterative loop. The MF bank within
the CPM demodulator produces a sample, z,(U(e)), for each
symbol time n and each correlative state vector U(e). The phase
state and phase tilt are applied next, yielding

VEL Re{exp{—j[e(e> : vn_LRx]}zn(U@))}

2
(2D)
which is a set (sub-vector) of Ng values indexed by C(e) for each
time step, n. The complex conjugation of the MF responses, the

(20)

pa(C(e)sI) =
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FIGURE 10 | LDPC-CPM Receiver model.
phase state, and the phase tilt essentially “un-do” the phase mod-  obtained as
ulation of the single symbol model in (5). The precise scaling Ay (331) = A;(u;0) 0<i<N-1 (23)

in (21), including the factor L, = 4/ Ny, means that p,(C(e);I)
is exactly a log-domain PMF for the code vector ¢, < C, for
each time step.

The remaining task of the CPM demodulator is identical to
the sole task of the CPM decoder, which is to generate the
soft output for u. Because of the presence of the known ASM
sequence on either side of the code word, the CPM demodu-
lator/decoder operations can take place over the extended bit
interval —-Nwy < i < N + Nwy — 1, where Nywy < Nagy is a
“warm-up” period for the forward-backward trellis processing.
Extending (21) to cover the warm-up period is straightforward
due to the availability of 7(¢) during those intervals. To extend
the time intervals for the other SISO soft input, {1;(u;1)}, we
directly exploit the known values of the ASM bits, like so:

(_Oo)az(ASMHNASM)) —Naspy <i<-1
/\,’(u;l)= /\H(i)(y;O), 0<i<N-1
(—oo)az(ASM,»,N), N<i<N+ Npsy -1
(22)

where a,(-) is the binary antipodal function in (3), which is
then scaled to represent an L-value with infinite confidence
[the minus sign is due to our definition of the L-value in (56)
in the Appendix]. As will be explained shortly, A;(y; O) is the
extrinsic a posteriori output of the LDPC decoder. This out-
put is not available for the outside-the-loop operations of the
CPM demodulator, and so the “middle” portion of A; (1), i.e.
{i(us 1)L is initialized to zero for that step as shown in
Figure 10 (an L-value value of zero corresponds to equiprobable,
or “no a priori information”). Additional details of the inner
workings of the log-based SISO module are given in Section 6.

As shown in Figure 10, the SISO operations take place within
a larger “global” iterative decoding loop that performs a defined
maximum number of iterations, Ity .. For the first global itera-
tion, the SISO task was completed outside the loop by the CPM
demodulator and that result is passed forward via the switch in
position “A” For successive global iterations, the switch is placed
in position “B” so that the CPM SISO decoder’s updates are used.
For these operations, the CPM SISO decoder accepts the non-
zero input sequence {1;(u;1)} in (22) and returns the extrinsic
update for u, {1;(u;0)}. The SISO module does not need to
compute outputs corresponding to the warm-up intervals.

When the SISO operations are completed, {1;(u;0) } ! (i.e.
the portion excluding the warm-up intervals) is passed to a
deinterleaver (denoted by the symbol IT!), whose output is

At this point, the focus in the receiver shifts to the LDPC
decoder. As depicted in Figure 10, the LDPC decoder has two
soft inputs. The first is the sequence of a priori L-values for vy,
which arrives from the deinterleaver, i.e. (23). In general, the
LDPC decoder requires this input to exist out to a length of Np,
where Np may be slightly greater than N if puncturing is used.
In such a case the additional values, {1;(y;1)};", are set to
zero because the punctured bits were not transmitted and thus
no information was received.

The second input to the LDPC decoder is the set of “edge
memory buffers,” {n(e)}, which comprises the internal state
memory of the LDPC decoder. These buffers are initialized to
zero (no information) at the commencement of the first global
iteration. The LDPC decoder performs It} iterations in a “local”
loop between variable node and check node updates, where the
edge memory buffers store the results of these updates. When
the Itioc local iterations are completed, {#(¢e) } is output so it can
be preserved until the LDPC decoding portion of the next global
iteration.

The y output of the LDPC decoder is computed in two for-
mats. The first is an extrinsic version of the a posteriori L-value
sequence, {1;(y;0)}N;!, which does not need to be computed
for any punctured bits that may exist. This is re-interleaved
and fed to the SISO module for the next global iteration [as
described in (22)]. The second is the full (non-extrinsic) a poste-
riori probability (APP) (in L-value format), which we denote as
{A;(y;0)} 2" The APP output is the basis for the output hard
decisions, ¥, which are used in the parity check that takes place
at the end of each global iteration. No further global iterations
are needed if this parity check passes.

LDPC decoders are known to have a high “peak to average” ra-
tio when it comes to the number of iterations needed in order to
pass the parity check, cf. e.g. [3]. As with any setting where such a
ratio is large, this can result in a system that is overdesigned and
inefficient for average use (to accommodate the peak), or one
that is underdesigned so that it performs poorly for peak use (but
is efficient on average). Approaches to dealing with this problem
were studied in our companion paper [8] for the LDPC-CPM
decoder in Figure 10, and some results from [8] are presented in
Sections 7.2 and 7.3.

4.2| Native vs. Punctured Receiver Configurations

The studies in [7], [8] also explored how the selection of
Itioc > 1 has some advantages and disadvantages. The advantage
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of Itioc > 1is that it can help “balance” the complexity of the
LDPC and CPM halves of the global iteration, especially if the
CPM half has higher complexity (as it does for ARTM2). The
disadvantage of Itj,c > 1 is that it isolates the LDPC decoder
from the CPM SISO, making the LDPC decoder more prone to
undetected errors due to the relatively small values of minimum
distance for the LDPC codes designed in this study (see Table 1
for the minimum distance values we have directly observed
in our simulations, which we denote as d;;,). The solution to
the problem of undetected errors is the puncturing/check node
splitting technique that was described in Section 3.4. In [7] it
was shown that the interactions between the CPM SISO and
the check node splitting provide protection against undetected
errors. Thus, if larger values of Ifi,. are of interest, the study
in [7] recommended the upper bound It < It} . along with the
use of the punctured version of the parity check matrix, H. In
simulations exceeding 10° code words in each case, [7] reported
that no undetected errors were observed in these configurations.

In Table 1, we have listed the “native” codes as being inclusive
of the parameter selection Ifi,c = 1, and we have listed the
“punctured” codes as being inclusive of the parameter selection
Itioc = Ity .. The coupling of the native/punctured H with these
parameter selections will be maintained throughout this doc-
ument. We also emphasize that these are design options that
affect the receiver only. The transmitter in Figure 1 is completely
unaware of and unaffected by these options, and the original
(native) generator matrix G is always used in Figure 1.

We now transition to the important subject of the decod-
ing algorithms themselves; specifically, the LDPC decoder, the
SISO algorithms, and ways of implementing these in a high-
throughput/parallelized manner.

5 | QUASI-CYCLIC LDPC DECODER
5.1| Motivating Example

We begin with an example to motivate the structure of the
LDPC decoder. As discussed in Section 3, when reduced to its
essential elements, an LDPC code consists of variable nodes,
check nodes, and the edges that connect them.

We consider a node for variable y that is connected to five
check nodes via the edges £ = {eg, e, €2, €3,e4} where d =
|€| = 5. Although not shown in the Tanner graphs of Figures 6
and 9, variable nodes in the decoder have an additional edge,
which is the connection of y to the outside. For our example
node, these six edges each have an “input” message (or a “vote”
on the value of y) that arrives in the form of an L-value: #(ep),
n(e1), n(ez), n(es), and y(e4) are the messages arriving from
the check nodes, and A; is the a priori L-value for y arriving from
the outside. Our task is simply to update the messages back to
each check node, as suggested by the name variable node update.
The five update equations are

n(er) +n(ex) +n(es) +nes) + 4
+n(e2) +n(es) +n(es) +

n(eo) =
n(er) =n(eo)

n(ez2) =n(eo) +ner) +1(es) +n(es) +Ar  (24)
n(es) =n(eo) +ner) +n(ez) +n(es) + M
n(eq) = n(eo) +ner) +nez) +n(es) +Ar

which is a simple combining (or fusing) of the “votes” coming
from each source. The primary feature of each update is that it
is extrinsic, meaning that it combines inputs from all available
sources outside of itself, i.e. the update for edge e, is missing
n(eo), and likewise for the other updates. The missing term
represents what was known on that edge prior (a priori) to the
update, and the extrinsic update represents the value added to
that edge by the structure of the code. If the a priori values
were included in the updates, then positive feedback would over-
accumulate these values from one iteration to the next. At the
commencement of decoding, all values of #(+) are zero and thus
the outside input A; is the only information available for y.

The reader will notice that we reuse the incoming memory
when forming the outputs in (24), i.e eq is found on both the
left- and right-hand sides of the equal sign in (24). The appar-
ent problem of overwriting and confusing inputs and outputs
will be resolved momentarily when we introduce some working
memory.

Each update requires 4 additions and thus 20 additions are re-
quired to implement (24). In theory, all inputs could be summed
first and then the a priori value for each edge could be “backed
out” (subtracted), which would require only 5 additions and
5 subtractions. This extrinsic-by-inverse approach requires the
existence of inverse operator, and although addition is far from
being exotic, subtraction is problematic in a fixed-point/integer
implementation when values become saturated. Thus, we favor
the extrinsic-by-exclusion approach in (24) for its numerical
stability.

In [2], a more eflicient approach to computing (24) was out-
lined that consists of a forward recursion, a backward recursion,
and a completion step. The forward and backward recursion are

ZF(O 7’](6())4‘/\1

)= zp(4) = n(es)
zr(1) = ze(0) + 17(er)
)

z(3) = zp(4) + 11(e3)
zr(2) = ze(1) + n(e2) zp(2) = z3(3) + n(e2)

25(3) = ze(2) + n(es) zp(1) = 25(2) + n(er)
where zg(+) and zg(-) are the working memory for the recur-
sions and the values of #(-) are accessed only to read. The
completion step fuses the results of these recursions

ZB(I) + /\I
£(0) +zp(2)

z
ze(1) + zp(3)
z

n(eo)
n(er)
n(ez)
)
)

n(es
n(eq

£(2) +z5(4)
£(3)

where the values of #(-) are accessed only to write. This arrange-
ment requires only 11 additions to compute the extrinsic updates.

We now turn our attention to a check node that is connected
to five variable nodes via the edges £ = {ey, ey, €2, €3, €4} where
d = |€] = 5. The very meaning of a “check” is that the following
equation must be true:

0=y0®y19y,0 YD y4 (25)

where @ is the XOR operator and yy, y1, ¥2, ¥3, and y4 are the
transmitted (correct) values of the variables that belong to £ for
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this check. Although it is mathematical nonsense, we will take
turns solving this single equation for each of the five unknowns:

Yo = V1920 Y30 yq
Y1=)0 Sy, ® Y3 D y4
Y2=Yo® y D Y3 @ 4 (26)

Y3=)Y0® )1 ® )2 D ya

Ya=)Yo® 1928 )3

The genius of LDPC codes is that the Tanner graph is so sparse
(low density) that this nonsense can be used to formulate the
messages sent from a particular check node. It takes a num-
ber of iterations for anything to propagate back to this same
node (which relates to the girth of the code), at which point
the extrinsic information gained in the process can be viewed
approximately as being independent.

The similarities between (26) and (24) are already apparent.
If the binary variables a, b, and ¢ have the relationship c = a ®
b, their respective L-values have the relationship [2] %, = #,
#p» Where it is convenient at the moment to use the notation
but later we will use 1, 8 57, = minx(#,, 77, ) as defined in (54).
Rewriting (26) with # and @ completes its similarity with (24).

The five edges in our check node have “input” messages #(ep ),
n(er),n(e2), n(es),and n(ey) arriving from the connected vari-
able nodes. The five check node update equations are (26) except
rewritten with # and ®. The inverse “@” operator does not exist
and thus extrinsic-by-exclusion is the only option. The more-
efficient forward/backward/completion implementation is

zr(0) = n(eo) zp(4) = n(es)
zr(1) = zr(0) @ n(er) z5(3) = z5(4) B 1(e3)
zr(2) = zr(1) B 1y(e2) z5(2) = z5(3) B 17(e2)
" zr(3) = zr(2) B 17(e3) zp(1) = z5(2) B y7(er)
n(eo) = z5(1)
n(er) = ze(0) @ zp(2)
n(ex) = ze(1) Bzp(3)
n(es) = zr(2) Bzp(4)
n(eq) = zr(3)

This arrangement requires only 9 B operations because A; does
not need to be accounted for (or it can be left in these equations
and set to a value of A; = +o0, which is the identity value of the
operator).

The last step in our motivating example is to return to the
variable node y (after the check node update) and update the
message on its connection to the outside. The extrinsic form of
this output message is

Ao =1n(eo) +n(er) +n(ez) +n(es) +n(es) (27)

which excludes the a priori value A;. Once again, the extrinsic
output represents the value added by the structure of the code
and thus the extrinsic output should be connected to any sub-
sequent decoder to avoid positive feedback/over accumulation.
The full (non-extrinsic) APP output is Ag = A; + Ao, and the +
sign of the APP output is the basis for the hard decision y. Once

hard decisions are made, we can return to our example check
node to see if (25) is satisfied using the hard decisions.

5.2| Quasi-Cyclic Decoder Formulation

The quasi-cyclic LDPC decoder exploits the fact that H is
composed of My, x My circulants. The decoder is organized
around the sparse representation of H that was developed in
Section 3.3, which in turn is based almost entirely on the much-
smaller intermediate protomatrix, D (see the dimensions listed
in Table 1). The principal quantities in the sparse representation
are My, dy, En, dm» Em> and O, with implied variables Mp, Np,
and Ng.

We allocate a length-M; memory buffer (vector) for each
edge, n(e), which requires a total of NgM; discrete memory
elements for the entire set {5(e)}\%;". The processing/updating
of these memory buffers (vectors) is described in a completely
parallel fashion (vector-wise), i.e. My elements at a time. Al-
though each element in the buffer can be accessed and processed
in parallel, “element zero” is considered to be the element at po-
sition zero in the buffer. If we apply a phase of ¢ when accessing
a buffer, as in (e, ¢), then the element originally at position
zero is right-shifted to position ¢ in the buffer. This could be
implemented in actuality [i.e. a right-hand circular (barrel) shift
¢ times] or by use of a pointer, etc. We formulate everything
such that phase is dealt with only during check node processing.
From the perspective of the variable nodes, the edges have no
(zero) phase associated with them. The following are a few useful
properties of the phase shift: 5(e, 0) is the same as #7(e); ¢ can
assume any integer value (including negative integers), because
it is understood that phase is applied in a modulo-M, fashion; a
phase shift of ¢ is “undone” by another phase shift of —¢.

Variable Node Update. The first half of an LDPC decod-
ing iteration consists of the variable node updates. Generically
speaking, each update involves a set of edges £, d = ||, and an
a priori input vector A; from the outside. To perform the update
for the n-th variable node, we initialize these generic quantities
with the ones specific to that node: £ = &, and A; = A(n;]),
where A(#;1) is the length- My segment of information received
from the SISO module belonging to the n-th circulant of y.
Motivated by (24), the brute-force extrinsic update is performed
for each edge in the set:

n'(e;) =M+ Y. nle),
ee[iifj

0<j<d-1 (28)

where 5’ denotes temporary “working” memory that is needed
only until all updates in the set have been made, after which we
can overwrite the input values with the updates: 7(e;) = #(e;),
Vj.

The more-efficient forward/backward/completion approach
of computing extrinsic-by-exclusion is summarized as a generic
processing unit in Algorithm 2. This unit has forward and back-
ward buffers (vectors) as working memory, zg(-) and zg(-),
respectively, and can be adapted for use as either the variable
node or check node update.

The particulars of Algorithm 2 unique to the variable node
update are the following: the generic “update operator” is simple
vector addition w(a,b) = a + b (Algorithm 2 Line 2); the edges
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have no (zero) phase and all references to phase can be ignored;
the a priori optional input is passed as A; (Algorithm 2 Line 3);
and the “completion factor” is not needed, i.e. ¥ = 1 and can be
ignored (Algorithm 2 Line 4). With simple addition, we include
the caveat that in a finite precision implementation it becomes
addition with saturation.

Check Node Update. The second half of an LDPC decoding
iteration consists of the check node updates. Generically speak-
ing, each update involves a set of edges £, d = |£], and their
associated phases @. To perform the update for the m-th check
node, we initialize these generic quantities with the ones specific
to that node: £ = &, and ® = ®,,. Motivated by (26) after
rewriting with 7 and min* and incorporating phase, the brute-
force extrinsic update is performed for each edge in the set:

n'(ej) = minx{n(e;, ~¢:)} (29)
n'(ej) =x-1'(ej ¢)), 0<j<d-1 (30)

which is a two-step procedure where the result from the first
step is then phase-shifted and scaled by the “completion factor,”
k. Once again, when all the updates have been made, they are
transferred from the working memory to the actual edge mem-
ory: n(e;) = 1'(e;). Vj.

The particulars of Algorithm 2 unique to the check node up-
date are the following: the generic “update operator” isw(a,b) =
min*(a,b) (Algorithm 2 Line 2); the a priori optional input is
not needed and is thus assumed to be +oo0, i.e. the identity value
of min«(a, b) (Algorithm 2 Line 3); and the “completion factor”
is not needed, i.e. ¥ = 1 and can be ignored (Algorithm 2 Line 4).
The min«(a, b) operator is described for scalar input/output
in (54) in the Appendix. For vectors, it is applied on an element-
by-element basis.

A low-complexity version of the check node update is when
we drop the “correction” terms, f(|a|+|b|) —£(|a|—|b]|), within the
minx(a, b) definition in (54). This is referred to as the “simple
min” approximation. In addition to simplifying the computa-
tions, this approximation also eliminates the requirement for
the precise scale factor \/E;L./2 in (21). These modifications
result in “relative reliabilities” (RRs) being exchanged between
the SISO module and the LDPC decoder, instead of true L-
values (As discussed in the Appendix). The simplified version
of minx(a, b) tends to “over estimate” the RRs, and thus x = 3/4
is recommended to attenuate this effect.

LDPC Decoder Operations. When a new received code word
arrives, the “global” iterative loop commences operation. The
LDPC decoder initializes all edge memory buffers to zero before
these iterations begin: #(e) = 0 for 0 < e < Ng — 1. The
first half of each global iteration involves the SISO module,
and the second half involves the LDPC decoder (with interleav-
ing/deinterleaving taking place inbetween). The two decoders
exchange buffers (vectors) of L-values that have slightly differ-
ent lengths. On the SISO side, there are “warm up” values for
the forward-backward trellis processing. On the LDPC side, if
puncturing is used then there is zero-padding so the decoder is
provided the length-Np code word it expects. These details have
been covered above.

As described in Algorithm 3, the LDPC decoder has three ba-
sic operations: the variable node update; the check node update,

Algorithm 2 Generic Extrinsic Processing Unit.

1: Input/Output: 7(ey),n(er),...,n(es-1), the set of edge
memory buffers belonging to € = {eg, €1,...,e4-1},d = |€],
with phases © = {@¢, ¢1, ..., P41} (assumed to be all zeros
for variable node processing);

2: To be specified: “update operator” w(a, b);

3. Optional Input: A;, the external a priori value. If not spec-
ified, it is assumed to be the identity value of the update
operator;

4: Optional Parameter: “completion factor” k. Assumed to be
x = L if not specified;

5. Inmitialization: zg (0) = w(n(eo, —¢0), A1);

6: Initialization: zg (d - 1) = n(e4_1, —P4-1);

Forward and Backward “accumulations™:

7. fori=1,2,...,d-2do

zp (i) = w(ze(i - 1), (e, —¢:))s

9: end for
10: fori=d-2,...,2,1do
11: ZB(i):W(ZB(i+1),l1(€i,—¢i));
12: end for

Extrinsic Outputs:
13: 7(eo) = w(zp(1), Ar);
14: n(ed_l) = ZF(d - 2);
15 fori=1,2,...,d -2do
16: n(e;) =w(zp(d-1),2p(d +1));
17: end for

Inverse Phase Shift and Completion:
18: fori=0,1,...,d-1do
9: n(e;) =x-nlei¢i);
20: end for

and output computation. The variable and check node updates
take place within a “local” iterative loop that executes a total of
Itioc iterations. These node updates use the generic processing
unit described in Algorithm 2, with some customization to each
case as detailed above. As shown in Algorithm 3, these node
updates stride through the columns and rows of the intermedi-
ate protomatrix, D, with repeated read/write access to the edge
memory buffers specified in each node set £, and &,,.

When Ifio. local iterations are complete, the decoder com-
putes two distinct outputs. The first is the extrinsic output that
will be passed back to the SISO module for the next global
iteration. The second is the full APP output, which constitutes
the final output of the global iterative decoder. The specifics of
these output computations are described next.

The LDPC decoder also “outputs” the values contained in the
edge memory buffers, {#(e) }, to be preserved for the next global
iteration. It is not essential that these are true outputs, it is only
essential that they are preserved for the next global iteration.
The values in these buffers were updated in the last check node
update of the current global iteration, and they will be used in
the first variable node update of the next global iteration, along
with an updated a priori input that will come from the next
execution of the SISO module.

LDPC Output Computation. The LDPC output computation
is performed from one variable node to the next, and is thus
somewhat similar to the variable node update. We are given
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Algorithm 3 LDPC Decoder Operation.

1: Initialization: Set 7(e) = 0 for 0 < e < Ny — 1 prior to the
first global iteration;

2 Input: {A;(y; D)} = {A(0;1), A(1),...,A(Np - LT)},
the a priori L-values from the SISO module, Eq. (22);

3: Input: {5(0),7(1),....,qn(Ng — 1)}, the edge memory
buffers, preserved from the previous global iteration;

4: Output: {A;(y;0) ﬁ"o_l = {1(0;0),A(;0),...,A(Np -
1;0)}, the extrinsic a posteriori L-values;

5. Output: {A;(y;0) 125" = {A(0;0),A(1;0),..., A(Np -
1;0)}, the full a posteriori probability (APP) L-values;

6: Output: {7(0),n(1),...,n(Ng - 1)}, the edge memory
buffers, to be preserved for the next global iteration;
Local/LDPC Iterative Loop:

7. fori=0,1,...,If,c. —1do

8: forn=0,1,...,Np —1do

9 Variable node update with £ = £, and ; = 1(n;1);
10: end for
11 form=0,1,...,Mp —1do
12: Check node update with £ = £,,, and © = O ,,;
13: end for
14: end for
Compute Outputs:

15: forn=0,1,...,Np —1do

16: Compute Ap and Ap with £ = €, and A1 = A(m;1);
17: Set A(n;0) = Ao and A(n;0) = Ao;

18: end for

the set of edges that belong to the n-th variable node, £ = &,,
along with the a priori input, A; = A(n;1), which is the length-
My, segment of information received from the SISO module
belonging to the n-th circulant of y Our task is to form a length-
My, extrinsic output, Ao, and a length-M, full APP output, Ao.
Motivated by (27), the extrinsic output is

Ao = n(e;)

e, €€

(31)

which excludes A;. The full APP output includes this missing
term and is

Ao=Mhi+ ) fle) = A+ Ao.
e €€

(32)

The final parity check operation begins by making hard deci-
sions on the full APP output with the step

A 1’
Yi= 0,

where the negative “sign” of the hard decisions is due to our
definition of the L-value in (56) in the Appendix. The hard
decisions are divided into length-M; segments, {§;} 5" =
{$(0),¥(1),...,9(Np — 1}, and the parity check operation is
performed by processing these segments.

To do this, we define N, = {ng,n,...,n4_1} as the set
of variable nodes that participate in (are non-zero in) the m-
th check node (row) of D. The comma-delineated list, £, de-
fined in Section 3.2 already contains this information in the

exact order that is needed for this purpose. Recall that £

A,()/,O) <0

0<i<Np-1
Ai(30) >0 ?

(33)

begins with the value of M, which is already known and
can be skipped. Thereafter, £ is composed of (d,, + 1)-tuples
of the form {d,,,location,location,...,location}. Removing
(skipping over) d,, leaves the set of bit locations belonging to
the m-th check node, and applying the operation |location/ M |
to each location in this set yields the n values for that row of D,
which are the desired contents of \V,,,.

For the m-th check node of D, we set N = \,,,, ® = ®,,, and
perform the operation

V= }A’(n()’ _¢0) @ i’(nl’ _¢1) @S- D }A'(ndfl’ _¢d71) (34)

which is motivated by (25) after incorporating phase. A value
of v = 0 for all Mp check nodes means that ¥ passes the parity
check. If the parity check passes, the global loop does not need
to iterate further and can stop. If the parity check fails, then
the global iterations continue until the maximum number of
global iterations is reached, It,,y, at which point a decoder failure
occurs and the current ¥ is returned, even though it is known to
contain errors.

Another outcome that can occur is known as an undetected
error, which is highly undesirable in some applications. This is
an instance where the decoder converges on a ¥ that is a valid
code word, albeit a different one than was transmitted (denoted
as y). When this occurs, the parity check passes (because a valid
code word was found) and thus the decoder is unaware that
bit errors are present.* The probability of undetected error is
larger for codes that have smaller values of minimum distance.
While [7] observed that the codes herein have the relatively
small values of d;; listed in Table 1, it also demonstrated that
the regular influx of fresh extrinsic information generated in
the global iterations by the CPM SISO module serves to protect
the LDPC decoder against undetected errors. Furthermore, [7]
demonstrated that the check node splitting technique described
in Section 3.4 enhances this protection.

6 | CPM SISO MODULE
6.1| Basic Operation

The original development of the SISO module goes back to the
BCJR algorithm in [21], although our formulation more closely
resembles the notation of [22]. We apply several adaptations and
customizations that are relevant to our application, including:
(1) only one soft output is required, that belonging to {u; }; (2)
the soft input for the “code” actually belongs to a CPM, thus
the metric increments must be formulated accordingly [this has
already received some attention in (21)]; and (3) the entire algo-
rithm is formulated using log-based probabilities, the additional
background details for which are provided in the Appendix. The
basic operations of the SISO module are given in Algorithms 4
and 5, where the former is specialized to the case of a binary
(M = 2, ny = 1) CPM (such as ARTMO0 and ARTMI) and the
latter is specialized to the case of a M = 4 (ny = 2) CPM with
a time-varying trellis (such as ARTM2). We will describe both

*In a simulation environment, the transmitted codeword y is available at the
decoder and can be compared with §, thus exposing the undetected errors.
However, in practice y is never present at the decoder, because that is the very
point transmitting it in the first place!
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Algorithm 4 Log-Based SISO APP Algorithm for M =2 (ny=1).
1. Input: {p,(C(e);I)}, for —-Niy; < n < N’ + Ny — 1, the
received a priori PMFs from the CPM MF bank, Eq. (21);
2: Input: {A;(u;1)}, for -Nwy < i < N+ Nyy —1, the a priori
L-values from the LDPC decoder, Eq. (22);
3: Output: {A;(u;0)}, for 0 < i < N — 1, the extrinsic a
posteriori L-values;
4: Optional Parameter: “completion factor” k. Assumed to be
x = 1if not specified;
5. Initialization: A,N{w,l(s) =0for0<s< Ng-1;
6: Initialization: BNI+N(VU,1(S) =0for0<s< Ng-1;
Metric Increment:
7: Au(w1) = (A, (w:1)]T, forallm;
& pule) = ~[ha(wsD)] Tz (ue))/2 + pa(Cle)sD);
Forward and Backward Recursions:
9: forn=-N{y,,...,N' -=3,N'-2do
10: A, (s) = maxx {An,l(ss(e)) + yn(e)}, for all s&;

ece(sE)

1L: Normalize {A,(s)} 5"

12: end for

13: forn=N"+ Ny, -2,...,1,0do

14; B,(s%) = ma(xs*) {B,,+1(SE(6)) + y,,+1(e)}, for all s%;
ece(s

15: Normalize {B,,(s)} %"
16: end for
Extrinsic Increment:
17: xn(€) = pn(C(e);1);
Completion Step:
18: forn=0,1,...,N'-1do
19: An(u;0) = m(a)§*0{An_1(ss(e)) + xn(e) + Bn(sE(e))}
exu(e)=

- maxx {A21(s%(e)) + xn(e) + Ba(s"(e)) };

20: end for

2: Ai(u30) =x-4;(u;0), forall i

formulations simultaneously, which will allow us to compare
and contrast their similarities and differences.

The CPM trellis is formed by the “code” variable defined
in (6), which has an integer or vector representation C,, <> c,.
Each edge in the trellis has a unique value of C,, <> ¢,, and the
various sub-components of C, <> ¢, can be stored in separate
LUTs that are indexed by a given edge, e. The first two LUTs
are s°(e) and s*(e), which are the starting state and the ending
state, respectively. When there are multiple modulation indexes
(Np, > 1), as in Algorithm 5, these two LUTs become time
varying and thus we add a time subscript, s5(e) and s&(e),
which is understood to be taken modulo-Nj,. The remaining
LUTs are: C(e), the code symbol® for a given edge; u(e), which
is the length-#n, bit vector for a given edge, which corresponds
to Up(e), the “least significant” symbol in (6) [the relationship
between Uy(e) and u(e) is given by (60)]; u(e), uo(e), and
u;1(e), which are the elements (bits) of u(e) that are needed for
the ny = 1and ny = 2 cases.

The SISO module accepts two a priori soft inputs: one for the

5 As was mentioned earlier, C(e) = e, and thus this LUT is mentioned only
for its conceptual value.

Algorithm 5 Log-Based SISO APP Algorithm for M =4 (n,=2)
and a time-varying trellis.

L. Input: {p,(C(e);I)}, for —N{yy < n < N’ + Nyyy — 1, the
received a priori PMFs from the CPM MF bank, Eq. (21);
2 Input: {A;(1;1)}, for —-Nwy < i < N+ Nwy -1, the a priori
L-values from the LDPC decoder, Eq. (22);
3: Output: {A;(u;0)}, for 0 < i < N -1, the extrinsic a
posteriori L-values;
4: Optional Parameter: “completion factor” x. Assumed to be
x = 1 if not specified;
5. Initialization: A,N‘rw,l(s) =0for0<s<Ng-1;
6: Initialization: BN/+N(NU_1(S) =0for0<s< Ns-1;
Metric Increment:
7: A(O)(u;I) = [Aan(ws1), 0 ]7, foralln;
¢ ADD) =[ 0,  Aawu(wsD)]7, forallm
9: Ay(wI) = Aﬁo)(u;l) + Aﬁl)(u;l);
10: yu(e) = ~[An(wD)] az(u(e))/2 + pu(C(e); 1);
Forward and Backward Recursions:
1: forn=-Nyy,....,N' -3,N' -2do
12: A,(sP) = ma(x*) {An_l(si(e)) + y,,(e)}, for all s%;
ece(sE

13: Normalize {A,(s)} 5"

14: end for

15: forn=N"+N{y;,-2,...,1,0do

16: B,(s%) = ma(x:; {Bn+1(sl:;(e)) + y,,+1(e)}, for all s°;
ece(s

17: Normalize {B,(s)} %"
18: end for
Extrinsic Increments:
0
1 x%l))(e) - —[A%j)(u;m]%z(u(e))/z + pa(Cle):1);
200 ) (e) = =[A,” (wD)] az(u(e))/2 + pu(C(e)s1);
Completion Step:
21: forn=0,1,...,N' -1do
.0) = $ (0), E
222 Ay (u;0) = me(lx)* {An_l(sn(e))+)(n (e)+Bn(sn(e))}
e:ug(e)=0
— maxx {4, 1(sh(e))+ xi(e) +Bu(sE(e)) s

exug(e)=1
23 A (1:0) = maxe {4,1(s5(e)) + 10 (€) + Bl ()}
~ maxx {A,1(s3(e))+x\ (e) +B,(sE(e))}:

exup(e)=1
24: end for

250 Ai(w;0) =x-A;(u;0), forall i;

“code” sequence {C, } and one for the “information” sequence®

{u;}; it returns an extrinsic a posteriori soft output for the
information sequence. The {C,, } input is based on CPM symbols
and uses a symbol-based index, #n. The {u; } input and output are
based on LDPC encoded bits and use a bit-based index, i. These

indexes cover the following “time” ranges
~Nyy <n <N+ Ny -1
wy =7 WU (35)
~Nwu <i <N+ Nyyp -1

where Nwy < Nagy is the “warm-up” period for the forward
and backward recursions, N’ = N/no, and Ny,; = Nwu/no. At

SIn our system, the true information sequence is {x; } which is the input to
the LDPC encoder. However, from the local perspective of the CPM modulator
and the SISO module, {u; } fills the role of the information sequence.
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the beginning of the algorithm, the sole interface between the
bit and symbol indexes takes place at Algorithm 4 Line 7 (which
is trivial for ny = 1) and Algorithm 5 Lines 7-9 (which is more
involved due to 1y = 2).

Once the received bit-based L-values are grouped into
symbol-based ny-tuples, A, (u;1), the middle portions of Algo-
rithms 4 and 5 are entirely symbol based, i.e. the formulation
of the metric increment, y,, (e), and the forward and backward
recursions that generate A, (s) and B, (s) involve variables that
are based exclusively on n. The forward recursion touches each
ending state and performs an update over the edges that merge
into that ending state. For this, we define the “ending set” as

e(s®) 2 {e:s"(e) = 5"} (36)

which contains all edges such that the ending state of the edge is
sE (M edge indexes in total). Likewise, the backward recursion
touches each starting state and performs an update over the M
edges that merge into that starting state, using the “starting set”

e(s’) 2 {e:s%(e) =55} (37)

(Extending these definitions to a time-varying trellis is straight-
forward.) The results of a single forward or backward time step,
{A,(s)}N5 or {B,(s)}X5,", respectively, represent an unnor-
malized log-based PME As discussed in connection with (68)
in the Appendix, the absolute normalization of these PMFs (i.e.
that they are made to sum to unity) is not necessary because of
the subtraction in the completion step of the SISO module. As
such, the normalization called for in Algorithms 4 and 5 is for
the narrow purpose of preventing numerical overflow in a finite-
precision implementation. This normalization can be as simple
as determining the maximum value over the set, and then sub-
tracting this value from all values in the set. In a floating-point
implementation, normalization is unnecessary because the finite
block length (N) is short enough that overflow is unlikely.

The final step in the SISO module is the completion step,
which forms the extrinsic output L-values. This step makes use
of A, (s) and B, (s) from the forward and backward recursions,
and an extrinsic version of the metric increment. Similar to
the LDPC decoder, the SISO algorithm can be formulated as
extrinsic-by-inverse or extrinsic-by-exclusion, where we favor
the latter due to the non-existence of a suitable inverse for ad-
dition with saturation in a fixed-point/integer implementation.
For ng =1 (Algorithm 4) the key step for extrinsic-by-exclusion
is the use of y,(e) on Line 17 for the completion step that
follows. This variable, y,(e), excludes the a priori input term
A, (w 1) that is present in the earlier metric computations that
use y,(e) on Line 8. For ny = 2 (Al§orithm 5), two separate
extrinsic increments are formed, XE,O e) and X,(ql) (e), where
each takes a turn excluding one of the input values from the
current time step (See Lines 19-20). Compare these with y, (e)
on Line 10 which has contributions from both input bits.

Each extrinsic output L-value value is formed by marginaliz-
ing over the appropriate sets of edges for u = 0 and u = 1. This
is done once (1 = 1) each time step for Algorithm 4 and twice
(ng = 2) each time step for Algorithm 5. Again, as was pointed
out in connection with (68), this subtraction in the log domain
is “self normalizing” and yields accurate L-values regardless of
the normalization scale of the input arguments.

Similar to the LDPC decoder, a low-complexity version of the
SISO module is obtained when we drop the “correction” term,
f(a - b), within the maxx(a, b) definition in (49). This is the
“max-log” SISO, where the simple max(a, b) function replaces
all instances of the max~(a, b) function in Algorithms 4 and 5.
This results in RRs being exchanged between the SISO module
and the LDPC decoder, instead of true L-values. In the last line
of Algorithms 4 and 5, we recommend x = 3/4 when operating
in the “max-log” configuration to attenuate the RRs due to
the “over estimating” phenomenon. In the optimal maxx(a, b)
configuration, this step is not necessary due to x = 1.

6.2| A-type Parallelization

The SISO module can be envisioned as having a time di-
mension and a state/edge dimension. The three main steps of
the algorithm (i.e. forward, backward, and completion) each
consist of an outer “for” loop that steps through time, and an
inner “for” loop that steps through the states/edges. We now
outline two distinct parallelization strategies that can be applied
to the SISO module. The first offers a way to parallelize the
time dimension, and the second offers a way to parallelize the
state/edge dimension.

In [23], several possible parallelization schemes are presented
for the Viterbi algorithm, which is similar to the SISO module.
We select the one described as algorithmic parallelization and
refer to it as A-type. The basic idea is to divide the received
code word into Py segments (that overlap to a small degree),
and then process these segments in parallel; thus achieving a
parallelization factor of approximately Py.

Our received code word has a length of N bits and we allow
a SISO warm-up period of Ny bits on either side of this word,
for a total length of N + 2Ny bits. In terms of CPM symbols,
we have N’ = N/ng, Nyy; = Nwu/no, and a total length of N +
2Ny, symbols. Figure 11 depicts the length-N code word at the
very top with a shaded warm-up interval on either side. To form
the overlapping segments, we divide the code word portion by
Py, i.e. Npsy = N/Py and Ny, = N’ /Py, and allow each segment
to have the full warm-up period of Nyy bits (Nyy; symbols).
The symbol and bit indexes that comprise the “base” segment
are, respectively,

! /A !
~Niyu < fpar < Npoy + Ny — 1

. (38)
—Nwuy < ipar < Npar + Nwy —1

and the indexes for the p-th segment are obtained with the offset

!
Mpar + pNPar

, (39)
Ipar + pNPar

where p € {0,1,..., Py —1}. Figure 11 gives a graphical depiction
of Py = 4 overlapping segments, each with its own warm-up
intervals.

A “vectorized” version of the metric increment is formed by
stacking values from each segment together as in

(]

(40)
This is depicted in Figure 12. From there, the
forward/backward/completion steps take place over the

Y v (6) = [yrlpar (6), Y npa+Np,, (6), o3 Vipy+(PA-1)N,
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FIGURE 11| Graphical depiction of A-type parallelization with Py = 4. The original length-N code word (shown at the top) has a warm up interval on either side
(shaded region). The code word is divided into Py = 4 overlapping segments of length N /4, each with its own warm-up intervals.

N/4

FIGURE 12| The Py = 4 segments are “vectorized” by stacking them together.
When these length-N/4 segments are processed in parallel, the number of time
steps is reduced by a factor of approximately Py = 4.
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FIGURE 13 | Trellis diagrams for (a) ARTMO (Lrx = 1), and (b) ARTM1
(Lrx = 2). The values of the starting state, s%, are shown on the left-hand side
of each trellis, and the values of the ending state, st, are shown on the right-
hand side. The 4-state ARTMI trellis can be decomposed into two separate 2-
state “butterflies,” which are shown in green and blue.

shortened index interval in (38) and generate “vectorized”
quantities, A, (s), By, (s°), and A,, (u;0). The vector
operator max~(a, b) is applied on an element-by-element basis,
which is a segment-by-segment basis in this context. After
completion, the values in {A;,, (u; O) }fp‘:*:‘:ol can be “unstacked”
to yield {1, (u; O) }V".

The number of time steps required by the completion step is
reduced by a factor of exactly Py. The forward and backward
steps each have a warm-up interval of the original length, N{,;,
and so these are reduced by a factor of

N+NWU

—_ 41
N/PA+NWU ( )

which approaches P4 as N becomes very large relative to Ny .

6.3| B-type Parallelization

The state/edge processing can be parallelized by organizing
the arguments of the forward/backward/completion steps in
groups that can be processed together. One trellis structure that
can be exploited is a “butterfly;” which is defined as a sub-trellis
of starting states, ending states, and connecting edges that is
disjoint from the rest of the trellis. For example, the ARTM1
trellis in Figure 13 (b) can be decomposed into two separate 2-
state butterflies (shown in green and blue), and the ARTM2
trellis in Figure 14 can be decomposed into 16 separate 4-state
butterflies (two of which are shown in green and blue). We refer
to this as B-type parallelization.

Because of the size of the ARTM2 trellis and the impact
that parallelization can have on its throughput, we use this as
a detailed case study. In our implementation, we format A, (-),
B, (-), and y,(-) as large arrays of contiguous memory. We are
able to stride through these arrays in either a scalar or vector
fashion. For example, A, (s*), B, (s%), and y,(e), use n as the
time index, and within each time step, sE. sS and e, respectively,
index the scalar values. If we treat these arrays as a collection of
length-Pg vectors, then A,(v), B,(v), and y,(v) use n as the
time index and v as the generic index for each length-Pg vector
within each time step.

Using the first butterfly in Figure 14 (a) as an example (shown
in green), the forward recursion for s € {0,1,2,3}, which is
vector index v = 0 using Pp = 4, can be formulated as

A, (0) =maxx {rep, (A,-1(0))+7,,(0), rep, (A1-1(7)) +7,,(7),

rep, (4,-1(26)) +7,,(26), rep, (A,-1(45)) +¥,(45)}
(42)

where x = rep, (x) replicates the scalar quantity x a total of
Py times, forming a length-Pg vector x. Similar formulas can
be derived for the 15 remaining butterflies. Likewise, a similar
formulation is available for the backward recursion. The end
result is that Py = 4 states are updated in parallel and the for-
ward/backward recursions require only 16 vector-based updates
at each time step, instead of the original Ng = 64 scalar-based
updates.

Aswas implied in (42), our edge metrics are stored in sequen-
tial edge order as viewed from the left-hand side of the trellis, e.g.
¥, (0) accesses the first Py edge metrics. For the completion step,
we assemble the input arguments (one per edge) in this same
edge order, with the caveat that we interleave length- Py vectors
pertaining to Algorithm 5 Lines 22 and 22, like so for the trellis
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FIGURE 14 | Time-varying trellis diagrams for ARTM2 (Lry = 2) for (a) n-even, and (b) n-odd. The values of the starting state, s, are shown on the left-hand side
of each trellis, and the values of the ending state, s%, are shown on the right-hand side. For each case, the 64-state trellis can be decomposed into 16 separate 4-state

“butterflies,” the first two of which are shown in green and blue.

in Figure 14 (a):
M(0) = rep, (A,-1(0)) + xV(0) + B,,(0) (43)
M(1) = rep, (A,-1(0)) + ¥V (0) + B, (0) (44)
M(2) = rep, (A,1(1) + £ (1) + B, (5) (45)
M(3) = rep,(A,-1(1)) + ¥V (1) + B, (5) (46)
M(126) - rep,(A,1(63)) + ¥\ (63) + B,(14)  (47)
M(127) = rep,(A,-1(63)) + " (63) + B, (14) (48)

where M(-) is an array with 128 length-4 vector terms, which

has a scalar length of 2 - Ny = 512 terms. This array is divided
in half, and the two halves are processed in a massive element-
by-element max={-,-} vector operation to yield a length-256
scalar result. This halving and processing can be repeated until a
length-8 scalar result is obtained (a total of six halving and pro-
cessing steps). This marginalization yields 8 scalars that consti-
tute two separate 4-ary log-domain extrinsic PMFs for U,,. Us-
ing (68), the first of these extrinsic 4-ary PMFs is marginalized
into the L-value A,,(u;O) (the step required by Algorithm 5
Line 22) and the second extrinsic 4-ary PMF is marginalized
into the L-value A,,4;(u4; O) (the step required by Algorithm 5
Line 23).
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........ pA:#
........ Py =4

FIGURE 15 | Vector formats for 8-way combined parallelization. The format on
the left is used for ARTMO and ARTMI (P5 = 4 and Pg = 2). The format on the
right is used for ARTM2 (Py =2 and Pp = 4).

This detailed example shows how B-type parallelization by a
factor of Py = 4 has a natural application to ARTM2, which
has M = 4. Similar techniques can be applied to parallelize
ARTMO and ARTM1 with Py = 2 to match their M = 2 structure.
Even though the ARTMO trellis in Figure 14 (a) does not have a
butterfly structure, it is still possible to group terms in ways that
can be processed in parallel.

6.4| Combined Parallelization

As we have just outlined, A-type parallelization is applied
external to the SISO module with near-negligible impact on the
algorithm architecture, while B-type parallelization is applied
internal to the SISO module by specializing the processing steps
to the particular trellis structure at hand.

Our prototyping platform offers a simple means of single
instruction, multiple data (SIMD) parallel processing using 128-
bit words. This is via the architecture known as streaming SIMD
extensions (SSE), which is available on Intel processors and a
similar architecture is available on Apple processors. By select-
ing a 16-bit fixed-point integer (i.e. “short int”) scalar data type,
we are able to achieve 8-way parallelization with a 128-bit wide
vector. Our 8-way vector formats are shown in Figure 15.

For ARTMO and ARTMI, A-type parallelization is applied
externally by a factor of Py = 4. Internal to the SISO module,
this means that when “scalars" are handled (replicated, copied,
etc) they are 64 bits wide, whereas vectors are 128 bits wide
with Pg = 2 “scalars” each. Any mathematical operations (maxx,
addition, subtraction) are performed element-by-element on 16-
bit elements in a 128-bit vector. When the SISO execution is
finished, the P, = 4 formatting is undone externally, and the
results are sent to the LDPC decoder. Parallelization by a factor
of 8 in the LDPC decoder is straightforward because all circulant
sizes in Table 1 are multiples of 8.

For ARTM2, A-type parallelization is applied externally by
a factor of P, = 2. Internal to the SISO module, this means
that when “scalars” are handled (replicated, copied, etc) they
are 32 bits wide, whereas vectors are 128 bits wide with Py = 4
“scalars” each. However, as before, any mathematical operations
are performed element-by-element on 16-bit elements in a 128-
bit vector.

The combined parallelization factor, Fp, is Pg times the term
in (41), which is a value that is close to (but less than) 8 due to
the warm-up overhead. Our observation is that a trellis of many

TABLE 5 | Parallelization Results for the smallest and largest code words.

Scheme | P» Ps | Nwu N Fp

ARTMO | 4 2 24 1280 | 758
ARTM1 4 2 8 1280 | 7.85
ARTM2 | 2 4 64 1280 | 7.63
ARTMO | 4 2 24 8192 | 793
ARTM1 4 2 8 8192 | 7.98
ARTM2 | 2 4 64 8192 | 794

states requires a longer warm-up interval to reach the “steady
state” The values of Ny we use in our system are 24, 8, and 64,
respectively, for ARTMO, ARTM], and ARTM2. In Table 5, we
summarize the combined parallelization factor, Fp, we achieved
for the smallest and largest code words in our study.

7 | SIMULATION RESULTS

In this design study we have considered 3 CPM
schemes (ARTMO, ARTMI, and ARTM2), 3 code rates
(R € {1/2,2/3,4/5)}), and 2 information block sizes
(K € {1024,4096)}). This is a total of 18 distinct LDPC-
CPM pairings.

Furthermore, the receiver implementation has the option of
using the native code (always with Ifj,c = 1) or the punctured
code (where It < It} ., and we always select Ity = I}, herein).
This increases the number of configurations to 36.

And finally, IRIG-106 [1] specifies the AR4JA-ARTMI-NR
system for the six different code rates and block sizes in Table 1.
This brings the number of configurations to a final tally of 42.
AR4JA-ARTMI-NR is fundamentally different from the LDPC-
CPM system in Figure 10, because the decoder for the AR4JA-
ARTMI-NR codes does not feature a global iterative loop. In-
stead, the CPM SISO demodulator does a single demodulating
pass on the received signal (as in Figure 10), after which the
LDPC decoder iterates by itself, as presented in [6].

We now examine some performance characteristics of the
various configurations.

7.1| BER/FER Performance

We first quantify the bit error rate (BER) and frame error
rate (FER). These simulation results are shown in Figures 16, 17,
and 18 for the 6 LDPC codes belonging to, respectively, ARTMO,
ARTMLI, and ARTM2. Sub-figure (a) in each case displays results
for the It|,. = 1/native option and Sub-figure (b) displays results
for the Ifi,c = It;, /punctured option. The BER/FER improves
slightly when there are multiple local iterations per global it-
eration, i.e. Iti,c > 1. In the case of the K = 1024, R = 4/5
codes, which have It . = 1, the BER/FER is slightly worse for
the punctured option, but again this option has the advantage of
being completely free of undetected errors.

The BER/FER curves for the longer block lengths (K = 4096)
are quite steep, typically decreasing an order of magnitude for
every SNR increment of 0.1 dB. The BER/FER slope is shallower
for the shorter block lengths (K = 1024), requiring anywhere
from 0.1-0.4 dB in SNR to decrease by an order of magnitude.
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FIGURE 16 | BER/FER curves for the 6 codes in Table 1 paired with ARTMO (PCM/FM) and (a) It;o. = /native option, and (b) Ifjo.

Figure 17 (c) displays BER/FER curves for the 6 AR4JA-
ARTMI-NR configurations. A careful comparison of the LDPC-
CPM codes in Figure 17 (a) vs. the AR4JA-ARTMI-NR codes in
Figure 17 (c) reveals that the AR4JA-ARTMI-NR codes remain
the best option for ARTMI. This result was foreshadowed in [5]
where codes designed for non-recursive MSK were shown to
always outperform codes designed for recursive MSK.

Table 1 lists the coding gains of the 18 LDPC-CPM pairs,
which range from 71 to 10.9 dB. The coding gains are de-
noted as Ay, A;, and A, [in dB] for ARTMO, ARTMI, and
ARTM?2, respectively, and use as a reference the uncoded BER
= 107% crossing points for each CPM waveform, E,/N, ¢
{10.8,12.9,13.3} dB. The coding gains for the AR4JA-ARTMI-
NR codes are denoted as A;5 and exceed those listed for A; by
about 0.4 dB on average. For all modulation types, the coding
gains are comparable across the information block sizes and
code rates, which validates the consistency of the LDPC-CPM
design approach presented in [7]. The BER extends below 107%
in all cases with no evidence of an error floor.

The simulations in Figures 16-18 were conducted with a max-
imum limit on the number of global iterations of Ity = 512,
which is, of course, impractical. The next series of results will
address this issue head on.

7.2| Average Global Iterations Per Code Word

We now quantify the average number of global iterations
needed in order to pass the parity check, which we denote as
It,vg. For AR4JA-ARTMI-NR the iterative behavior is different,
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but there is only one type of iteration so It, is at least un-
ambiguous. Figure 19 shows It,y, for all 36 LDPC-CPM design
configurations, plus the 6 AR4JA-ARTMI-NR configurations.
It,yg is demonstrated to decrease monotonically as E;, /Ny in-
creases. The BER and FER behave similarly (i.e. monotonically
decreasing with increasing E;, /Ny ), and so it can be said that It
and BER/FER move together.

The curves are grouped according to block size and code
rate, i.e. the K = 4096, R = 4/5 configurations of ARTMO,
ARTMI, ARTM2, and ARTMI-NR are plotted together in Fig-
ure 19 (a), and so forth. In each sub-figure, there is a side-by-
side comparison of the native/punctured options, where we see
that using It,, = Itj,. (punctured option) can cut It,,, by as
much as a half. The motivation for grouping by block size and
code rate is that the values of It,,; are comparable across all
three modulation types when the code rate, block size, and
(surprisingly) BER/FER are held constant. For example, with the
K = 4096, R = 1/2 codes [Figure 19 (e)] for ARTMO, ARTM],
and ARTM2, respectively, we observed It,ys = {13.0,14.5,12.5}
when operating with a FER on the order of 107® under the native
option. At this same FER operating point for the K = 1024, R =
4/5 codes [Figure 19 (b)], we observed It,,; = {2.70,2.75,2.80}
for the respective modulations under the native option. In all
cases, the AR4JA-ARTMI-NR configurations (orange curves)
result in larger values of If,, and some cases many times the
respective punctured option (red curves).

The impact of Iti, = Itj,. on It,y is of particular interest for
ARTM2 due to the complexity of the 64-state trellis used in the
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FiGURE 17 | BER/FER curves for the 6 codes in Table 1 paired with ARTM1 (SOQPSK-TG) and (a) Itj,c = 1/native option, and (b) Itjoc = Itl’*0 /punctured option.
The BER/FER curves in (c) belong to the existing AR4JA-SOQPSK-TG pairing in the IRIG-106 standard [1].
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FIGURE 20 | FER Penalty Factor, X512 [Itmax ], for the K = 4096 codes with (a) R = 4/5, (b)

displayed in each sub-figure for easy comparison.

global SISO update. Thus, 1 < Ifjoc < If. can be viewed as a
means of addressing any complexity imbalance that might exist
between the SISO and LDPC updates. In [7] the use of It = It}
was shown to almost double the execution speed of the soft-
ware decoder for ARTM2. The check-node splitting puncturing
technique does introduce a slight “drag” on the global iterations
because the messages must propagate through the punctured
(non-transmitted) variable node in the decoder. This increases
It,yg by about 0.5 iterations over what it would be if the native
code were used with Itj,. = It},. on It (a pairing that is not
recommended).

To sum up, the primary benefits of the punctured option are
a (possible) speed-up in execution, coupled with the complete
elimination of undetected errors. If only Itj,c = 1 is of interest,
it is worth pointing out that Table 1 still recommends It . =
l/puncturing for the case of the K = 1024, R = 4/5 codes.
This is due to their small value of d};;, which may still lead to
infrequent undetected errors if puncturing is not used.

7.3| Maximum Global Iterations Per Code Word

We now turn to an important practical question: What is the
performance penalty if a hardware implementation is unable to

R =2/3,and (c) R = 1/2. Curves for the native/punctured options are

deliver a maximum number of global iterations of Ity = 512?
This question relates to the “peak to average” iteration problem
for LDPC codes and was explored in greater detail in our com-
panion paper [8], along with a real-time decoder architecture
that introduces a design tradeoft where a large value of Ity can
be achieved at the expense of decoder latency.

The analysis in [8] showed that our (impractical) simulations
using Itn.y = 512 can be used as a reference in answering the
“what if” question regarding the performance of the system
in Figure 10 for any value of It,,,x < 512. The key is simply
to maintain a histogram that counts the number of iterations
required to pass the parity check for each code word simulated.
We have already used this histogram data to plot It,, in Fig-
ure 19. The terminal value in the length-(512 + 1) histogram,
the endpoint, counts the number of instances where the decoder
“timed out” (i.e. Itym,x = 512 was reached) and a frame error
occurred. To answer the “what if” question for a smaller value
of Itmayx, we simply shorten the histogram to the desired length
of Itmax + 1, where the values in the reference histogram that
exceed our new Ity are lumped into the shortened endpoint.
This is because these instances would have been frame errors
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displayed in each sub-figure for easy comparison.

for the smaller value of Ity,x. Thus, the growth of the shortened
endpoint relative to the reference endpoint corresponds exactly
to the FER increase (or penalty factor) relative to the reference
FER. We denote the FER penalty factor as [8] X512 [ Itmax |, where
1 < Itmax < 512 is now treated as the independent variable or as
a design parameter.

Figure 20 shows Xs13[Itmax] as a function of Ity,, for the
K = 4096 configurations, and Figure 21 does likewise for the
K =1024 configurations; all 42 configurations are represented in
Figures 20 and 21, including the AR4JA-ARTMI-NR cases. The
penalty factor varies as FER diminishes with increasing E;, /Ny,
therefore it must be stated that the data in Figures 20 and 21
belongs to a reference FER operating on the order of 1078, i.e.
low FER.

For the longer block lengths (Figure 20), a value of Ity < 25
is sufficient to bring the curves for all LDPC-CPM configu-
rations into the picture. Although the range of penalty factors
displayed is quite large, maxing out at Xs;3[Ifmax] = 10* (four
orders of magnitude), the FER curves in Figures 16-18 are quite
steep for the longer block lengths. Therefore, this translates to a
SNR penalty of around 0.5 dB.

A similar informal analysis can be undertaken for the shorter

block lengths (Figure 21). A modest value of Itp,x < 20 brings
the penalty factor curves into the picture for all LDPC-CPM
configurations. However, because the FER slope in Figures 16-
18 is shallower for these cases, the SNR penalties will be larger:
approximately 0.5-1.5 dB. Thus, larger values of It,,,x may be
of interest for the shorter block lengths, which likely can be
supported in hardware.

In all cases, puncturing/Itj, . reduces the value of Ity,,x needed
to achieve a given penalty factor Xs;s[Ifmayx |, just as it reduces
It,vg in Figure 19.

And finally, the AR4JA-ARTMI-NR system also suffers from
the “peak to average” iteration problem. Although the nature of
the iterative loop is different, the AR4JA-ARTMI-NR configu-
rations generally require greater values of It,,,x than the LDPC-
CPM configurations in order to achieve a given penalty factor
X512 [Itmax] .

7.4| Comparison with SCCC-CPM

Serially concatenated convolutional codes (SCCCs) were ini-
tially considered in this study. This was primarily due to their
strong performance for the K = 4096, R = 2/3 pairing with
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ARTMI that was explored over a decade ago in [6]. The SCCC-
CPM system is essentially the same as Figures 1 and 10 where
the LDPC encoder (or decoder) is replaced by a convolutional
encoder (or decoder). We explored the use of the same R =1/2,
4-state (5,7) convolutional code that was studied in [6], where
puncturing is used to achieve the desired rate (R).

The SCCC-CPM approach was explored for all six combina-
tions of information block size and code rate in Table 1, paired
with all three modulation types of interest herein (ARTMO,
ARTM]1, and ARTM2). The BER/FER curves for these 18 SCCC-
CPM schemes are shown in Figure 22, where they are di-
rectly compared with the 18 LDPC-CPM schemes we have de-
scribed herein. Sub-figures (a), (b), and (c) pertain to ARTMO,
ARTM]I, and ARTM2, respectively. The primary drawback with
the SCCC-CPM schemes is the error floor that is clearly visible
for the R = 2/3 and R = 4/5 cases with K = 1024. This starts
to manifest itself at BER ~ 107°. There are some cases where
the SCCC-CPM option is superior to the LDPC-CPM option,
e.g. R = 1/2 for ARTMIL. However, for ARTM2, the SCCC-
CPM option is significantly worse in all cases. Different from
LDPC codes, a step-by-step design procedure to address these
deficiencies is lacking for SCCC-CPM. Based on these results,
SCCC-CPM was abandoned at an early stage in this study.

8 | CONCLUSION

This report gives a detailed description of a capacity ap-
proaching LDPC-CPM system for use in aeronautical telemetry.
This system is particularly applicable to ARTMO (PCM/FM) and
ARTM2 (ARTM CPM), although it was also studied for ARTM1
(SOQPSK-TG). A set of six distinct LDPC codes were designed
for (matched to) each of these CPM schemes, which is docu-
mented in greater detail in a companion paper [7]. The proposed
LDPC-CPM codes were shown to achieve coding gains on the
order of the existing AR4JA option in IRIG-106. Numerical
results quantifying the iterative behavior of the system were also
given, with expanded results available in another companion
paper [8]. In addition to describing these codes, this report
focused on all aspects of the receiver implementation, including
the LDPC decoder, the CPM SISO module, and parallelization
strategies for both.

The first half of the Appendix that follows contains addi-
tional background information on log-based soft processing.
The second half of the Appendix gives a comprehensive listing
of the random interleavers, parity check matrixes, and generator
matrixes referenced above.

APPENDIX
LOG-DOMAIN METRIC FUNCTIONS

The SISO module and the LDPC decoder in Figure 10 operate
on input/output data that can be interpreted as belonging to the
log domain. This section defines the exact and approximate for-
mulation of the max* operator, which is central to the operation
of the SISO module; and the min* operator, which is central to
the operation of the LDPC decoder.

We define the “log-based addition,” or “max star” operator as

maxx(a, b) = In(e® + e’) = max(a, b) + f(a - b) (49)

where max(a, b) is the simple maximum value between a and b
and the “correction term” is

f(x) = In(1+ e (50)

This operator is commutative: maxx(a,b) = maxx(b, a); as-
sociative: maxx(a, max*(b,c)) = maxx(maxx(a,b),c); and
its identity value is —oco: max*(—o0,a) = a. Because of these
properties, it can also be defined without ambiguity as operating
on more than two terms, i.e.

max~*{a; } (51)
ieT

When this computation is executed sequentially, i.e. in a loop,

the “running result” is initialized with the identity value and

then “accumulated” sequentially with each input value, a;.

Several reduced-complexity strategies are available for the
correction term, f(x). We will introduce these simplifications
along with a simultaneous discussion on scaling in order to facil-
itate integer (fixed point) implementation. Let ¢ = maxx(a, b),
let S be a scale factor, and let C = Sc, A = Sa, and B = Sb. It
follows that C = S max«(a, b) = max(A, B) + S - f((A - B)/S).

The first reduced-complexity strategy is to discard the correc-
tion term and use only the simple max in the place of max«. In
addition to its computational simplicity, it is also insensitive to
scale, including any fixed-point scale (i.e. §) and also the scale
factor \/E;L./2 in (21). Therefore, the “simple max” strategy
avoids the requirement of estimating the signal energy (E;) and
the noise power spectral density (Nj).

The second reduced-complexity strategy is to pre-compute
the values of S - f(X/S) for integer values X = Sx, round the
resulting values to the nearest integers, and store these in a LUT
indexed by X. For example, for S = 8, a length-22 LUT is all that
is required to store the quantized values of S - f{(X/S).

The third reduced-complexity strategy is to approximate S -
f(X/S) with the piecewise function [2, Fig. 19]

-0.375|X| + 0.6875S  |X| < 1.0S
fs(X) = {-0.1875/X| + 058 1.0S < |X]| < 2.625S
0 otherwise

(52)

which is easy to implement using combinatorial logic and inte-
ger input/output. When the arguments to max* are quantized,
and/or when S - f(X/S) is quantized or approximated with (52),
then max* remains commutative but is no longer associative,
and so the order of operations in (51) can be significant.

We define the “log-hyperbolic-tangent,” or “min star” opera-
tor as

minx(a, b) = 2tanh™ (tanhg -tanh g) (53)

= sgn(a)sgn(b)[min(|a b|)
+f(lal + [b]) - £(|a] - [b])]

where min(a, b) is the simple minimum value between a and
b and sgn(-) returns +1 when its argument is non-negative
and -1 otherwise. The formulation in (53) has severe practical
limitations in a hardware implementation and is thus provided
only as a definition and should never be used. As with maxx,
min~ is commutative and associative, so

>

(54)

min«{a;} (55)
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can be defined without ambiguity, where the identity value is
+oo. The above discussion on reduced-complexity and quan-
tization strategies for (50) are equally applicable for the two
“correction terms” in (54). Notably, the “simple min” strat-
egy is insensitive to the scaling of the inputs. Also, quantiza-
tion/approximation wipes out the strict associativity of minx.

APPENDIX
LOG-DOMAIN PROBABILITY MASS FUNCTIONS (PMFs)

Consider a random variable u that is drawn from a binary
alphabet, u € {0,1}. The probability mass function (PMF) of u,
P(u), consists of two non-negative values P(u = 0) and P(u = 1)
that satisfy the normalization constraint P(u = 0)+P(u =1) =1,
which means that the PMF is fully understood if one value or the
other is given. As such, a convenient way of expressing a binary
PMEF is with a single value called an L-value, which we define as

P(u=0)

AMu)=ln—F=p(u=0)-p(u=1)

P(u=1) (56)

where the lower-case p(u) denotes the “log-domain” PMF that
is obtained by taking the natural log of each element of the
original “linear-domain” PMF, P(u). We define the L-value with
P(u = 0) in the numerator because it avoids frequent negation
operations when using the minx operator (54) in the LDPC
decoder. Although we have followed the universal convention
that a linear-domain PMF must be normalized so that it sums
to unity, the L-value would arrive at the same value even if an
arbitrary normalization were chosen (e.g., “the PMF must sum
to the positive value C”), because such a scale factor simply
cancels when the ratio (or subtraction) is taken in (56). The L-
value notation includes u, but u does not index anything because
the L-value is a single value, and so it serves only to designate
the binary random variable to which the L-value belongs (for
the PME, u is needed as an index for the multiple terms in the
PMF). In other contexts, we will add a sequence index, and/or
a designation to indicate whether the L-value is an a priori
(designated as “I” for input) or a posteriori (designated as “O”
for output). For example, ;(u;1I) is the a priori L-value for u;,
and the corresponding log-domain PMF is {p; (u;1)}!_,

As (56) indicates, an L-value can be obtained if the PMF is
known (regardless of the log or linear domain of the PMF). The
reverse is also true, i.e. if an L-value is known, then the log-
domain PMF can be “tentatively” expressed as

p(u=0)=+A()/2,  p(u=1)=-A(u)/2

if the normalization does not matter, because such a formulation
preserves the “spread” (or difference) between the two PMF
points in the log domain (or the ratio in the linear domain).
This tentative “unpacking” of the L-value works just fine in
the SISO module because there are other points in the SISO
algorithm where normalization can be performed if needed. If
the normalization matters, then the “final” log-domain PMF is
obtained as

p(u=0)=+A(u)/2-c, plu=1)=-AMu)/2-c¢

which sums to unity when expressed in the linear domain, where
the normalization term ¢ = max(+A(u)/2,-A(u)/2) makes

(57)

(58)

use of the maxx operator defined in (49). Inserting (58) back
into (56) emphasizes the fact that L-values are “self normalized”

Although an L-value is merely a single number, it has great
intuitive value. Its sign, or sgn(A(u) ), serves as a “hard decision”
(maximum likelihood decision) on the underlying random vari-
able u. Its magnitude, or |A(u)|, characterizes the reliability, or
confidence, of this decision. Consider the variable

u(u) = ad(u)

where « is a positive and perhaps unknown constant. The sign,
sgn(u(u)), or “hard decision,” of this variable is identical to that
of the L-value it is derived from. Although & may be unknown,
if the underlying random variable u is part of a larger sequence,
then the magnitude |u(u)| remains useful in identifying the
relative reliability of the hard decisions over this larger sequence.
As such, we refer to (59) as a relative reliability (RR).

A fundamental difference between L-values and RRs is that L-
values are directly linked to PMFs, and this link is broken for RRs
because of the scale factor « and the nonlinearity of converting
to and from back and forth from the log domain. We have
already discussed the insensitivity to scale of the “simple max”
and “simple min” approximations to (49) and (54), respectively.
If the precise scale factor \/E;L./2 in (21) is not known, then
the demodulator/decoder can still operate effectively using RRs
by employing the “simple max” and “simple min” approxima-
tions. Such a reduced-complexity architecture is attractive due
to its streamlined metric computations and its avoidance of
estimators for the signal energy (E;) and noise power spectral
density (Np). The performance penalty for such an architecture
is surprisingly modest, on the order 1.0 dB or less depending on
the modulation scheme, code length, and block rate.

We will no longer make a major distinction between L-
values and RRs, because in terms of our development, they are
more similar than they are different. Thus, A(u) and u(u) are
used interchangeably in almost every instance in the demodula-
tor/decoder. The only exception to this rule is when the “correc-
tion terms” are used in (49) and (54), which require that the pre-
cise scale factor \/E;L./2 in (21) is both estimated and applied
prior to decoding. As such, Figure 10 is labeled exclusively using
A(u). A version of Figure 10 could be drawn with all instances
of A(u) being replaced by u(u), with the understanding that the
“simple max” and “simple min” approximations are used within
the SISO module and LDPC decoder, respectively.

We now consider the case of a random variable U that is
drawn from an M-ary alphabet, U € {0,1,..., M — 1}, where
M = 2" There is a one-to-one relationship between the integer
value U and a binary n-tuple (vector) u = [ug, . .., un,_1] 7. This
U < urelationship is given by

(59)

no—1
U=U(u)= ) 2"y, (60)
i=0
which places 1 in the role of most-significant bit (MSB) and
Uy,—1 in the role of least-significant bit (LSB). This relationship
also defines a set of “inverse” functions, u;(U), 0 < i < ng -1,
that return a binary value u;(-) € {0,1} for the i-th bit position
for given integer value U.
The PMF of U in the linear domain is {P(U)}? ) and is
normalized so that it sums to unity. The PMF of the binary
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element u;, 0 < i < ny — 1, denoted as P;(u), can be obtained
by marginalizing P(U) like so:

Pi(u)= Y,

U:ui(U)=u

P(U), 0<i<ny-1 ue{0,1} (61)

where {U : u;(U) = u} denotes the set of U values such that
u;(U) = u. Similarly, the PMF of U can be obtained from the
binary PMFs belonging to u via the operation

ng—1
P(U) =[] Pi(ui(U)), Ue{0,1,...,M~-1} (62)
i=0
As was done previously, the log-domain PMFs use lower-case
notation, and so {p(U) }?'2} denotes the log-domain PMF of U,
and p;(u), 0 < i < ng — 1, denotes the log-domain PMF of the
binary element u;. The unnormalized (or “tentative,” to use our
previous terminology) log-domain counterparts to (61) and (62)
are, respectively,

pi(u) = Umz(ig; {p(U)}, 0<i<ng-1,ue{0,1} (63)

and
P(U)=n§pi(ui(U)), Ue{0,1,...,M—-1}  (64)
_ ”i) ar(ui(U))Ai(u)/2, (65)
= —[A(w)]"az(u)/2 (66)

where a,(-) is the binary antipodal function from (3), which
operates element-by-element on its vector input and returns
an output of the same size, and A(u) = [Ag,...,A,,1]" is an
no-tuple (vector) of L-values belonging to u. In the event that
normalized versions of these log-domain PMFs are desired, the
max~* can be taken of the entire unnormalized PMF and the
result can then be subtracted from each PMF value, as shown
in (58). The L-value of the binary element u; is

Ai(u) = pi(u=0) - pi(u=1)
{p(U)} = jmaxs {p(U)}

(67)
(68)

maxx
U:u;(U)=0

and, again, this operation “self normalizes” such that it is insen-
sitive to the normalization status of the log-domain PMFs that
feed into it. The above relationships for M-ary PMFs are written
in general terms and are thus valid for the special case of M =2
(binary), where U = u and previous equations were given.

We have developed notation that distinguishes between L-
values, A(u), and RRs, (1), but we will not bother to do so for
log-based PMFs and their “relative reliability" counterparts. Suf-
fice it to say that when the log-domain scaling is unknown, we
can use p(u) in place of A(u) in (63) through (68) but we must
also use max in place of maxx. The resulting log-domain “PMFs”
are no longer exact in their relationship to probability (i.e. they
should not be converted to the linear domain); however, as with
p(u), these “PMFs” retain much of their intuitive value. In fact,
these are the very differences between the BCJR algorithm and
the Viterbi algorithm (VA). Whether formulated in the linear or
log domain, the original BCJR algorithm and the more-general
SISO algorithm work with exact a priori PMFs and/or L-values

as inputs, use sum-product operations or max*-sum operations
(depending on the domain), and produce exact a posteriori
probabilities (APPs) as outputs. On the other hand, the VA,
“max log” SISO, and soft output VA (SOVA) [24] work with log-
domain inputs where the scaling is mostly irrelevant (aside from
quantization considerations), use max-sum operations, and, in
the case of the SISO and SOVA, produce soft outputs that are
consistent with the (possibly unknown) scale of the inputs and
these soft outputs are very useful in downstream processing.
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APPENDIX
INTERLEAVING TABLES FOR THE K =1024 (“1K"”) CASE

Interleaving Table for K = 1024, R = 4/5, N = 1280

The following list of numbers represents the interleaving table
for the K = 1024, R = 4/5 case, where the length of the interleav-
ing table is N = 1280. This “1k” interleaving table contains every
index in the set {0,1,...,1278,1279}, in random order, with the
constraint that no index is within § = 26 positions in either
direction of its sequentially adjacent indexes. The interleaving
table is indexed by i and is 7(i) =

1072, 327,112, 213, 413, 261, 156, 561, 361, 729, 973, 1182, 1136, 21, 815, 923, 761, 652,
500, 619, 73, 297, 1257, 877, 1107, 692, 1227, 1068, 843, 443, 1001, 388, 203, 131, 269,
576, 1034, 338, 1167, 240, 968, 24, 471, 906, 934, 653, 525, 604, 98, 301, 783, 743,
1260, 1098, 713, 69, 873, 820, 433, 389, 172, 125, 685, 1131, 569, 1014, 242, 204, 982,
1194, 907, 463, 1046, 1162, 11, 640, 42, 298, 600, 508, 343, 951, 1277, 850, 791, 1233,
879, 76, 370, 538, 754, 700, 129, 1099, 1128, 161, 1013, 397, 259, 214, 1198, 1042, 917,
430, 46, 1070, 1157, 306, 3, 466, 605, 819, 496, 568, 965, 864, 635, 88, 691, 356, 662,
731, 143, 1003, 1123, 529, 260, 1250, 1216, 181, 925, 390, 50, 893, 1037, 429, 17, 1089,
212, 1172, 302, 832, 563, 470, 593, 694, 329, 97, 793, 665, 758, 971, 1145, 359, 630,
1118, 248, 1237, 510, 861, 173, 275, 64, 136, 393, 1010, 728, 1086, 915, 1278, 219, 480,
698, 453, 316, 1202, 10, 785, 545, 668, 954, 1160, 423, 366, 1116, 92, 518, 1039, 589,
1245, 634, 869, 153,120, 1009, 262, 53, 826, 1272, 220, 755, 926, 455, 706, 1087, 184,
25,799, 897,1208, 667, 323, 422, 375, 294, 1165, 586, 1058, 528, 953, 133, 1008, 866,
263, 67, 618, 1135, 1259, 759, 481, 452, 722, 171, 33, 817, 210, 1197, 647, 99, 788, 1093,
674, 1225, 358, 412, 537, 928, 137, 313, 580, 273, 958, 616, 1040, 875, 990, 1263, 1148,
245, 462, 60, 740, 704, 196, 168, 30, 493, 796, 677, 1187, 1119, 106, 420, 1071, 1223,
836, 557, 523, 962, 637, 280, 322, 1011, 140, 603, 372, 450, 863, 757, 709, 58, 252,
1151, 485, 901, 807, 1038, 4, 206, 416, 1186, 86, 673, 1269, 1121, 957, 633, 1219, 291,
341, 995, 565, 834, 385, 532, 592, 727, 766, 874, 257,157, 502, 795, 1094, 19, 185, 473,
1173, 1036, 116, 1273, 664, 223, 946, 80, 292, 349, 991, 427, 1244, 1065, 824, 1126,
562, 711, 750, 878, 148, 911, 527, 251, 320, 28, 607, 468, 387, 1174, 790, 187, 1033, 663,
57,107, 499, 969, 1201, 352, 1077, 1246, 1130, 942, 822, 414, 1276, 726, 1000, 862,
548, 697,145, 27, 225, 278, 305, 613, 583, 178, 891, 786, 648, 498, 1159, 1207, 54, 101,
1045, 1241, 1096, 952, 365, 1268, 459, 398, 821, 725, 979, 142, 12, 859, 267, 526, 752,
596, 310, 192, 1018, 690, 912, 1156, 646, 230, 426, 789, 495, 1192, 944, 65, 1230, 339,
1258, 1081, 827, 1053, 458, 150, 984, 37, 282, 885, 718, 578, 856, 109, 183, 396, 617,
309, 651, 913, 222, 792, 1026, 255, 1163, 1215, 519, 546, 1095, 751, 1242, 70, 490, 941,
454, 1125, 7, 139, 588, 707, 1271, 180, 421, 985, 1060, 848, 377, 876, 621, 284, 1025,
231, 654, 332, 1176, 539, 760, 36, 66, 1235, 810, 919, 111, 460, 1146, 579, 1090, 147,
1, 683, 190, 966, 1204, 487, 381, 998, 264, 411, 1117, 860, 351, 1055, 1267, 631, 542,
319, 733, 75, 221, 787, 1239, 104, 889, 35, 1169, 582, 162, 682, 439, 943, 1199, 193, 828,
504, 250, 135, 286, 999, 399, 353, 1137, 1108, 533, 1031, 632, 738, 0, 63, 781,108, 1062,
1252, 1171, 899, 577, 318, 442, 705, 1217, 967, 868, 241, 475, 166, 823, 938, 285, 505,
31, 195, 666, 550, 391, 1142, 1028, 772, 115, 745, 622, 1075, 1251, 77, 333, 903, 587,
696, 988, 1220, 1106, 425, 233, 855, 1177, 947, 163, 489, 517, 202, 277, 394, 1133, 364,
794, 16, 765, 122, 1030, 1074, 615, 457, 555, 79, 916, 649, 1265, 699, 326, 1228, 829,
239, 1002, 1190, 948, 491, 735, 279, 407, 200, 1134, 872, 371, 777, 158, 114, 45, 585,
6, 1052, 81, 620, 456, 904, 1092, 547, 702, 809, 337, 837, 234, 1015, 1234, 736, 655,
1196, 970, 520, 486, 410, 1270, 272, 113, 40, 775, 870, 1161, 167, 574, 68, 2, 308, 446,
1054, 1097, 900, 380, 814, 601, 237, 1127, 1024, 350, 716, 940, 543, 1214, 409, 207,

477,124,1243, 629, 276, 41, 981, 769, 179, 684, 572, 1056, 85, 867, 1185, 315, 808, 511,
8, 1144, 835, 1110, 945, 918, 1027, 355, 400, 440, 474, 232, 734, 644,138, 44, 611, 287,
176, 1232, 997, 556, 686, 83, 884, 1057, 1264, 506, 1193, 324, 1138, 774, 960, 110, 9,
406, 806, 932, 1085, 379, 847, 476, 739, 434, 283, 164, 246, 656, 1221, 209, 78, 612,
886, 541, 689, 507, 336, 48, 1122, 575, 1041, 959, 123, 797, 13, 1175, 930, 1274, 1084,
464, 744, 839, 363, 152, 717, 989, 201, 424, 627, 902, 1222, 660, 271, 94, 512, 236,
62, 1048, 307, 560, 1111, 395, 871, 1021, 591, 1076, 1155, 779, 1183, 1262, 748, 844,
344,127, 949, 445, 693, 170, 1229, 5, 908, 650, 509, 623, 228, 478, 61, 551, 281, 373,
314, 90, 994, 1154, 1029, 1101, 1188, 753, 880, 418, 1067, 34, 121, 811, 838, 584, 1279,
695, 346, 909, 661, 224, 253, 784, 515, 1238, 194, 544, 723, 624, 975, 84, 1005, 296,
1205, 1120, 451, 1150, 1079, 405, 882, 26, 846, 1044, 595, 376, 117, 328, 676, 244, 151,
805, 773, 931, 483, 1254, 514, 963, 559, 712, 56, 993, 1189, 642, 289, 436, 746, 1104,
191, 894, 1218, 841, 87, 608, 1147, 119, 1047, 218, 15, 146, 802, 680, 348, 247, 392, 492,
536, 929, 317, 1017, 983, 55, 715, 1253, 419, 1091, 581, 770, 890, 1195, 742, 842, 186,
1049, 118, 614, 449, 645, 149, 91, 1153, 216, 384, 345, 23, 243, 482, 679, 986, 939,
295, 552, 1240, 1083, 417, 771, 883, 1112, 801, 1275, 833, 1020, 599, 444, 1050, 1184,
132, 732, 165, 1213, 199, 20, 258, 472, 378, 74, 501, 321, 570, 914, 961, 639, 288, 408,
1082, 1132, 678, 782, 1023, 853, 1247, 441, 610, 1181, 1051, 155, 747, 126, 229, 189, 710,
38, 256, 369, 887, 534, 497, 71, 1209, 976, 564, 818, 936, 669, 303, 342, 1143, 1006,
1113, 465, 432, 1261, 1180, 849, 1080, 638, 737, 105, 141, 1035, 780, 217, 602, 513, 14,
895, 401, 978, 540, 266, 174, 293, 933, 571, 367, 1007, 812, 49, 1124, 708, 1224, 335,
1255, 857, 1191, 1064, 103, 672, 467, 643, 431, 130, 609, 208, 1164, 756, 905, 404,
254, 535, 159, 980, 937, 803, 299, 1129, 368, 47, 567, 330, 1032, 1102, 1236, 503, 93,
701, 1066, 1206, 845, 598, 461, 1168, 227, 197, 671, 415, 776, 910, 749, 626, 955, 813,
1141, 383, 987, 154, 881, 51, 334, 1105, 270, 18, 96, 1069, 524, 300, 558, 597, 719, 469,
235, 1203, 854, 687, 1019, 1248, 428, 658, 182, 1140, 825, 764, 1170, 935, 898, 382,
128,1103, 974, 625, 354,1063, 52, 304, 22, 89, 724, 531, 211, 566, 865, 1210, 688, 798,
484,594, 265,177,1012, 830, 1178, 922, 386, 659, 762, 1114, 892, 357,1043, 964, 628,
39, 82, 448, 521, 134, 205, 1249, 1073, 554, 721, 325, 479, 1149, 290, 1212, 1004, 831,
924, 169, 675, 590, 778, 1109, 362, 238, 896, 972, 858, 636, 43, 102, 516, 437, 1179,
72,1078, 703, 553, 331, 730, 268, 1152, 1266, 1022, 403, 175, 1226, 670, 927, 767, 360,
804, 226, 992, 852, 1115, 144, 641, 956, 438, 522, 488, 95, 1061, 1088, 549, 29, 311,
888, 1158, 606, 714, 59, 274, 1211, 920, 198, 768, 741, 340, 996, 1256, 816, 851, 681,
950, 435, 160, 374, 494, 1059, 402, 530, 100, 573, 312, 1139, 1100, 32, 1166, 249, 1200,
921, 188, 215, 763, 720, 977, 1016, 347, 840, 1231, 800, 447, 657.

Interleaving Table for K = 1024, R = 2/3, N = 1536

The following list of numbers represents the interleaving table
for the K = 1024, R = 2/3 case, where the length of the interleav-
ing table is N = 1536. This “IK” interleaving table contains every
index in the set {0,1,...,1534,1535}, in random order, with the
constraint that no index is within S = 28 positions in either
direction of its sequentially adjacent indexes. The interleaving
table is indexed by i and is 7(i) =

1387, 953,1255, 635, 1050, 157, 1183, 422, 1316, 844, 917, 781, 669, 197, 1492, 235, 374,
315, 1000, 1142, 1420, 1534, 455, 60, 1108, 486, 97, 1218, 597, 282, 1450, 6, 882, 1357,
1057, 564, 425, 812, 1266, 168, 702, 778, 666, 344, 214, 852, 636, 129, 1146, 527, 947,
1407, 246, 1097, 46, 485, 313, 1022, 1182, 1488, 988, 1443, 382, 1362, 733, 602, 83,
281, 412, 1289, 795, 1252, 453, 690, 184, 557, 909, 152, 122, 858, 1211, 1517, 251, 54,
504, 347, 1144, 764, 1408, 949, 1176, 645, 0, 1052, 989, 93, 297, 1471, 1368, 1102, 613,
218, 1277, 467, 807, 687, 896, 399, 576, 1322, 847, 1504, 140, 53, 721, 343, 501, 1133,
259,763, 1417, 436, 1196, 1069, 110, 1032, 22, 994, 1371, 616, 172, 928, 1533, 308, 530,
1465, 899, 559, 1292, 964, 1099, 211, 1338, 373, 689, 859, 1140, 792, 757, 469, 428,
1246, 254, 1425, 1047, 56, 125, 656, 1001, 161, 23, 934, 626, 589, 1466, 825, 1171, 1514,
1303, 1110, 1204, 1375, 215, 330, 855, 536, 288, 396, 696, 885, 1337, 493, 1271, 1415,
92,1081, 761, 459, 1004, 63, 365, 962, 1041, 164, 1477, 26, 1139, 803, 427, 921, 1238,
1377, 598, 840, 199, 265, 1199, 525, 683, 302, 1308, 1511, 558, 647, 725, 773, 1412,
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98, 886, 358, 983, 496, 1017, 951, 138, 388, 1273, 1072, 58, 429, 1126, 1164, 857, 1229,
220, 821, 1376, 187, 15, 277, 1305, 1513, 922, 632, 729, 699, 1339, 568, 1424, 667, 91,
491, 355, 309, 968, 1195, 1479, 1002, 789, 393, 531, 1147, 1114, 851, 236, 818, 1256, 441,
1033,1370, 202, 927,170, 1306, 1519, 605, 134, 1080, 45, 724, 470, 641, 1444, 888, 96,
973, 1210, 267, 566, 387, 1489, 326, 672, 754, 788, 843, 1276, 1178, 1046, 1012, 1352,
1, 191, 1410, 1143, 432, 512, 1524, 923, 611, 153, 40, 1451, 1112, 974, 71, 107, 221, 273,
874, 1222, 351, 316, 1490, 692, 1297, 556, 796, 663, 463, 380, 1003, 765, 1331, 1398,
1166, 1082, 409, 1040, 507, 1264, 20, 908, 185, 1436, 1366, 120, 223, 869, 727, 606,
336, 279, 1135, 1226, 694, 573, 79, 838, 447, 651, 1494, 1008, 1404, 1193, 1075, 965,
156, 533, 1260, 50, 931, 786, 498, 1349, 415, 219, 1453, 3, 372, 124, 1319, 612, 1149,
250, 341, 89, 877, 280, 679, 1118, 1042, 1414, 1203, 188, 577, 963, 732, 1240, 33, 454,
1290, 528, 311, 766, 993, 836, 413, 1369, 131, 378, 638, 607, 484, 932, 1087, 72,1502,
1462, 887, 686, 1401, 1054, 230, 1165, 797, 264, 189, 723, 1329, 1430, 349, 1234, 444,
539, 1286, 317, 39, 996, 758, 1132, 1359, 592, 625, 160, 480, 414, 384, 90, 1092, 842,
1509, 659, 893, 1198, 130, 1030, 510, 811, 260, 1326, 193, 1447, 1418, 715, 9, 935, 1480,
1281, 971, 769, 579, 1169, 43, 159, 1355, 1250, 306, 431, 356, 543, 1528, 658, 870, 1116,
477,1039, 1386, 247,123, 819, 1313, 210, 1441, 624, 392, 506, 94, 706, 1491, 580, 1284,
1191, 2, 1006, 740, 938, 977, 1345, 547, 1236, 154, 278, 350, 472, 1125, 1091, 55, 1389,
677,831,203, 1442, 634, 782, 865, 1523,1062, 394, 905, 1160, 99, 437, 243, 581, 1483,
987, 950, 1354, 1291, 1247, 1016, 17, 532, 149, 299, 747, 716, 1194, 473, 820, 181, 1119,
1323, 64, 1452, 1405, 860, 395, 360, 655, 1049, 1521, 119, 596, 981, 919, 233, 502, 1078,
1484, 12, 952, 438, 1013, 1361, 774, 1237, 468, 270, 1170, 685, 830, 186, 720, 42, 563,
151, 1269, 1409, 1445, 637, 307, 77, 603, 872, 342, 106, 499, 1530, 1084, 1320, 1495,
1128, 216, 1200, 4, 449, 800, 1031, 377, 984, 955, 671, 1353, 920, 719, 567, 1249, 756,
1382, 1463, 292, 262, 408, 889, 1162, 328, 513, 117, 839, 1413, 37, 80, 1130, 196, 147,
478,1522, 614, 1068, 1321, 1019, 375, 231, 1217, 940, 793, 713, 1282, 574, 7, 644, 1363,
261,982,759, 544, 678, 301, 1478, 907, 68, 1400, 863, 1106, 445, 116, 1448, 1187, 1518,
1067, 182, 346, 1151, 1314, 146, 390, 1248, 38, 591, 718, 1350, 503, 213, 985, 767, 271,
643, 1481, 936, 898, 1394, 808, 1018, 300, 1098, 434, 861, 538, 1058, 1208, 109, 464,
70, 359, 1174, 1526, 24, 673, 141, 728, 1426, 402, 570, 500, 209, 1340, 772, 1287, 978,
897, 1396, 1496, 310, 817, 268, 1253, 1090, 930, 174, 867, 1044, 1216, 448, 1158, 364,
239, 540,108, 631, 44,1434, 401, 703, 1532, 1365, 771, 737,1324, 1122, 1293, 992, 303,
1487, 492, 668, 961, 1251, 1085, 5, 171, 1220, 881, 814, 1181, 926, 337, 553, 442, 257,
35, 1429, 1048, 587, 76, 115, 206, 709, 1372, 621, 752, 366, 1310, 1476, 471, 1137, 289,
505, 1005, 400, 176, 1261, 1228, 822, 876, 1077, 332, 144, 242, 552, 1419, 32, 913, 790,
82, 1506, 1184, 664, 967, 608, 695, 738, 430, 1035, 1449, 1155, 1302, 514, 1346, 369,
1257, 1225, 293, 1383, 177, 338, 1086, 833, 114, 551, 217, 901, 143, 249, 791, 1117, 1188,
954, 25, 615, 868, 1510, 750, 1023, 991, 435, 711, 404, 1298, 371, 57, 1437, 1472, 670,
1328, 1268, 291, 476, 95, 522, 1381, 1079, 322, 155, 1123, 126, 1192, 1221, 204, 1154,
639, 751, 593, 809, 555, 8, 710, 446, 942, 1516, 376, 1034, 853, 1344, 1458, 975, 1278,
681, 272, 1392, 903, 520, 241, 163, 327, 84, 1241, 1120, 1209, 483, 51, 617, 753, 1156,
13, 813, 646, 1422, 208, 370, 1500, 550, 416, 1029, 1335, 1070, 941, 680, 1384, 912,
990, 1288, 121, 582, 85, 1454, 1104, 519, 878, 150, 457, 240, 1254, 1189, 334, 810, 41,
628, 1416, 741, 296, 1503, 179, 383, 1026, 770, 420, 707, 490, 958, 1299, 1152, 554,
101, 594, 1061, 1111, 1379, 1474, 136, 892, 846, 1341, 353, 1223, 229, 524, 19, 657, 305,
1427, 59, 165, 1190, 1015, 768, 269, 385, 705, 426, 1505, 804, 1259, 466, 622, 1145,
572, 104, 135, 1045, 736, 1468, 1364, 854, 1230, 910, 1317, 511, 660, 1115, 222, 969,
542, 27,1185, 339, 298, 397, 66, 368, 1439, 1262, 1395, 698, 175, 609, 1525, 780, 1059,
1150, 111, 482, 824, 742, 929, 1325, 875, 451, 1109, 253, 1360, 561, 648, 529, 14, 1007,
1205, 335, 285, 142, 74, 389, 1245, 1406, 1473, 600, 1515, 712, 200, 105, 418, 1141, 966,
495,1071, 1036, 458, 1103, 862, 252, 1283, 1312, 654, 745, 894, 937, 321, 826, 537, 47,
1173, 290, 367, 1467, 585, 620, 684, 1529, 1438, 1380, 1136, 1224, 784, 976, 714, 461,
1055, 1021, 1105, 112, 173, 244, 406, 1311, 890, 943, 832, 744, 28, 1497, 320, 653, 62,
588, 1179, 546, 516, 276, 1356, 1390, 1258, 354, 1219, 1432, 456, 1073, 618, 1535, 1121,
801, 1461, 1011, 979, 212, 133, 849, 100, 391, 883, 700, 760, 424, 169, 1186, 1318, 730,
578, 312,509, 248,1499, 662, 1242, 16, 1388,1089, 924, 49, 1285, 545, 1351, 1134, 980,
361, 610, 834, 1446, 1014, 1051, 78, 783, 475, 423, 1206, 183, 735, 323, 884, 255, 1501,
1177, 649, 697, 145, 113, 945, 11, 286, 1397, 1332, 1088, 916, 381, 569, 1263, 1531, 1440,

619, 65, 226, 835, 1294, 419, 460, 1470, 743, 1231, 777, 806, 521, 324, 652, 1129, 871,
1009, 1180, 21, 1385, 1333, 287, 128, 190, 1065, 1100, 1508, 933, 590, 1265, 224, 693,
900, 1296, 363, 52, 465, 731, 1213, 87, 403, 497, 1456, 841, 1148, 258, 333, 1024, 1403,
1347, 10, 661, 166, 799, 1056, 1485, 1520, 956, 548, 584, 1101, 762, 925, 895, 132, 362,
630, 433, 717,1227,1275, 225, 479, 1455, 1309, 61, 856, 329, 1131, 1172, 1399, 398, 518,
294, 1027, 195, 18, 794, 1064, 997, 565, 676, 1343, 911, 1095, 946, 1498, 755, 1232,
708, 227, 450, 162, 1307, 102, 823, 48, 633, 1201, 1421, 866, 256, 340, 535, 604, 407,
1272,1159, 304, 1460, 494, 1066, 1373, 904, 1028, 1336, 1113, 674, 722, 995, 201, 944,
439,127,1304, 1243, 34, 1197, 829, 86, 640, 167, 560, 595, 1431, 348, 1527, 873, 1475,
481, 295, 526, 902, 245, 1161, 1037, 1074, 1348, 734, 205, 675, 972, 1378, 137, 1233,
704, 787, 1315, 827, 1274, 103, 73, 1107, 440, 586, 325, 939, 1457, 489, 1428, 284, 36,
237, 357, 1038, 1163, 627, 1486, 405, 192, 1202, 1076, 739, 1374, 534, 775, 701, 1235,
1295, 1334, 891, 805, 67, 1127, 998, 575, 845, 462, 1423, 960, 266, 30, 234, 318, 158,
1157, 118, 417, 1507, 194, 642, 386, 1060, 541, 776, 746, 1391, 1279, 1215, 906, 1459,
682, 816, 1020, 81, 601, 850, 1124, 474, 274, 352, 986, 1342, 232, 948, 1167, 139, 421,
180, 1093, 508, 1493, 571, 785, 29, 1411, 749, 1053, 1270, 1207, 880, 650, 1239, 319,
815, 918, 691, 1138, 1464, 1301, 75, 1010, 283, 957, 848, 1330, 1168, 238, 1083, 487,
411, 523, 779, 1512, 583, 726, 207, 1435, 31, 1367, 623, 1267, 452, 1402, 314, 914, 379,
148, 1214, 88, 688, 345, 1025, 864, 970, 1482, 275, 178, 1300, 1063, 1153, 1096, 828,
562, 517, 488,798, 748, 228, 1433, 629, 1244, 1358, 443, 1393, 599, 915, 1212, 69, 410,
331, 999, 879, 665, 959, 1469, 198, 1280, 1043, 1327, 1175, 1094, 549, 837, 515, 802,
263.

Interleaving Table for K = 1024, R =1/2, N = 2048

The following list of numbers represents the interleaving table
for the K = 1024, R = 1/2 case, where the length of the interleav-
ing table is N' = 2048. This “1k” interleaving table contains every
index in the set {0,1,...,2046,2047}, in random order, with
the constraint that no index is within S = 32 positions in either
direction of its sequentially adjacent indexes. The interleaving
table is indexed by i and is (i) =

481, 1871, 649, 430, 1099, 24, 964, 1054, 1659, 1156, 151, 216, 1829, 1234, 1612, 553,
325, 1559, 1289, 1991, 908, 1411, 1706, 1921, 1322, 1783, 1492, 807, 284, 74, 740, 694,
616, 1452, 872, 1357, 394, 491, 16, 436, 2044, 1749, 985, 1658, 217, 1181, 1089, 1887,
1230, 182, 110, 1850, 1038, 582, 1287, 1413, 1817, 654, 907, 947, 1621, 1569, 324, 1494,
1998, 531, 254, 1784, 818, 717, 289, 1460, 452, 1952, 1712, 863, 2037, 410, 1340, 1132,
61,1187, 498,1679, 14,112, 1233, 1867,1277,1001, 1036, 196, 591, 957,1630, 1079, 756,
354, 1410, 1514, 1826, 677, 919, 544, 1551, 713, 1765, 285, 236, 857, 1377, 403, 790,
1971, 160, 493, 1929, 1170, 1724, 1221, 1870, 1473, 459, 1312, 0, 1024, 124, 1649, 956,
2029, 1683, 1108, 598, 326, 1064, 644, 560, 1566, 195, 86, 913, 722, 1778, 685, 275,
1412, 873, 234, 1532, 816, 1359, 161, 1922, 1238, 1202, 1603, 1161, 1982, 41, 783, 477,
1462, 1304, 992, 1667, 2042, 596, 1858, 1078, 396, 359, 536, 1125, 909, 118, 437, 664,
1042, 948, 288, 219, 1701, 1517, 1567, 847, 323, 159, 1792, 706, 1378, 1928, 33, 1167,
1211, 771, 1748, 487, 1338, 1476, 1614, 1830, 77, 570, 370, 521, 1962, 625, 1864, 1009,
1100, 914, 126, 1419, 290, 1051, 1247, 1298, 974, 1527, 215, 822, 867, 666, 2009, 1789,
39, 418, 726, 1656, 1379, 467, 1332, 759, 1186, 1591, 257, 1756, 368, 1695, 1941, 1893,
532, 595, 1486, 1976, 628, 1117, 1152, 921, 1219, 109, 1018, 144, 1533, 214, 1842, 1418,
805, 1279, 2046, 426, 40, 293, 1075, 723, 860, 1631, 1372, 671, 1797, 1576, 260, 1703,
1914, 489, 1326, 366, 961, 623, 1484, 1746, 588, 2011, 1, 1154, 1964, 898, 530, 1519,
1239, 206, 1020, 1421, 1197, 408, 111, 449, 1856, 328, 53, 1069, 167, 1613, 853, 657,
1363, 1823, 817, 739, 1660, 1114, 1572, 969, 282, 1896, 363, 1283, 1702, 2001, 1457,
1330, 1939, 1515, 484, 903, 213, 551, 1180, 701, 1250, 11, 609, 60, 406, 145, 1031, 1402,
442, 1368, 1068, 96, 1824, 1773, 1618, 1138, 988, 855, 939, 794, 1582, 371, 327, 750,
1735, 659, 265, 1889, 1214, 479, 1699, 1934, 1999, 218, 549, 1448, 181, 1315, 30, 899,
405, 1102, 147, 708, 1404, 1535, 613, 1852, 1364, 1500, 842, 1779, 1022, 1579, 1255,
792, 2033, 746, 82, 1065, 1165, 283, 360, 497, 1736, 1205, 1901, 1973, 249, 1625, 952,
193, 448, 1309, 891, 49, 320, 1693, 1439, 556, 615, 1820, 653, 1386, 1522, 1937, 133,
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993, 1275, 1026, 1343, 725, 413, 1116, 1483, 798, 2034, 374, 760, 1242, 850, 1750, 266,
1866, 929,1578,1059, 886, 1652, 44, 307,191, 99, 1685, 483, 674, 587, 340, 1521, 1444,
1171, 1967, 1828, 528, 1300, 712, 1017, 1401, 1367, 636, 132, 1121, 782, 2028, 843, 965,
243,1884,1222,1723,1790, 402, 8, 1055, 883, 1257, 917, 48, 462, 1629, 316, 1926, 577,
749, 1562, 679, 508, 1474, 1596, 87, 1844, 361, 1395, 1324, 614, 130, 1126, 841, 2036,
1428, 967, 1528, 165, 1006, 251, 1738, 1074, 1677, 1039, 791, 890, 1994, 1891, 1777,
1217, 466, 548, 1176, 933, 12, 1930, 697, 661, 748, 1580, 93,1301, 353, 1264, 1468, 397,
1341, 1633, 593, 506, 298, 1124, 155, 1546, 856, 1719, 1833, 1019, 238, 1513, 203, 1076,
897, 2035, 1755, 1425, 1980, 1381, 786, 546, 977, 454, 691, 1868, 1213, 80, 1917, 25,
1465, 646, 421, 584, 1615, 369, 1164, 821, 1265, 139, 297, 1671, 1111, 1308, 1498, 336,
1704, 1793, 1021, 202, 1757,1950, 1058, 1835, 1414, 767, 474, 693, 1989, 904, 1573, 76,
983, 519, 1454, 2038, 432, 23, 655, 589, 1624, 1872, 241, 1268, 946, 277, 376, 1319,
728, 815, 1490, 1159, 1711, 1534, 1113, 343, 174, 1668, 1935, 1375, 1791, 1988, 1228,
1041, 773, 906, 470, 552, 69, 864, 1570, 991, 1431, 113, 1886, 1840, 239, 673, 1272,
1192, 592, 35, 825, 385, 1323, 1741, 718, 2027, 1081, 339, 188, 505, 1663, 1609, 1464,
1136, 1979, 635, 1373, 295, 1037, 1923, 787, 1705, 1544, 557, 1236, 868, 1781, 1423,
949, 1832, 440, 128, 9, 910, 1003, 63, 1295, 754, 2026, 594, 824, 1885, 695, 179, 1610,
252,503, 381, 1983, 1745, 1491, 304, 1365, 662, 1131, 1456, 1083, 1040, 337, 1676, 1331,
1568, 1208, 433, 1408, 141, 1940, 986, 540, 1282, 1809, 755, 1175, 1846, 806, 597, 45,
928, 1643, 246, 1894, 1710, 486, 707, 2024, 1518, 7, 1768, 1441, 645, 1034, 344, 1975,
303, 378, 1120, 1325, 1070, 870, 1405, 180, 1597, 525, 1931, 434, 978, 769, 1163, 1821,
122,1245, 1204, 1482, 1653, 1892, 1291, 1726, 231, 942, 492, 1857, 42, 1688, 565, 802,
710, 1449, 1531, 663, 83, 399, 1996, 310, 350, 1063, 600, 185, 2, 840, 1585, 1948, 1355,
1146, 889,1396, 764, 1798, 1103, 1906, 439, 134, 1619, 926, 1210, 962, 1747,1288, 1253,
2041, 696, 1845, 223, 658, 273, 526, 37,1536, 387,1035, 85, 617,1443,1002, 820, 1713,
1489, 1348, 1953, 1675, 779, 1122, 571, 338, 450, 1607, 136, 1802, 1919, 743, 1178, 1640,
1392, 187, 3, 1838, 2015, 1072, 1224, 287, 702, 1543, 488, 65, 395, 1297, 224, 524, 866,
1469, 1507, 1954, 639, 1700, 101, 1032, 349, 1763, 963, 1352, 832, 925, 143, 735, 1895,
599, 428, 1594, 1815, 28, 1084, 1198, 2012, 296, 1554, 690, 1655, 468, 186, 1426, 235,
777, 1139, 1280, 541, 1516, 877, 656, 1232, 1944, 73,1048, 1387, 1762, 502, 1977, 345,
384, 997, 602, 1334, 844, 1477, 1837, 115, 1105, 425, 1898, 279, 1571, 1720, 1661, 704,
1604, 154, 1140, 2018, 1271, 19, 1435, 539, 1189, 222, 1512, 927, 640, 770, 1060, 1961,
1769, 388, 482, 315, 1023, 1399, 845, 808, 351, 75, 982, 1470, 1816, 1855, 1899, 737,
255,1227,116, 1722, 1682, 1294, 1119, 178, 4, 1574, 1157, 1611, 896, 668, 516, 937, 590,
550, 1776, 1335, 1943, 1193, 2006, 775, 309, 854, 1415, 1066, 1505, 1459, 38, 72, 810,
247,1027, 1876, 1743, 730, 356, 1243, 142, 1669, 1818, 971, 1623, 391, 902, 1296, 1538,
465, 1147, 529, 936, 637, 1358, 2013, 1925, 1969, 1201, 579, 194, 308, 1587, 683, 1062,
803, 34, 1445, 1478, 765, 90, 1008, 1760, 852, 342, 1403, 1662, 1877, 1258, 259, 1811,
379, 1727, 727, 1628, 127, 464, 973, 423, 1112, 1307, 2030, 626, 573, 1362, 1918, 905,
1525, 1053, 1588, 1174, 171, 1997, 796, 91, 55, 761, 335, 1437, 208, 5, 1241, 1865, 830,
1764, 280, 699, 1681, 1799, 495, 944, 392, 1731, 995, 1129, 1299, 1645, 627, 427, 1339,
1946, 1907, 1550, 1182, 1045, 162, 1987, 1393, 795, 1479, 874, 1091, 762, 66, 199, 535,
834, 21, 1841, 2021, 580, 276, 240, 711, 472, 1698, 1753, 1215, 938, 1642, 1004, 129,
357, 412, 1267, 312, 1800, 641, 1162, 1602, 1430, 1383, 1530, 1346, 1882, 1942, 789,
1563, 58, 885, 168, 1485, 201, 1985, 569, 1090, 6, 1127, 1305, 2032, 267, 1694, 1728,
918, 1767, 703, 1648, 608, 1229, 533, 742, 1160, 648, 494, 1269, 460, 341, 1438, 95,
1849, 839, 51, 1196, 784, 1903, 1471, 170, 1043, 1370, 1955, 1540, 17, 1575, 996, 221,
1691, 567, 941, 688, 1333, 1077, 1780, 1733, 875, 271, 650, 1617, 1263, 407, 322, 603,
2019, 478, 104, 733, 364, 445, 1861, 70, 1212, 1151, 809, 1650, 774, 1030, 1951, 1388,
1508, 200, 1434, 153, 513, 700, 1115, 1583, 32, 1772, 1915, 1696, 953, 888, 261, 314,
1541, 846, 1344, 1810, 1259, 1990, 660, 607, 380, 79, 734, 1475, 469, 1306, 1639, 414,
2040, 1957, 1173, 564, 1729, 190, 1061, 1220, 1590, 1427, 1851, 29, 785, 1106, 149, 512,
970, 1547, 1775, 851, 901, 1687, 1913, 1380, 610, 333, 1510, 367, 227, 1463, 456, 1256,
1310, 409, 720, 94, 268, 1166, 665, 1050, 2002, 1634, 1012, 1839, 1223, 1345, 1098,
1875, 175, 517, 951, 1552, 780, 1734, 838, 1697, 559, 1599, 1429, 1771, 358, 317, 1806,
601, 1947, 138, 458, 1909, 724, 411, 1511, 59, 634, 245, 1155, 2025, 915, 105, 1262, 676,
1862, 1647, 881, 954, 1555, 1118, 1056, 799, 192, 278, 1194, 509, 1453, 26, 1011, 1394,
1316, 763,1970, 1795, 555, 714, 443, 1752, 1351, 1504, 836, 611, 398, 1924, 135, 62, 916,

226,2031, 1266, 318, 976, 1654, 878,1879,1094, 1141, 1608, 1218, 651, 272, 1442, 1407,
1690, 1029, 496, 1558, 1836, 561, 15, 1311, 176, 1766, 757, 441, 1487, 383, 1371, 1995,
1524, 814,709, 612, 106, 68, 321, 990, 230, 1927, 871, 1158, 1600, 1880, 1235, 270, 940,
1273, 1424, 1709, 1635, 1085, 1673, 1813, 537, 572, 184, 1744, 752, 1461, 20, 1389, 463,
1984,1349, 389, 2017, 829, 624, 1195, 980, 131, 1013, 672, 311, 869, 1313, 225, 89,1908,
920, 1246, 499, 1529, 1592, 1638, 1859, 56, 705, 1097, 1052, 1786, 346, 1737, 543, 578,
1400, 1135, 1960, 461, 2010, 758, 390, 631, 1436, 1016, 1199, 163, 1493, 861, 955, 1321,
300, 210, 1248, 1825, 501, 103, 828, 1678, 1564, 911, 1356, 64, 1782, 716, 1920, 1725,
575, 263, 347, 1863, 429, 1616, 18, 1142, 1067, 1992, 772, 647, 1284, 1209, 681, 981,
945, 1416, 1501, 2045, 158, 212, 504, 542, 876, 1015, 1101, 1577, 117, 1674, 1458, 306,
1317, 833, 1819, 1932, 365, 256, 1881, 732, 422, 1739, 1149, 2008, 1244, 1774, 1049,
1366, 781, 31, 698, 1207, 1968, 924, 633, 1499, 71, 1627, 1005, 972, 1092, 887, 1593,
1466, 150, 1537, 518, 827, 457, 1664, 1843, 1278, 292, 237, 108, 1432, 1153, 1933, 581,
1801, 400, 1730, 1390, 1883, 27, 1047, 329, 753, 930, 1337, 1981, 669, 362, 1191, 1225,
987, 1589, 619, 148, 538, 1503, 1110, 1553, 1632, 475, 800, 2022, 1680, 98, 264, 211,
1302, 715, 859, 1804, 1144, 1916, 1261, 1398, 10, 1853, 1716, 892, 416, 1447, 586, 1972,
1071, 1770, 313, 667, 622, 1347, 547, 943, 1183, 177, 989, 1644, 140, 1548, 92, 250,
352,1481, 47, 476, 2023, 849, 1936, 514, 1276, 1601, 1145, 1107, 1237, 1812, 744, 1902,
1433, 13, 1397, 1044, 1758, 689, 811, 882, 1978, 305, 558, 1860, 417, 605, 1360, 204,
1692, 81, 638, 1327, 1520, 1467, 248, 119, 515, 922, 2014, 1188, 1605, 473, 1254, 747,
994, 46, 1561, 169, 1028, 1785, 1422, 355, 813, 2047, 1900, 1137, 1827, 879, 1651, 1382,
435, 1082, 1958, 1689, 1292, 692, 1740, 606, 123, 220, 1329, 545, 652, 958, 401, 262,
302, 731, 1177, 36, 1502, 2007, 507, 1033, 999, 1216, 1440, 788, 183, 1822, 1128, 1788,
1549, 88, 446, 894, 1636, 1088, 1385, 1670, 1252, 1708, 1974, 1754, 574, 1888, 675,
404, 229, 1342, 629, 269, 719, 1488, 934, 2020, 848, 332, 1172, 1584, 1303, 125, 768,
173, 480, 1014, 1847, 1805, 54, 447, 527, 804, 1545, 1206, 1626, 1109, 1450, 1718, 1959,
1912, 979, 1251, 1374, 1073, 233, 568, 281, 912, 2039, 678, 1506, 2003, 1150, 865, 643,
1286, 1684, 120, 386, 156, 1761, 745, 330, 197, 1831, 604, 1417, 1598, 1185, 812, 1556,
1878, 1945, 510, 1451, 1721, 1336, 1249, 1093, 959, 1646, 78, 242, 1509, 900, 562, 419,
1057, 998, 1796, 1993, 670, 1134, 164, 121, 294, 1686, 453, 372, 862, 729, 766, 1376,
1557, 1409, 1184, 1285, 22, 522, 1897, 823, 1956, 1751, 1848, 1320, 334, 1620, 232, 630,
1480, 1096, 968,198, 585, 923, 1794, 1446, 2016, 1010, 1523, 100, 438, 157, 1657, 1231,
1715, 67, 1369, 1169, 778, 375, 500, 884, 738, 684, 291, 835, 1314, 1904, 1966, 1595,
1281, 1133, 258, 1854, 618, 1095, 960, 205, 1455, 1759, 566, 1542, 114, 431, 1025, 172,
1807, 1496, 1707, 2005, 1354, 331, 793, 490, 1190, 393, 43, 1641, 895, 751, 858, 1406,
1606, 1963, 680, 1270, 1890, 621, 1104, 274, 1318, 975, 1143, 534, 583, 207, 444, 935,
97,166, 1814, 1717,1472, 2043, 1565, 819, 1526, 319, 1361, 1200, 1666, 377, 57, 741, 880,
1420, 485, 1965, 687, 1874, 1274, 1080, 1910, 1622, 2004, 1148, 253, 1007, 620, 451,
415, 931, 1240, 137, 209, 1834, 523, 286, 576, 1046, 102, 1353, 826, 966, 1732, 1787,
1560, 1203, 52, 736, 776, 348, 1873, 1290, 1391, 1086, 1665, 682, 382, 1123, 1495, 642,
455, 244, 1911, 1000, 1168, 420, 1986, 932, 511, 299, 563, 107, 146, 1350, 1949, 1742,
837, 189, 893, 1586, 1803, 801, 50, 1539, 1260, 1293, 1869, 1384, 686, 721, 1637, 1226,
373, 1087, 1497, 228, 1130, 1179, 424, 1905, 632, 984, 520, 471, 301, 84, 1672, 1328,
1714, 2000, 1938, 152, 950, 1808, 1581, 554, 797, 831.
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PARITY CHECK MATRIXES FOR ARTMO (PCM/FM)

Parity Check Matrix for ARTMO with K = 1024 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 1024 and R = 4/5. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < Ly, where Ly = 143, and is L(1) =

32,9, 120, 137, 252, 345, 469, 540, 990, 1069, 1199, 9, 100, 139, 252, 348, 457, 516,
659, 972,1203, 10, 127, 234, 341, 472, 529, 906, 952, 983, 1037, 1193, 10, 115, 142, 253,
341, 451, 530, 602, 1100, 1187, 1246, 23, 16, 44, 201, 271, 366, 401, 470, 497, 546, 606,
638, 685, 731, 756, 772, 816, 869, 918, 944, 1019, 1071, 1149, 1170, 23, 10, 55, 81, 171,
316, 364, 415, 444, 490, 573, 606, 611, 646, 765, 793, 829, 858, 884, 943,1123,1203,
1239, 1272, 25, 72, 160, 198, 237, 264, 313, 379, 443, 488, 516, 567, 614, 664, 696,
704, 833, 871, 898, 1020, 1055, 1069, 1108, 1148, 1173, 1249, 25, 30, 36, 88, 109, 177,
199, 283, 311, 322, 406, 443, 650, 702, 712, 744, 782, 802, 854, 1013, 1028, 1071, 1119,
1154, 1232, 1256.

Parity Check Matrix for ARTMO with K = 1024 and R = 2/3
The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 1024 and R = 2/3. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < L}, where Ly, = 83, and is £(1) =
64, 5,10, 375, 1191, 1225, 1436, 5, 15, 1137, 1210, 1254, 1442, 6, 5, 317, 361, 1175, 1245,
1334, 6, 33, 831, 977, 1116, 1255, 1463, 8, 141, 509, 562, 604, 669, 934, 1030, 1363, 8,
82,223, 439, 543, 749, 881, 1055, 1519, 18, 126, 159, 210, 292, 323, 416, 498, 620, 660,

751, 823, 833, 927, 998, 1069, 1341, 1400, 1517, 18, 64, 128, 244, 279, 392, 506, 552,
608, 643, 740, 805, 875, 948, 988, 1108, 1305, 1352, 1480.

Parity Check Matrix for ARTMO with K = 1024 and R = 1/2

The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 1024 and R = 1/2. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < Ly, Where Lje, = 65, and is £(1) =

128, 3, 498, 1466, 1686, 3, 455, 899, 1672, 4, 498, 551, 1161, 1698, 4, 475, 664, 1749,
1808, 5, 248, 457, 1521, 1751, 1927, 5, 450, 813, 905, 1081, 1697, 16, 38, 197, 289, 293,

474, 608, 648, 768, 1110, 1173, 1300, 1456, 1654, 1657, 1806, 2011, 16, 10, 64, 148, 357,
586, 686, 825, 1015, 1119, 1204, 1280, 1298, 1599, 1772, 1824, 1972.

Parity Check Matrix for ARTMO with K = 4096 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 4096 and R = 4/5. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < Ly, where Ly, = 143, and is £(I) =

128, 9, 752, 1417, 1705, 1971, 2880, 3772, 4172, 4274, 4899, 9, 308, 687, 1410, 1718,
1943, 2817, 3716, 4301, 4945, 10, 1449, 1728, 1955, 2224, 2456, 2816, 3785, 4295, 4727,
4943, 10, 631, 756, 822, 1410, 1747, 2019, 2590, 2890, 3760, 4967, 23, 49, 197, 483,
1140, 1267, 1331, 1595, 1813, 2539, 2664, 2734, 3020, 3185, 3361, 3544, 3821, 3926,
4092, 4108, 4434, 4532, 4718, 5077, 23,12, 181, 294, 564, 908, 1149, 1643, 1899, 1931,
2060, 2430, 2460, 2657, 2752, 2973, 3119, 3262, 3415, 3657, 3871, 4462, 4503, 4756,
25, 181, 377, 411, 850, 994, 1256, 1365, 1539, 1700, 2109, 2180, 2360, 2694, 2824,
3255, 3398, 3481, 3634, 3847, 4010, 4105, 4545, 4630, 4818, 5034, 25, 67, 289, 402,
611, 878, 952, 1060, 1212, 1289, 1422, 1883, 2143, 2199, 2415, 2952, 3079, 3321, 3568,
3585, 4014, 4127, 4370, 4759, 4881, 5063.

Parity Check Matrix for ARTMO with K = 4096 and R = 2/3
The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 4096 and R = 2/3. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < Ljep,, where Lo, = 97, and is £(1) =

256, 5,997,1958, 4156, 5143, 6053, 5, 497,1796, 2439, 3988, 5158, 6, 366, 2757, 4105,
4948, 5170, 5888, 6, 403, 1795, 2482, 3101, 3733, 5895, 6, 205, 486, 1810, 4379, 5181,
5954, 6, 374, 2041, 3534, 5306, 5531, 5928, 27, 205, 547, 793, 1176, 1272, 1452, 1554,
1772, 2214, 2367, 2654, 2799, 2848, 2950, 3117, 3427, 3696, 3988, 4268, 4395, 4442,
4708, 5118, 5399, 5715, 5853, 5988, 27, 213, 424, 579, 672, 933, 1104, 1280, 1329, 1615,
2141, 2247, 2509, 2786, 2902, 3192, 3224, 3483, 3839, 4030, 4209, 4518, 4652, 4838,
5093, 5565, 5626, 5675.

Parity Check Matrix for ARTMO with K = 4096 and R = 1/2
The following list of numbers represents the parity check matrix,
H, for ARTMO (PCM/FM) with K = 4096 and R = 1/2. This list
follows the sparse representation of H defined in Section 3.2. The
list is indexed by 0 < I < Ljep,, where L, = 65, and is £(1) =

512, 3,1462, 4598, 5164, 3, 4252, 5466, 8151, 4, 2144, 4484, 5462, 7363, 4, 95, 4264,
5170, 6026, 5, 1308, 1950, 4293, 5056, 5599, 5, 531, 4232, 5272, 6599, 8146, 16, 371,
631, 1047, 1684, 2157, 2560, 2822, 3072, 3519, 3920, 4350, 4861, 6062, 6400, 7061,
7449, 16,175, 998, 1945, 2141, 3011, 3496, 3584, 3769, 5098, 5534, 5998, 6332, 6656,
7129, 7533, 8051.
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PARITY CHECK MATRIXES FOR ARTM1 (SOQPSK-TG)

Parity Check Matrix for ARTM1 with K = 1024 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTM1 (SOQPSK-TG) with K = 1024 and R = 4/5. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ljen, where Lje, = 143, and is
L(l) =

32,11, 51, 326, 371, 647, 741, 868, 911, 955, 1035, 1090, 1173, 11, 43, 337, 374, 401, 644,
750, 890, 918, 939, 1118, 1166, 11, 43, 333, 381, 622, 670, 754, 874, 944, 1115, 1155,
1221, 11, 36, 346, 363, 647, 745, 894, 919, 994, 1093, 1122, 1157, 22, 28, 69, 119, 156,
189, 207, 232, 300, 337, 361, 445, 471, 483, 684, 712, 786, 821, 837, 1047, 1063, 1217,
1256, 22, 14, 67, 150, 177, 249, 269, 406, 454, 521, 547, 576, 735, 750, 789, 802, 834,
968,1009, 1082, 1176, 1205, 1252, 23, 19, 127, 188, 195, 248, 266, 290, 440, 457, 493,
522, 561, 584, 615, 696, 782, 990, 1050, 1077, 1102, 1148, 1207, 1221, 23, 81, 124, 148,
222,278, 301, 394, 434, 486, 520, 549, 576, 611, 650, 681, 732, 806, 847, 990, 1015,
1122, 1215, 1275.

Parity Check Matrix for ARTMI1 with K = 1024 and R = 2/3

The following list of numbers represents the parity check matrix,
H, for ARTM1 (SOQPSK-TG) with K = 1024 and R = 2/3. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ly, where L1, = 91,and is £(1) =

64, 6, 172, 387, 653, 1075, 1097, 1449, 6, 168, 424, 1054, 1161, 1281, 1419, 7, 169, 397,
689, 788, 1067, 1313, 1447, 7, 184, 424, 662, 1072, 1343, 1386, 1470, 11, 78, 261, 323,
409, 545, 641, 935, 999, 1114, 1253, 1326, 11, 19, 210, 507, 611, 693, 753, 843, 1035,
1170, 1305, 1487, 17, 0, 124, 243, 287, 346, 504, 513, 577, 732, 829, 835, 937, 1009,
1125, 1252, 1365, 1511, 17, 10, 115, 229, 305, 349, 487, 520, 623, 707, 769, 841, 934,
986, 1184, 1248, 1373, 1477.

Parity Check Matrix for ARTM1 with K = 1024 and R = 1/2

The following list of numbers represents the parity check matrix,
H, for ARTM1 (SOQPSK-TG) with K = 1024 and R = 1/2. This
list follows the sparse representation of H defined in Section 3.2.
Thelist is indexed by 0 < I < Ly, where Ly, = 65,and is £(1) =
128, 4, 1097, 1133, 1383, 1839, 4, 12, 1068, 1812, 1867, 5, 568, 1064, 1313, 1597, 1810,
5, 41, 455, 795, 1086, 1917, 6, 384, 514, 680, 1090, 1202, 1577, 6, 189, 441, 552, 797,

1677, 1863, 13, 200, 295, 323, 710, 997, 1080, 1153, 1375, 1506, 1532, 1549, 1675, 1927,
13, 21, 146, 333, 742, 871, 949, 965, 1172, 1521, 1731, 1886, 1951, 1978.

Parity Check Matrix for ARTM1 with K = 4096 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTMI (SOQPSK-TG) with K = 4096 and R = 4/5. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ljen, where Liep = 143, and is
L(1) =

128, 11, 244, 455, 542, 669, 2123, 2195, 2850, 3133, 4186, 4346, 4712, 11, 177, 424,
621, 706, 2148, 2289, 2852, 3025, 3126, 4132, 4630, 11, 201, 472, 576, 726, 2064,
2288, 2391, 2870, 3140, 3661, 4612, 11, 210, 497, 576, 684, 2163, 2228, 2765, 2889,
4211, 4654, 4804, 22, 78,189, 834, 926, 1032, 1173, 1297, 1415, 1602, 1885, 2031, 2428,
2611, 2901, 3247, 3449, 3766, 3892, 4254, 4378, 4872, 5028, 22, 58, 326, 391, 970,
1098, 1402, 1480, 1663, 1740, 1813, 1940, 2478, 3032, 3209, 3376, 3556, 4024, 4392,
4564, 4640, 4800, 4978, 23, 361, 856, 1254, 1302, 1692, 1792, 1965, 2112, 2329, 2483,
2605, 2697, 3248, 3375, 3556, 3660, 3765, 3955, 3997, 4340, 4597, 4868, 4993, 23,
80, 361, 868, 1011, 1035, 1164, 1471, 1567, 1687, 2195, 2527, 2680, 2780, 3060, 3506,
3632, 3764, 3941, 4004, 4384, 4578, 4796, 5094.

Parity Check Matrix for ARTM1 with K = 4096 and R = 2/3
The following list of numbers represents the parity check matrix,
H, for ARTMI (SOQPSK-TG) with K = 4096 and R = 2/3. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < [ < Lyjen, where Lien, = 101, and is
L(1l) =

256, 6, 2226, 4570, 4760, 4847, 5359, 5956, 6, 2081, 2259, 3518, 3635, 3976, 4650,
7, 1904, 3070, 4009, 4358, 4910, 5224, 5963, 7, 259, 1363, 3445, 3827, 4087, 5362,
5506, 8, 1071, 2083, 3315, 4014, 4520, 4669, 4807, 5273, 8, 911, 2102, 2173, 2474,
3346, 3935, 4847, 5252, 25, 61, 68, 459, 628, 787, 1105, 1369, 1610, 1634, 1991, 2525,
2621, 2943, 3127, 3319, 3635, 4240, 4549, 4901, 4987, 5333, 5520, 5648, 5681, 5948,
25, 246, 294, 626, 697, 946, 1218, 1361, 1497, 1624, 1867, 2334, 2529, 2715, 2743,
3066, 3318, 3343, 3799, 4058, 4201, 4222, 5096, 5594, 5787, 5982.

Parity Check Matrix for ARTM1 with K = 4096 and R =1/2

The following list of numbers represents the parity check matrix,
H, for ARTM1 (SOQPSK-TG) with K = 4096 and R = 1/2. This
list follows the sparse representation of H defined in Section 3.2.
Thelist is indexed by 0 < I < Ly, where Ly, = 65,and is £(1) =

512, 4, 5494, 5610, 6840, 8080, 4, 4280, 5143, 6788, 6877, 5, 1859, 3292, 5124, 7150,
7965, 5, 2283, 4332, 5480, 6347, 6722, 6, 904, 1954, 2917, 3255, 5337, 6601, 6, 2088,
3319, 3984, 6462, 6812, 7510, 13, 491, 996, 1152, 1478, 1722, 2905, 3816, 4619, 4897,
5519, 5814, 7602, 7698, 13, 267, 500, 786, 1057, 2446, 2563, 3736, 4152, 4611, 5963,
6007, 6767, 7201.
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PARITY CHECK MATRIXES FOR ARTM2 (ARTM CPM)

Parity Check Matrix for ARTM2 with K = 1024 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 1024 and R = 4/5. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < | < Ly, where Lj, = 139, and is
L(l)=

32, 6, 42, 142, 983, 1135, 1187, 1273, 6, 63, 156, 189, 834, 989, 1129, 7, 42, 130, 313,
423, 960, 979, 1191, 7, 137, 145, 172, 460, 964, 1041, 1133, 22, 27, 47, 186, 202, 225,
279, 301, 363, 425, 451, 522, 588, 615, 662, 682, 890, 1009, 1091, 1153, 1213, 1226,
1263, 22, 176, 325, 389, 431, 479, 540, 552, 592, 629, 703, 737, 802, 836, 890, 932,
1011, 1043, 1084, 1117, 1126, 1178, 1194, 30, 4, 72, 74, 105, 214, 230, 268, 301, 338, 373,
389, 442, 480, 487, 542, 550, 670, 695, 730, 736, 778, 799, 824, 886, 914, 944, 1085,
1095, 1237, 1250, 30, 19, 74, 99, 109, 192, 242, 257, 326, 381, 396, 477, 485, 551, 584,
610, 667, 709, 726, 763, 791, 810, 859, 905, 907, 929, 1020, 1055, 1056, 1168, 1246.

Parity Check Matrix for ARTM2 with K = 1024 and R = 2/3

The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 1024 and R = 2/3. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ly, where L1, = 91,and is £(1) =

64, 4, 984, 1170, 1259, 1348, 4, 999, 1050, 1141, 1234, 4, 771, 1223, 1350, 1487, 4, 447,
958, 987, 1150, 4, 374, 996, 1246, 1303, 4, 230, 851, 961, 1256, 29, 60, 68, 127, 173,
232, 313, 356, 419, 451, 463, 529, 544, 577, 597, 703, 723, 729, 777, 781, 855, 925,
1038, 1106, 1189, 1291, 1337, 1389, 1426, 1506, 29, 29, 47, 70, 169, 186, 207, 269, 290,
344, 403, 431, 486, 538, 576, 644, 649, 712, 781, 882, 891, 905, 1055, 1148, 1205,
1284, 1355, 1411, 1440, 1512.

Parity Check Matrix for ARTM2 with K = 1024 and R = 1/2

The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 1024 and R = 1/2. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ly, where Ly, = 61, and is L(1) =
128, 3, 847, 1507, 1681, 3, 445, 820, 1702, 3, 773, 1424, 1952, 3, 387, 1143, 1767, 4, 95,
600, 1338, 1442, 4, 116, 480, 592, 1619, 16, 170, 323, 360, 636, 705, 859, 971, 976,

1036, 1157, 1200, 1392, 1466, 1543, 1868, 1952, 16, 85, 183, 210, 260, 447, 700, 717,
933, 1097, 1272, 1280, 1580, 1791, 1819, 1866, 1978.

Parity Check Matrix for ARTM2 with K = 4096 and R = 4/5
The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 4096 and R = 4/5. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ljen, where Lien = 139, and is
L(1l) =

128, 6, 2519, 2926, 3728, 4486, 4665, 4890, 6, 2062, 2503, 2911, 2971, 3793, 4988,
7, 493, 2255, 2521, 2524, 3715, 4546, 4899, 7, 2484, 2816, 3002, 3783, 3791, 3914,
4217, 22, 1,182, 325, 396, 710, 1380, 1578, 1750, 1869, 1986, 2284, 2428, 2586, 2945,
3435, 4057, 4150, 4306, 4587, 4608, 4736, 4989, 22, 416, 655, 827,1230, 1456, 1536,
1678, 1847, 2007, 2138, 2579, 2805, 2884, 2967, 3155, 3256, 3405, 3919, 4127, 4536,
4844, 5099, 30, 105, 202, 267, 434, 600, 895, 922, 958, 1139, 1262, 1357, 1469, 1657,
1804, 2045, 2287, 2336, 2783, 3075, 3283, 3579, 3632, 3634, 3987, 4335, 4400, 4441,
4679, 4832, 5047, 30, 25, 227, 330, 544, 567, 695, 827, 954, 1055, 1130, 1192, 1343,
1459, 1722, 2164, 2372, 2678, 2702, 3176, 3229, 3380, 3505, 3508, 3598, 3846, 4068,
4191, 4292, 4422, 5047.

Parity Check Matrix for ARTM2 with K = 4096 and R = 2/3

The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 4096 and R = 2/3. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ly, where L, = 91,and is £(1) =

256, 4, 396, 3558, 4351, 4847, 4, 2419, 3378, 4629, 4920, 4, 493, 814, 4426, 4773, 4,
697, 2404, 3384, 5315, 4, 3168, 3502, 3807, 4634, 4, 3465, 4770, 5837, 5921, 29, 232,
300, 632, 851, 1085, 1169, 1383, 1469, 1647, 1958, 2258, 2287, 2361, 2581, 2784, 2844,
2979, 3136, 3617, 3827, 4003, 4120, 4440, 4578, 4866, 5249, 5576, 5661, 6084, 29,
148, 227, 280, 529, 820, 1107, 1503, 1593, 1655, 1810, 2026, 2107, 2539, 2619, 3035,
3247, 3740, 3882, 3963, 4210, 4539, 5071, 5159, 5352, 5413, 5595, 5665, 6027, 6055.

Parity Check Matrix for ARTM2 with K = 4096 and R = 1/2

The following list of numbers represents the parity check matrix,
H, for ARTM2 (ARTM CPM) with K = 4096 and R = 1/2. This
list follows the sparse representation of H defined in Section 3.2.
The list is indexed by 0 < I < Ly, where Ly, = 61,and is £(1) =
512, 3,1233, 5107, 6614, 3,1303, 2058, 4874, 3,1332, 4204, 6172, 3, 2553, 4973, 7175,
4,2,6036, 6537, 8171, 4, 273, 657, 2263, 8110, 16, 1012, 1398, 1555, 2844, 3260, 3294,

3763, 3914, 4495, 5567, 5780, 6205, 6961, 6986, 7217, 8111, 16, 8, 734, 1569, 1857,
2467, 2631, 3000, 3139, 3621, 4294, 5082, 5466, 5550, 5644, 6675, 7607.
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Generator Matrix for ARTMO with K = 1024 and R = 4/5

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/EM) with K = 1024
and R = 4/5. Each string has a length of 8 hexadecimal charac-
ters and represents the top row of a size-32 circulant (M, = 32
for this code). This list follows the sparse representation of G
defined in Section 3.2, which is actually the sparse representa-
tion of the submatrix W in (17). For this code, W is a 32 x 8
grid of (possibly) dense circulants, and so there are a total of
32 x 8 = 256 circulants in this list. These dimensions correspond
to K/Mj, = 32 and Mp = 8. Because the strings are so short for
this code, they can be arranged below with 8 strings per line and
so the listing below corresponds exactly to the 32x8 arrangement
of circulants in the generator matrix:

00000000 00000000 5E861B80 62F7A3D2 9D1E9317 00000000 86E017A1 7E6C98CT
00000000 00000000 398EDCY90 6CAD4404 68202365 00000000 B7240E63 F1B22454
00000000 00000000 2D958121 OE74EC93 A7649873 00000000 60484B65 1640BDCL
00021000 00040400 OF76EA88 8470EA40 875284A3 00010000 BA9203DD 5A1BODCD
00080000 O0A0D00000 44BE3BAE D17B86F4 DD77R68B 00800000 9EEB112F 13462E1C
00000000 00000000 4961A410 O0ACC2686 61343056 00000000 69041258 55B2397A
00000000 00000000 BDDBA30C 9A26B8C2 358614D1 00000000 E8C32F76 41A7836A
10000010 00004400 A8590524 B8E42525E 1292FCF2 00000100 01490A16 12367171
00000000 00000000 1B731B73 51E75165 2A8B2A8F 00000000 C6DCC6DC S59ES549EL
00000000 00000000 15B44EE3 FAA29812 14C097D5 00000000 13B8C56D 9DICF56B
00000090 00000C00 DEO2C8D4 C12C3860 61C30789 00000100 B2751780 38F98DCL
00000000 00000000 EBBAIAY5 764CAC29 6D614BB2 00000000 86A57A2E 263BF6AS
00000000 00000000 AG6A9810E 4B90F883 C7C41A5C 00000000 6043A9AA BTE5CECY
00000000 00000000 DDA3B50B 70B4E408 A7204385 00000000 ED42F768 D1813839
00020400 00800080 OE4DD78F E8D4C59A A63CD75E 00200000 71E3C383 1EDC3687
00000000 00000000 46D2BF00 2DF50E22 E871116F 00000000 AFC011B4 FF9319B5
00001008 00044000 742320CD F872B399 959C47C3 00010000 C81B5D08 F1916947
00000000 00000000 B226BE3D 2C382EFE C1777161 00000000 AF8F6C89 16B04735
00000000 00000000 A6B72685 F34D5828 6ACL4F9A 00000000 ClA169AD B8AL1F36C
00000000 00000000 06785F87 5B8B1A20 58D10ADC 00000000 17EICI9E 5321E613
08000000 00000002 DFA20208 5A923BCD DIDE6AD4 80000000 808237F8 D59F5128
00000000 00000000 D32E39B0 8CDD1F14 ECF8R466 00000000 8E6C34CB 2FCEBEO3
00000000 00000000 BBF129E7 B65C93B0 E49D84B2 00000000 4A79EEFC CIlAl72CC
00000000 00000000 ABOBECB1 52D778CD BBC66A%94 00000000 3B2C6AC2 A6505FE7
00000000 00000000 560EC6E2 DD36F786 B7BE36E9 00000000 B1B89583 6F607C29
00000000 00000000 7609DF67 D263EEF6 3F77B693 00000000 77D9DD82 249B5842
00000000 00000000 CD2FC38B 06COEF2C 07796036 00000000 FOE2F34B FF081991
00000000 00000000 4135B4AA BCCB0893 58409DE6 00000000 6D2A904D E6D1D5CO
10000000 00000000 986B9059 080D0023 68011848 00000000 E416661A 1A0A2B4D
00000400 00000000 F8E1898C TEA836A0 61B503F5 00000000 62633E38 70C49CEY
00100200 04010000 03717225 9F4987C7 4CBEICFA 01000000 7C8940DC 72729C94
00000000 00000000 CF7C7758 681EEC5C F762E240 00000000 1DD633DF 7989FAAF

Generator Matrix for ARTMO with K = 1024 and R = 2/3

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/EM) with K = 1024
and R = 2/3. Each string has a length of 16 hexadecimal charac-
ters and represents the top row of a size-64 circulant (M, = 64
for this code). This list follows the sparse representation of G
defined in Section 3.2, which is actually the sparse representa-
tion of the submatrix W in (17). For this code, W is a 16 x 8
grid of (possibly) dense circulants, and so there are a total of
16 x 8 = 128 circulants in this list. These dimensions correspond
to K/My =16 and Mp = 8. Because of the length of the strings
for this code, only 4 will fit on each line below and thus the
circulants on 2 lines must be concatenated to form the 16 x 8
arrangement of circulants in the generator matrix:

6BAT892ABF45236E C8DIC5D3714F302E
D4F0D22000C799BE 1B735D3C4955FA29
F4B95DED57220E46 BD8F352AD210C8AS
DAF547D1FE2B5F06 7237A5CAEF6AB910
D51E3BOOASFFEE45 57602D7BC5290849
BD3B4E1E60DEB9CO 702EA8F1D80547FF
32831FA3319969B7 9D50B26FB2A2602B
024397946AD8BE25C 4DB99418FD198CCB
A42BE214109BA706 8FFCBFCF8011FE66
SESCAA6TBEBAF6A9  3835215F10A084DD
035EFF65BF4094C9  8339C019E6D5SBE25S
OEBBD74043E22FD5 A6481AF7FB2DFA04
F205E535CC6D740B 44EA142BED0781C6
ES5E47A8B6ETDSA43 AOS5F902F29AE636B
TE617060859E0216 755D5592B595A56A
071DE3FF5219D499 10B3F10B83042CF0
TFECF14CB1461C2C FB40539616D639F6
2A617C3B30F36C5B E163FF67CA658A30
OF39A3A0E16C8001 9D399E4FE164B196
416D8CF6C4717A9F 000879CD1D070A64
1B18F05796B23435 E37424A6DEAT4597
2F8A69EBD71A8359 ALABDBCT82BCB791
9E8455D318EDFBC2 439C019D6E1ES540E
9DDDE2E7DE238B05 DE14F422AE98CT76F
TAF242AC3961671F 919C2479E8AACETF
05B9CED1AGF57595 38FBA7921561CBOB
FOF05A3CD8B225D0 508D96EOFF1E28EF
7414E91CBC43B4AA 2E878782D1E6C591
0489F061DB142B23 64AAF2E3926880AF
FAFFEESBA88F07DBO 5918244F830AD8AL
37BB4EEODSAEBE2F FCFCS5A3DFA679258
C90A457AARE3A065 F179BDDA7706C575

A4FEDBD333242FEL
58FDC14B6FE48B0B
F7360EA75265D654
3FCFE4973F6235A6
84D318C9B44866E3
F226BBF81D1508D3
1671FAEBEDCASF97
FAID71FFDC395A45
09B56084CC257EB8
2E91E38A5FF8387C
08686F2A40594CEC
CO2AF41602DB0020
6DBCEF1209E1AD6A
EEB087A2544A4A91
0F639EDAC0843854
999203D71678EBSA
DB514BOEFE4BF00D
37FFTFD3CBFEFF 6F
97C3909EDFD6C24C
ACB6ED044B848C01
3D8C3F9209ED786E
75DADDA46B7C6EA3
21656FC6E2D36F80
35B14EF1A129231D
2D5259894EB0O8F04
A4F87C0A9009808C
DA8008834758C21D
A91F53F896F985EA
5FC523D281F7F49E
6D1F7982612A7780
CD816280D604E31A
4BF4D57C5F418F75

€69274DC3165711B
236E6BA7892ABF45
F0208E8490FC7DD6
0E46F4BD5DED5722
B2D2F110A7AB5707
EE45D51E3B0O0ASFF
748C762F17B3AE5S1
69B7B2831FA33199
2F5BA06FC18C2CAE
AT06A42BE214109B
30A665E3031C1A9D
94C9035EFF65BF40
BF6AC908CFEC4E40
740BF205E535CCED
AE99BDD2590C2B26
02167E617060859E
410CA3F48DADED38
1C2CFFECF14CB146
DFD7ECB745FD8010
80010F39A3A0EL6C
6F5805F8FAT8A132
34351B18F05796B2
CF39D2A910BOF67B
DBC29E8455D318ED
B3F8A38DOF31B1A1
671F74F242AC3961
4E12874B59F54ADA
25DOFO0F05A3CD8B0O
6C6EF4742BF2200F
2B230489F061DB14
9E63C2CAC8CA0706
BE2F37BB4EEODSAE

Generator Matrix for ARTMO with K = 1024 and R =1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/FM) with K = 1024
and R = 1/2. Each string has a length of 32 hexadecimal charac-
ters and represents the top row of a size-128 circulant (M, = 128
for this code). This list follows the sparse representation of G de-
fined in Section 3.2, which is actually the sparse representation
of the submatrix W in (17). For this code, W is a 8 x 8 grid of
(possibly) dense circulants, and so there are a total of 8 x 8 = 64
circulants in this list. These dimensions correspond to K/ My, = 8
and Mp = 8. Because of the length of the strings for this code,
only 2 will fit on each line below and thus the circulants on 4 lines
must be concatenated to form the 8 x8 arrangement of circulants

in the generator matrix:

00000000000000000000000000000000
389530DE4DOFC37C8AA03BCY924631F5A
CB09548AB217FE1DF7D809C281FBD3F9
00000000000000000000000000000000
00000000000000000000000000000000
DFCFD4B5D3909995D78CF09F2EE26A50
2BE0960D0F522ADF1A3135EF6B8F8F4C
00000000000000000000000000000000
00000000000000000000000000000000
CA96ACT7769CD9B8772C88045089B9ECY
E7B94456E7796926F69616A20FA0AL4A
00000000000000000000000000000000
00000000000000000000004000000100
92C2025B6299B0086E4R6EOA3FIF4BES
AEC528FE0312115B371F197B4530124B
00000000000004000000000000000008
00000000000000000000000000000000
5AD2664E284A6A42D11629DEASETE2DC
ECD97C825D2D132B87D58ECF02865834
00000000000000000000000000000000
00000000000000000000000000000000
9E8C6295B21D689ATA49E4TDI0TFEF06
D77F0A0458CB2A6E29B555C020E90378B
00000000000000000000000000000080
00080000000000000000000000000000
292B5BF488960B2CACA8AF5B8995A64C
204D121A214A05C28DF2F3594841741C
00000000000000000000000000000000
00000004000080000000000000000000
5AF76676984C9AD181000BA4C4BIF 9BF
5F26B286448924C506FAOEO08E6153CAT
00000000000000008000000000000000

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00010000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000100008000000000000000000000
00000000000000000080000004000000
00000000000000004000000000000000
00000000000000020000000200004010
00000000000000000000000020000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000080000
00000000004000000000000000000000
04000000000000000000000000000000
00000000000004010000000000000000
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Generator Matrix for ARTMO with K = 4096 and R = 4/5
The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/FM) with K = 4096
and R = 4/5. Each string has a length of 32 hexadecimal charac-
ters and represents the top row of a size-128 circulant (M, = 128
for this code). This list follows the sparse representation of G
defined in Section 3.2, which is actually the sparse representa-
tion of the submatrix W in (17). For this code, W is a 32 x 8
grid of (possibly) dense circulants, and so there are a total of
32 x 8 = 256 circulants in this list. These dimensions correspond
to K/My, = 32 and Mp = 8. Because of the length of the strings
for this code, only 2 will fit on each line below and thus the
circulants on 4 lines must be concatenated to form the 32 x 8
arrangement of circulants in the generator matrix:

00000000000000000000000000000000
D3F076CEEBA41F653F0896B2D6572794
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
AOOOBCAA5192184E332429251B6FE8L6
00000000000000000000000000000000
00000000000000000000000000000000
00000000000010000000000000000000
B3D5DA68DTAE2FB13156CE322E34C45A
00000000000000000040000000000000
00000000000000000000000000000000
00000000000000000000000000000000
82F3C94F4882EEFT732AFC404C26C2358
00000000000000000000000000000000
00000000000000000000000000000000
02000040000000000000000000000000
85B6097E4AB0A594926E391F4DD15F73
00000088000000000000000000000000
00000000000000000000000000008000
00400008000000800000000800000000
EFCO07C231FFB53308E9134D3F8EA8CFD
00000011000000000002000000000000
00000000000000000000000000001000
00000000000000000100002000000000
04754199F8AE26E4CAABBOA41485TEFE
00000000000000000000004400000000
00000000000040000000000000000000
00000000000000000000000000000000
F7F5FODSABIFD7EO01B7CABEA461474872
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
85D4A59FA181AFAF1BABTB6FA649CTB8
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
AEE6508B8BDB5DBBC18B0O1AB33EE6963
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
BF3765014F9DAD35D1A2FB464B549458
00000000000000000000000000000000
00000000000000000000000000000000
00020000000000001000000004000010
006FE9B3E826B20E7D14C98DB7804DF8
00044000000000000002000000000010
00000000000000000000000004000000
00000000000000000000000000000000
TE8CDFAOA8303622F85632C5493251DE
00000000000000000000000000000000
00000000000000000000000000000000
00000000102040040000000000000000
99EAT77CC438678BD48EB3922709487BE
00000000000001088100000000000000
00000800000000000000000000000000
00000000000000000000000000000000
F3B51C5AEE1746369D0255FA48A2C8ET
00000000000000000000000000000000
00000000000000000000000000000000
00000060000400000000800000000000
A9ESB705E9450D792D946C3D78895559
00000000000880000000080002000000
08000000000000000000000000000000
00000000000000000000000000000000
S5A0EF6E2A13354869340A82F068B4550
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
323EB09CB1B8586999786167627C209E
00000000000000000100000000000000
00000000000000000000000000000000
00000000000000000000000000000000
064A0A9B0798E8AOE4E5C2030AD16FCF
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
1DDA232C8D404D394462FAAET7TFB5216
00000000000000000000000100000000
00000000000000000000000000000000
00000000000000000000000100002000
E12A9CA99F84C07511C5C5044DR6ELTD
00000000000000000000000000004400
00000000000000000040000000000000
00000000000000000000000000000000
F3439BAADEDF4A8329BAAF234A78177A
00000000000000000000000000000000

00000000000000000000000000000000
37C6A13EE27C4A4DD308DDC551390ABE
75EC556940AD93B5A3E8T7ES71D3477AB
32E28B86CE97D373D6DF37F0B34E8ALD
00000000000000000000000000000000
24CE88207A44BE1B83027BICC39F36F6
B219FEA388A5F22ERB155948624352715
B5CFOCEE58550719FB46DA2962ECCOCC
00000040000000000000000000000000
BACS5FDFF6827693E544020ACBBAO67F L
6E973CEA2BF41E9B015FBDDB19C464B5
0BAA88B5C097BB0992396D596FE688D5
00000000000000000000000000000000
29F782F9BEBE2ATC27FC3E7B2C39C47C
5CB5AT74097FA9CC402C3F862BD049CF1
86429B17FDEBICA2390AEDBESBB3BB56
00000000000000000000000000080000
25F9B4CB0245D29F1097E5D27AF67D76
52FAE325DC384CDD7D952C0505FA5355
SDCDFF94DBACCED7136E2E6C41F1D906
00000002000000000000000000010000
F0481976F76EA55E1509E3B75D5171E5
CDA361844CCA2B002430F0F628B1CBFC
7150B7769FDB62DD6A6554357199A044
00000000000400000000000000000000
B70A39F8C2C86F86B72AAETADCSCFFB4
2803DA3DEE52A933DEB7CB4AD774D5F67
AEC857E97490D820703121D7D905F8E2
00000000000000000000000000000000
D69291A479D67A90E3A74487C18222D8
25919002056C03444B965B618CT7CE469
BE3FAF76DE2AB22E3F84A834FDFB4B4D
00000000000000000000000000000000
AAOA3E2722FC0F2D2496343BE8002BDC
EEC8D727F5SF72BFFS5A37AT61FC6FFF08
E4BAB15DA1352AE6720B08FB268222EA
00000000000000000000000000000000
34AEFEF00921F7BF70537F2973F9C68C
09B84E25CTB424B9ACB4943D70C81867
CC2029576B2C14CF7CA19BEAFES5472B8
00000000000000000000000000000000
DE0532B38DA2BSFAAC84BA3B4EA4F 937
E904C7CDOFE97241611BA76EA2614253
BOB4903BE6F12CFF7CE505959F28CF 96
00000000000000000010000040000000
101F4C4DB76AB849BD36A984E1454688
B624635A5B547DEB2615D6EF33DE6766
70A75E72750974671C17C415486B55FD
00000000000000000000000000000000
D35AF586BY0AESE869552BE1C32246DD
8FF36572B1ED1C3DC8099FD692F36E25
2E40B8BAFCAB7C07038FB4ACID8SCDFCB
00008100000000000000000000000000
32C44871D606DE524524E573751A0119
1FE011904A515B4D182932795DF3A42D
6BBO4E770010EB2F421E080D6C88F26E
00000000000000000000000000000000
5CD1B1ESFES5SDE15C5B7CBB52D6AE3D97
OFAF046C6D61DE93B05D878E6F05ESED
9521BD40F3AA3032AC8EBA1164AA04B5
80000000000002000000000000000000
00D53FB7A1CDICODE393D4F84B56E4CB
F30BD8E868CB46B30B3BB3F7BE0177ES
109655C53D423E64F55043816ED8C2D7
00000000000000000000000000000000
281A281790ED8C10435998F009A5E314
FC4B6DA9C6045B5990480AD257621A01
OF932F56402B7E9B1A1ED30DC17DA4D2
00000000000000000000000000000000
3F6A3889E4CD6EO548C9F8A2427ERBL20
66D834CD5EA38AES34892473B5906884
E7788E8389801749C149BB2E482B7842
00000000000000000000000000000000
B4A1980396D7D4B6570FFD7ES8D1F64DA
A92787A38AAT8D98D4618856EB68B1DD
A646F33E3AA3D115D7F7521B4ADDD346
00000000000000000000000000000000
3067075C587F41655E21C6B5C1E9BBOC
3AETD7AA9B8D63A6433B349AEASC530B
234F99E3899B8BA0906B3FFET61CF8918
00000000000000000400000000000000
EF103D410EAOECAEE16DB366367A2C9C
69B7718D8283DF05AD138830679673F3
A71845DB44F886BE2568CETFF906059C
00000000000000000000000000000000
568COF07C313E08132F84E371F073B73
39499863F3520A673CB90492F49F3126

00000000000000000000000000000000
00080000000010000200000002000000
71618FDE93AC81158088E1B396EALIE6]L
00000000000000000440000000000108
00000004000000000000000000000000
00000000000000000000000000000000
361C5BA902DD7747DCEBE564D6B67606
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
C5495CCE485D7AA5903C80ACEAT3A6AC
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
2EEFC6EF1482510AAFA9DC56350EBC1D
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
091603EFD64EAID41FO0F7FB2131BD925
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
4E583B1EBB2008ABFD5E857005B3870F
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
4CA688989C8CD447AEOE9D19638327CC
00000000000000000000000000000000
00000000000000000000000000000000
00008000000000000004000090000000
50155262C9057D613B287775FE573D6B
00000000000200000000000110000040
00000000000001000000000000000000
00000000000000000000000000000000
33A37197F78E46C49488BA16955C3C10
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
AOE9479C501C5140A06D94609DFDASF3
00000000000000000000000000000000
00000000000000000000000000000000

D1EBEECCF19DEED384BEASA4F03325F4
00000040000000000008000000000000
91BAAO4E2CCE3E1AEQ7F2CEF78BATD3A
438EAAOBE3B476E879B7D57F93D1CAS52
92700F669AA14005R676073912E2D5B3
00000000000000000000000000000000
B29731749679FF5BF5BBF3E6D6860D06
07E3527CAB178BB109D4EAEBAB43CAAQD
ADCO8DF679103652B0A1E301600B3733
00000000000000000000000000000000
5B8D4DT7BBB4D1655D28DEA34BIC6ALTF
6FC3A547697D97DDAD4E244F1CT5F9F8
CO04A7B2664CDOSE96FAI1IB3F7C0881CF
00000000000000000000000000000000
EBFD48D0AF6A99834E50985045F298BF
073E7CT750FEF7301CED6C9IC6052A628E
8724B482176EEE490240774B61899BAB
00000000000000000000000000000000
03DC47B8C2B82142CA606F0D30230302
D6AE52A281E5521DEC5A42CED16425EE
393341FCFB27FEE6E2BDFF5727534CA2
00000000000000000000000000000000
5D86AE88085EB777B745DF9AC22873F1
2C23BA5CTFCCDB51C0C27CF4BEB6ESIF
88DF3E9B79A756517B848B15DB149F28
00000000000000000000000000000000
34147B8026362F895975E08994C3455A
C52DD09E0083E668A9CD371DB8A210AS
43F573BE099BA748E6DAC46780CA94BD
00000000000010000040000000000000
ED129582FE688DC45F9D3B73CE85EGFA
BF6DFOE25E043B6B77CDCE6BF0OC3960A
8D405F312FE1E56D5A71484C10847A14
00000000000000000000000000000000
ACB8EEAF192A42C476F096FBIAC63DF7
3E120588899C9BESES5A8ECTC463C955
CB1770C928B5BF8F1E043620E9D3CCFE
00000000000000000000000000000000
3AA8803952B8161FC9AB184B57432989
5733F76D5B4315E03C18B31FB898FALS
DFBCBC371757CA34BD51B9C3F76A391B
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Generator Matrix for ARTMO with K = 4096 and R = 2/3
The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/FM) with K = 4096
and R = 2/3. Each string has a length of 64 hexadecimal charac-
ters and represents the top row of a size-256 circulant (M}, = 256
for this code). This list follows the sparse representation of G
defined in Section 3.2, which is actually the sparse representa-
tion of the submatrix W in (17). For this code, W is a 16 x 8
grid of (possibly) dense circulants, and so there are a total of
16 x 8 = 128 circulants in this list. These dimensions correspond
to K/My, =16 and Mp = 8. Because of the length of the strings
for this code, only 1 will fit on each line below and thus the
circulants on 8 lines must be concatenated to form the 16 x 8
arrangement of circulants in the generator matrix:

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000200000000000000000000000000000000000000000000
A75774F431955B663D85135AB354C349FBE71E889652FAESE214A4C515317D30
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
61BE4CCE4B833D25FE309F12C7252C48C622158BF93F53D18BF6617E6ED06DB6
0000000000000000000000000000000000000000000000000000000000000000
0010000000000000000000200000000000000000000000000000000000000000
0000100000000400000400000000000000000000000000000000000000000000
EC5C59157943A5919CCFOD4DB48A9E9288C12EE8CBAAS4D74992F84D4B735615
0000000000000000000003000000000000000000040000000080000002000000
0000000000000400000000000000000000000000000000000000000000000000
0000020004000000000000000000000000000000000000000000000001000000
62F62D6898D4D19397FCFE53C2DF200985643537FAF0FD7A0363D9EDDOABFESD
0000000000000000000000000000080000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
ARB4DSAEAD2B481B51CE3EFBDFD61EB792660C6471FB1635B202FFFD02591910
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
FB8F9A6A2B24458FE26CIDB32CAC5672FFES52693F3D089CIED896CF9927BDEAYD
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000001000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
28CFD1D92CC318EE127E323288B671B2D022B3273D823ED50E58B12DEC516510
0000000000000000000000000000000000000000200000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
F9ED263B36E4BAF4ASBA1AEBD80AFBA2D2D697DFEF41CE278A3077C2E1CEDBD6
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
2208A8R02A020A88000A8A222AA0A08A80AAA20822820A88220002A0AA88A8A0
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0501515551505055010551015411514141551041545110141005504114054114
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
B24A635C86E1CEADS55FA841230A3DDE39BDF5ATES29E2B3CF5D7B50EB56DAEAC
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
833A7B117878F028CE675B3E8570B5B25D1160DDB4B94896F77190CEIE4FADEQ
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
89185181F774A984862AF7F84655F6BF240D80CF97FDEF630D79CBB304B21A7D
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
OA5B6D5E76CCC3DAE01D2D7C831048326C2A5620EDC97173E3D3FB6875DBDBE0
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000010000000000000000000210000000000000000000000000
8040000000000000000000000000000000000000000000000000000400000000
3E35EE32B54E4F4F41A2174E762E76D22E7163DAAES54561E6A4048F25E8FDB08
0000000000000000080000800000000000002000000000000000000042000000
0000000020000000000000000000000000000000000000000000000000000000
1000000000000000000000000000010000000000200000000000000000000000
CF395E22F960E846C2B505ED59F 6DFDE22CDD70D2F 99DF8A45F30ATA6C6D14A0
0800000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
89E670F7ED565E4F74D1425CCEOBD1993F325D0CF8ASBFDF5C62E3F156D39F12
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
E92FF6F0501A20667DEDB73E2B7D11C005C2300B173B2132713E550ACA6213DB
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000800000000080000
0000000000020000000000000000000400000000000000000000000000000000
S5FODASBD187E286A3FE665819F97640A200DA41FCT7D1ICFCIB1ATF0639F5C3A30
0001000000000100000000000000000000000000004000004000000000000000
0000000000000000000000000000000000000001000000000000000000000000
0000000000000000000000000000000080000000000000000080000000000000
D29674F92C06B305FD34A22CD7ED395111E47B13815F74B3324F8DET7C085FASE
0000000000000000000004000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
454959B3301F3F470A7B7E834FEBO0SBC5EB5939BA1IDIF458A59DC21E549AA53
0000000000000000000000000000000000010000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
A6C07D876F1433DCBEICBT7CB0656F94DB38569876E446689CA9CE68A0743B85C

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
AR0282880000200A800828A28A2002A282A82A800A20A0A2288222002202A222
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
4541140001105504154045515440044551501445001041514511015444544140
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000040000000000000000000000000000000
0000000000000000000000000000000000000000000000001000000000000000
CF856980DB570B505641914F5AR4C48A94C4560A85F973B5D9270D6FBIT0B50D
0000000000000002000000000000000000000000000000000008000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000040000000000000000000000000000000000000000
31C3CB6ACB659318C27F09D2B393314FA338B09F7127D14FE6F8386F26CEAL86
0000000000000000000000000000000000000000000000000000000000200000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
ASF576269DDDBD62744D95828856EC686BICETAF5145CA396D03ASACBETAB555
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000004000000000000
8082F1605E48AEFE45B480B42443353BC49B23F2B6C92311995BAC64067F24F8
0000000000000000000000000000000000000000000000000000000000000000
0040000000000000000000000000000000000000000000000000000000000000
0000000000000000001000000000000000000000000000000000000000000000
210659FC173F50CC374E2F11DB1DED2DBB7AOFED2B73643908D29EC6EES5456B8
0000000000000000000008000000000000000000000000000200000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000004000000
8A42250E1904032DAF947CEC568220DD174E6E82D83E271B6CTE6DF2B5F33651
0000000000000000000000000000200000000000000000000000000000000000
0000000000000000000000000000000000000000000001000000000000000000
0000000000000000000000000000800000000000000000000000000000000000
A56EF3B309174174147BDF113C2671791A82E98B8D929106B989647010161E11
2000000000000000000000000000000000000000000008000000000000000000
0000000000000000000000000000000000002000000000000000000000000000
0000000000000000000000000000100000000000000000000000000000000000
TF11AC4592AE3218A55CCIBFEO0018F995A60DEF 9AC41186BBC6DFAC3C40ACEB
0000000000000000000000000000000000000000000000000000000000000000
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Generator Matrix for ARTMO with K = 4096 and R =1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMO (PCM/FM) with K = 4096
and R = 1/2. Each string has a length of 128 hexadecimal
characters and represents the top row of a size-512 circulant
(M = 512 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is a
8 x 8 grid of (possibly) dense circulants, and so there are a total
of 8 x8 = 64 circulants in this list. These dimensions correspond
to K/Mj, = 8and Mp, = 8. Because of the length of the strings for
this code, only 1 will fit on each line below and thus the circulants
on 8 lines must be concatenated to form the 8 x 8 arrangement
of circulants in the generator matrix:

19791B044CFB6B41063327AB9322DESCAL101D1D6ACTDB37B7AOFE4B4D937241A681CT7AFET75D1590B668C41868347048B0E059CD6AADID544F8214624D7FD8112
F88D7BFC481D29F5275EB2DCOEAFC647850EA397589905CTFF4E326EE0794BF1416B5459A79894CB64D6E3BF 7TCD8DE92AE332CC9848FC23AF2561F6B6468CAE2
8518935FF6044865E46C1133EDAD0418CCIEAE4C8BTA728407475AB1F6CDEDE83F92D364DCI069A071EBFID745642D9A31061A0D1C122C3816735AAB675513E0
E706D2459EF9A1976D3C291D515203E93ADFD520D5F186CC51D2FA7580444BDD0112E2C632C6628DB1DB572230D32B83AF57093AB292CAC09B49D1CA04A95234
234BBAC1C6AASA91DAASEODB2511160B5BE777034B281C04B08B503B99814D69A8A3B7C0958910BDDIESEB481906178DBD73300BEAB0997F3139C87D0SEEIE36
84C9EDACF9E6A64BBBCD02DB8B755576C12BBF 7TFDEDF 7FF0095F4851E3CD87C08D48D0399503F26A4DF39A1BIA065E1E6AAB60CD2C9229ADIC3AABC2ETDBIRTF
867B92BA264E720E05B7439384E34E80563E678E4B8D8649D2B1128C396222B9202A6CD8CE3BBIBEETA90CA006F2FE469699FF75656A9E59CBICCEC5783D0203
C9CC46F3C675E28DB0158A958083BE68F 94CAA2FD8C2D24EE3D3134A3652885960DDB6FEA463B6631519B506290207613AF26E5480D89E97AF65F46FA49703BE
CA6EB1C34D3AC540F2BBD2A9AA0DA7C242E12AET7469E2C94368758A496B5CE2EO0AB856799A20A6A14BADCFCO064A36FCF604FB2C417E946F0299A729EA46DF05E
8CEAT72A7997752B3003379E9E3C8AAB81379DC073F7D10880F177BB9830F42F4264A647CDT7F45B2A163717A21A3778811AFAC2284CA01AA90266F4AC1E25CF889
69CATA91B7C17B29BACTOD34EB1503CAEF4AA6A8351F090B84ABID1AT8B250DA1D62925AD738B82AE159E668829A852EB73F01928DBF3D813ECB105FA51BCOAG
7981222CF9766988AB7801EEBA81B6663D427B5D5380F425339E52A08D9A3EFD6C73306EF7BEABOF7143F7995AC2DBOELODCA29FCAACE2C230AEB964C808BDAB
CFFA75F78D91E393A3AB71E4129C5E2EO0AEE93E6F21EBF1EB23353DA52D2623EA8BF0620FB8B186D377BDF123D508AEC89216CBA3A4TA3A69BEF59C812F4CB37
B3A322C8AAE11ATC54AFA88BD2170F1E1IF171099FDA231C516E90DIECCI11923B5E955C550E92CD2BBB3C585F506DAF8325288F90BBIBB1C4641A5C810EFFCSE
584F19B16537B900FDA36961B291A656058D26450811D551F3DB715C06A734185FA088C4A4D216E516204B589F46C4D231FAIB588D5759BCEC650D66936B237D
69131806BB4029C8A1524DCE6CCAD11A3BEA2C812A6620A1DFCE3125A580C052491B669525464385688AD0BA62CA2ECEBC6ECTE3F86D391F56EA6FACCT11BBEF3
AD238FABEDIECE29F82FE10CF6C57D12CB1D1B4D97757DD826F4C55084376D5038CB97A8CCOA4B7240049375BD56A829373005390DFFD323D0BA3D1E73BERBCOL
640AF643C6563F923D0E3C47F5171CCB6CFA82B78DCCFF54FDBC13839E5D213DCARB556C34F694A7116AC51ED1894923CEF33BDC8EASCI1IF213EEDBIF29796E0
EBFA479CEFAF006B48E3EA3B47B38A5E0BF8433DB15F44B2C746D365DD5F7609BD3154210DDB540E32E5EA330292DC900124DD6F55AA0A4DCCO14E437FFACBF42
C749BEASFD377908983531D9588E1193F63F17E6AASDBF6EB126AF12269E16B09BE36F4A6AEFCFBC713E1DAC46BE882995DBEBF8371E852F19A83BEBBAOL3EFF
91BFF3D08D3E74445B13A7E2717030604B6F775RA412960766E5EAC02A81DD93558F33266573219D36BE572D2C15B8CC406BFF5C08B6185A7420D804DB72A310D
4B0466FAFF477DA55D6D8B531F89E79E4521C4F87FC247B78BD4D19161566FA4804C872918AEA8E64BIE1B17CC21C29240B6F9EAE26DD5251A5689E9B5564FDF
D3312503510D79C9C37980EA9CCAOE4ES08FCB417DB422A777E1431C53FF342916DEAF39C19B78A47BF8E535A02ADBF03E281599D82E8BD08BI9EFSEQ0IEF0791
4CF61DBAS3E88CE119D5D4A67B2D145F4731A0C07D55308297F5BA82663F4B7FEB663D16D875D956071847F30C62C1E19D5631183505A54011567033A7C1F304
CB7E401FD157C9B7514B9C386E6BD0O0ASC73D00DC1498499ACB75564EE72AB1ICDET7703F997D6D38BI9FAO07E211189EDC2483BFA600AR690B6ED589249DCDD38ED
7491BEA4265A4ED15B9CAA80A605C895D0DF58B9B3720D5F381BTA62F50DD5C58A9E3A46C4FEC5C584D490328D8643689DA185285EC45320DBCBC1477F71F022
6249277374E3832DF9007F455F26DD452E70E1B9AF402971CF403705261266B2DD5593B9CAACT379DCOFE65F5B4E2ETEB1F8844627B70920EFE9802A9A42DBBS
25DCC52DATDF1AAE5604C9ADCT9D4752AEDADDF1B4B07BC9391930B9CAS5BD620435CD2823DD2CD9459414160DE3B877793D14CDF6B5290061D41EFE9477C7951
4311817278D4091FF86EA3SEDAC38D83AC403866F72E7EEOETD4AE6C120EB587A70C3A71B3C6CODFDISCAF12BF4EF8770RA4CBIAFDAABIDT85520EE901DF769B7A
222521D28D8C8DF8B094CFC92357C4C3D60ESD8405F5F9A36A7281979DBFFF04783860C881AAE49E371A8393A653EA288497182F6AEF070E9BO6E4A70ELIE684FA
54A3D0C8976B2C3804C737601A3B4DBBA28EA921B8DD3BFBA28D2EB166B92EA9F880192BFOBDOESDI7A852297F048127990CIF6CC5B8681742CD592D68BATAB4A
992E8EACF3ED2A9CB1ACTE6628CCACD8E646FFB99621A126CF7CB62BADE4AFCF4D89544F6E1A6579715CIBBD31A6A037CC3DF1AC398199A856E053342F341E0CL
B319166614438E74D0D204DCYC31650ACFCFA121595D3A7A6D8C22ABD1AAD28411A48892681E99BACBA4347422ECBE27C84EDOC84BE439AA5D0ESDBBBE45913F
BFB36D2B31FFFB71F39A6725F99E7DC16B100C96E3C577F91BBF43ACD0OF770553687C4E1C160EA4A2773EE04CE44491C20886BBBB606DFDATIF701C029E127FE
3976EEF91644FECC645998510E39D34348137270C5942B3F3E84856574E9E9B6308AAF46AB4A1046922249A07A66EB2E90D1ID08BB2F89F213B43212F90E6A974
0E2C9950366C6869E15299B978BCF29958E948F8B50A3714897A4ADF3D16CE2B7D8FC2A67715AEATC1AS2D7BC51D115E12A982FAC2FB59A4CDBIFTE9171B52EL
875B919085759B693D1DCBY7C357D2C88BC2FB5812108CB48756CCOBE4F08AD87964159AB5932C2A8CFF493C210688AA3E0B23297FFF317448378EAE6475C045
6FD7637CTFOF487894A56DA5SEF7D5013BC8B26E2DE1IA8567EC6DIAIESE024F50D91C907BA9498B46D50BBIA4468CAAF23714A355FFCDES34E27CE2E431BE215C
489E69F6FAAC512C0862B66B8D8CB720ED7D32B8CTEDEDSDDDIET2A7CEBCFS5DA3E412CB38582F8666F4EABF96326D75ED66CBBOECEO1E8D95D17338C28A0346F
370AD127A29EA98BEE881B3184E67CF8BF31F94CEFB0329A2B16DB810D49AF51E15024F1E4137E0F9706E7TE92F3E832BIE15E1A6DC7C236D68E66928F8901639
233C3E13196B1406DAF08EF2F7CE102E19B1FF2AA5DC897C77642422E32D071DFFAECED41061AE660F97C942463ED84DFD3CD034CACA02B0O3F23E24EDOBO6F7C
950722C47449EAF324D125FD26C6EC503BBASAAA3ABEO34C5D6EB134DE45AA423D89F99CT70FF28FB9D4D1241D650814F4B8F7EAEC231461B7881E42222647E1E
8F893B42C1BDF08CFOF84C65AC501B6BC23BCBDF3840B866CT7FCAAS77225F1DD90908B8CB41CT7T7FEBB3B504186B9983E5F250918FB6137F4F340D32B280ACOFC
44A00D5ETF4F6522B47E6B83EFC4B8B92EC57E173498B9150DB425802DC6177FAT6D31F2F66F0894B73378840F573D0B1487AEAFES5956CA4E8D02A0544206C8D
DD8271FB6F01EC64125A2FF3D16706CF383E69A6186FCFD32B65F775FE172C4CC8A88A2861FC5329244B3ABFBBBE7729813B9F8CD49A13548FE74AA6D4077DAC
9D0706D4D0F024C176EF9B51805831B4123D154D10094C9F2E9ASASTFCF4D8ASB3B58DAB3B013D54F628D9C7D9041536910CC81F359098E62676F97A72F93CDB
B0318A40056C31DEABE60C87AE2FD848434A326733886941787595A55466FC4836801F941ECT744FEDF213C70353254446FF7100A6BFBA79ES504E9CD590E70326
15ACCCY9BBEA95C186FDF43DB4C63CB258EB0F25ECA348DD8205865B43BC08D59F5A21723D4082CB2586296D8BC4DOE37DA95823B5921BA36EFES567588E5DEETC
F667E9B1AB13318BD250BBB8B8570C6B5C585D867CE368880C1C8643E345DA21AE8A5CD76F780CI9CDOB01A0C861324B43454283697750EDOD68AAFFEF05F4F33
6FDSFD0120D2F0CC306056346313E7F6249DD06ASEIAD6E31798EFC632E561B84749756876DF9FA4BAOE4EB66AD59467AD42D8AT7343D7C2F698D69D17C24BIDS
293FFBC17D3CCFD99FA6C6ACACC62F4942EEE2E15C31AD71617619F38DA2203072190F8D176886BA29735DBDE0327342C06832184C92D0D150A0DASDD43B435A
EA7372464235F50E83A4F95F141A871ACD5BF99D46FF2E1F8E64910C95ABE220F8141D32544E733A15569933E8EDD61CA3F703BDASC18DDC3EFE3FCA85407669
Al1BE7A2ES8FEAAD3284E8DO90FCE1120FEE72D21FDE19A0595054D0C0A4A3ADIEEE990D842656222748061617012928CD1A2137003F94BOFF79B0780577CAFFA
4164EBD2013A5DFF7E3C17AE4COCFFA4B6EB497D2A04432A30635EEF0381BA4AT79564E5EFF58EB52E3731BEOFDOD21A2992745C0CA764ED7738A27C771DTEC85
OF33EDOAADOOBFF39288D4BFDF7389F1DD088F5D39F702F2854751FEB4FC1EEO3DD6FB6B66341B613E2172B94CF72AE87AAAIESTO0E62E5E08DD2DD3D838CC667
80D158BEOC2DC2BF544D48034EDB894B5FFCIF9B2B82EB4AT7B333B08890A050C63EEBD4EA648DF5C74DF9A90F7730F 9DADFOB7FB1ASB8BAC0915D209DFESBLT
87C69FB41C6112B007CT76764BCBE29B471F5DEC81A2D5SE3EB32ED8IEFD83C0021A898BDA80DC222BB670366DED7393F1940DFFIAD62BF75718EEA2 9F48BBABA
226602BA8BC872C6FAEC50CD4540BCB74BIDECIBBY2EC37ADT47682E8F4AC428F48ABF6CODD132DS0E36A8BBFB71A9ED54DI9C3A2B5ES54F27A3235BDEE6D3D3ED
3BABATD22EEA2AIF1ATEDO71844AC01F1DD9D92F238A6D1CTD77B2068B578FACCBB627BF60F00086A262F6A037088AEDICODIBTBS5CE4FC65037FE6B58AFDD5CE
E06E6CF5D96BC652E03R62847077889E9B58297F3E951ABD75A8033EAC6ADCBIE3E421AF7EL768176F27FE9D79600555CA42AR62841CCAE63136101DD1B3090C
393FF55DC3F08E1B6D3F3A29E645F50DB11C3DB11BCD95BA6F 92CA4AAD7TDCEEDB214FDC163569ADF331CDCO89DA724B750F4778DF5151102DC2470AD2E25DD19
77827DA8B689126825F70AC401BEB04BDESFF6FDAIBA557708A77BD03062B20F6580A15B4B6F7B32A87C302A4F406C377BB36ECAE32BD321425CA02763492686D
1F1CC740B75393BDD3656BC72D7DD9F44B35014DB99B6169878007B70DA99E8638C733740A3F6EEA3A21688696F3F825311F9BBDC76916C00DB2998F03BD4509
86316AE71C20632C2EEC22195656EA66B1A5524AADB6771BFBED7CBI8EO1EES56DF138C478D2439B3136E66B7D69E2B66A55FF3327E9C575DF0FC08918C1EEBLL
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APPENDIX
GENERATOR MATRIXES FOR ARTM1 (SOQPSK-TG)

Generator Matrix for ARTM1 with K =1024 and R = 4/5

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM1 (SOQPSK-TG) with K =
1024 and R = 4/5. Each string has a length of 8 hexadecimal
characters and represents the top row of a size-32 circulant
(My, = 32 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 32 x 8 grid of (possibly) dense circulants, and so there are a
total of 32 x 8 = 256 circulants in this list. These dimensions
correspond to K/My, = 32 and Mp = 8. Because the strings are
so short for this code, they can be arranged below with 8 strings
per line and so the listing below corresponds exactly to the 32 x 8
arrangement of circulants in the generator matrix:

88B19B9B 92B86179 44F9DD4B CD94CD94 DD4B44F9 C5CB4395 2583EF49 96D2F33A
F9269673 823AF46A 41974470 AF382F3A 54704197 ABFA1031 C90C7594 23B69E4D
96E8CB40 FO067EBCD E6EF36FA 80AEB80AE 36FAE6EF 63615E7D 73070276 6175B096
D6175193 FD27CA3D 973220E8 BEDSBEDS 20E89732 9B5E11B1 B21FE944 DF3E71C7
AFCESE09 O05FF7C7C 83EAD943 D54AD54A D94383EA  71054AC8 E6B0O1A4C B43E09ED
D210620F 3A30121F 4DAD2716 55DB55DB 27164DAD DO04BDAO5 8C56F822 E9174DF7
61ACACTC 55BOE37E DI10AS5AD 253C253C 55ADD10A 24D08E15 FE1F36D7 D31A7F44
FO2E3BC8 64BSEDCD DI1B9CB56 D778D778 CB56D1B9 EAAIBF12 AT61DAIC 16F04D45
6C6E90C8 8786CCY9E 8AFB593C 9E3E9E3E 593C8AFB FCIDA940 996D9C68 DA958B40
S5EEA5012 9475734R 19A00415 EDASEDA8 041519A0 2644FC4F 04432E69 BO3B1084
ESCT9F6F TEECF31C AS54A8AAE 7JFA17F01 B8AAEAS4E 4C26C092 0902FB71 12D3899B
9D89BIFC EAASFF1E (02BB3823 DA4C1DIC1 3823023B CACCE417 C6486E40 2C26A196
89BO6EYA 348B3764 B9719426 6AB96A99 9426B975 F81649C3 6CATF238 DDD1908A
895A50FD EO04AC630 1416E302 B8ATB8AT7 E3021416 871277F6 784580BD 22BB2CB4
988475A5 A4D05394 FEC5D306 6E196E19 D306FEC5 2EF67552 BS57EQOEC5 E3D05995
E1DEB91C A70E35F0 EAF04EE4 20A520A5 4EE4EAF0 AQ06CC3B8 AA8386AF 545C6D1A
49A2C832 BE460706 40A6D659 BTFCBTFC D65940A6 AFD2645F 23C6799C 037DABAL
819260EA B4DCO32F DF76E66D C8D9C8D9 E66DDF76 E4EBAF6E 22ECAR64 225E980A
S5EB2E1E3 DEAB15D1 60ADCOCE 031D031D COCE60AD 6A7A2FC4 43ABB35B 292372D7
B3C1C92D 32CB567C A4EFBCF2 COE8COE8 BCF2RA4EF 920342D1 D39593D4 545459F9
B7C35BDC 22B6D65E COEB87F1 71D270C2 87DICSEB 7T63B41DE 1C86089B 8ABC3CDF
FE7487A1 66A8064F 57DABF8E 42A742A7 BF8ES57DA 211BD637 4C766359 421C10D3
2BFF09D7 330B2FF5 E3B4ESDO 5B205B20 E8DOE3B4 2A35F8B8 O0EOCDSD7 33721BAE
49AFD846 A4534876 DICF7E59 7JCB57CF1 FE59DICF DBC673C7 69E217AC E6D944C3
2F3D2860 T701E7F68 B8425243 500F500F 5243B842 FA39FD07 047EFE84 A437D7D7
B389A355 EA6B34DF 6F9BAl44 T7T6FET6FE Al446F9B A46D6BD6 B94AFDOE 39EDC651
87DB3808 FOD67437 860FFD93 DCE3DCE3 FD93860F CFCBE02D 9B85627C 8D587332
FD635477 D6681275 A45EC555 005B485B C555ACS5E 20163A2F E43C7CB6 2CCT78F72
DB52BA14 F3361E83 E90F6AT9 1BA41FB4 6AT79E98F 60417709 44E439B9 D618AAIB
1EAOE315 394F4AC5 6489EB4E E63C663C FB84E6489 F43C5213 6DBABFS58 5DF63F4C
31FAB729 S5A5FDE06 8F45669F 4ED74ED7 669F8F45 B80CE0943 FE443288 6747FF9B
10E4282F 3A6B3908 5366DIFB 94EC14EC DIFB5366 6ACBD36A CAAAOD6D D2B740EC

Generator Matrix for ARTMI with K = 1024 and R = 2/3

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMI1 (SOQPSK-TG) with K =
1024 and R = 2/3. Each string has a length of 16 hexadecimal
characters and represents the top row of a size-64 circulant
(M, = 64 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 16 x 8 grid of (possibly) dense circulants, and so there are a
total of 16 x 8 = 128 circulants in this list. These dimensions
correspond to K/My = 16 and Mp = 8. Because of the length
of the strings for this code, only 4 will fit on each line below and
thus the circulants on 2 lines must be concatenated to form the
16 x 8 arrangement of circulants in the generator matrix:

318D1D5872F9772B AFS8A87CC049E45F0 22ACT3ACDS4ECBES C6CBC3B0555C07DS
OEBC6F1970566E4A C3DDF9B3C7BF13F3 30EB243B4A562B0A 57C7297274E0E069
D2A38608C8B39767 E71607D9E71D6F20 F5C36D59E1488D86 725BB2F98C4BC233
CF4B23A89CBBBB90 1DD081FCD7CAAQC4 69054C02294B9893 FFBFFODD6821167C
5B7051BA49938275 718E510BAE657581 FDCEE12C191A974E F3AFE295F0EF20BD
09A1COE9AFE8BCD76 O0B526BF38C077B57 6F239CA73F878462 3CC3AACACF785A76
C5D1C7CBAB1BC43F 3COD51CF9172845B 821FBD36B3267A12 604170FACF606BES
DC759378A87B4922 B411CC590F27E799 D66DAAF7531DAED8 3AED1768CEAGETAZ
BA88F6D416C06917 94D46F42E0AO0AS588 0D902967C96A3F89 FDSBE6363835A1EE
FD2624BESDA834DA  68CF570031C9D695 C37BF5D3957031A8 8FBB3D25AAEE912D
B486065BBCO2E03B  77CD6948FF1ALFF1 3CA2817759586FA3 7473A79CCBOF34F2
D8C52EAF18E1086B E4754E16746D667F E70371017C4D879A 4AE6DTBCF522FC79
284E8F8469AF8B7B DF2B114736D507DF E12197935D016CDC  O0CFC199DODCCIOEAL
00FB87FETF929522 ABFA232711C20F0B OCEB16796306FDE6 5597AD9CE4C51653
97121E5828D83BFE 368882FBC9E70463 7153685690B6310E 4CC7BCE23CDE44BF
2FE050B6F931D3BC 9E5DD647CBF31A49 819E64C0566778A7 E2A8BOB5C072FB73
02D315DE6CE835C1  697A496BB207496E 7655053F5F5EEBBD  9350ACDE25CE2959
D85B4EC1CB845C34 61209DC46A999E2A FE5030DDCIAD4D60 CFBE1F890D490DD6
A21622EC6EB5848A B5AC33A6FB51A616 F24B865BBD95B21F DE63F1F55C1D2B68
AEOE5AA239946120 AB09B2761B9EDEC2 A3DAL17AC63BE192E 0117D8157BCA4AQF
6F2E84960FB1C85F A3367556B3DCAF74 8B3384B83C7325BF B185294B65580606
C9AF88ATC2E3C73E AB7F308B850BBEC5 09CEF742641708EA 114C52A30C7ECASF
71822F9796A728D6 60C26F44776B06DE 545A5E898ECE04B5 0B32D344357C5E9B
FDE87F6584EEF959 0474BE29EAD275C6 7FD55884FC613682 643740A4BAFF30D0
D46D750A059281D7 694F2C38BCA6C6D9 976262F769435B8F 0C1A94DSBO1DB30A
E96BY9BDE981B8513 8C7C7576F04DCFA8 0972EECF23487369 683ABA8B8457BBC4
013B99A8B29F22EFE 760FAD6B2252FE31 F237351A2D74DC6F 2424D13EF023A599
E371050865AEA3F7 0681349B548B12E5 CC345E96BEB4556F BDBE30DD53B61ELD
BB743891E98A600A D2D5F3B040B4713D DAA084C2B4FCFD8C F878EB479AF30506
C56FE158FCF67D89 9FAEOFE84679AA31 9056369BFB55D95D C136066F60896D73
53E828C19FA85294 8F51819BF8323428 23F3D3C11FC28030 5A36007F4FB7B54D
84EF93F527BE6459 ALCC26166C61B1F5 589132562E1BD0OD4 E4EFC81A1ETFE2BB

Generator Matrix for ARTM1 with K = 1024 and R = 1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTMI1 (SOQPSK-TG) with K =
1024 and R = 1/2. Each string has a length of 32 hexadecimal
characters and represents the top row of a size-128 circulant
(M, = 128 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is a
8 x 8 grid of (possibly) dense circulants, and so there are a total
of 8 x8 = 64 circulants in this list. These dimensions correspond
to K/My, = 8and Mp = 8. Because of the length of the strings for
this code, only 2 will fit on each line below and thus the circulants
on 4 lines must be concatenated to form the 8 x 8 arrangement
of circulants in the generator matrix:

0900A450080000420840805009002040
65693512240205D2B120B518614A9150
01A9154E4333C14254200D61060BI1E6
108100A012004080120140A010000084
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000010800020100040001000402110
0100A160004824429000A44091486440
11AEC408140A82000182D423040AC40B
00800020008040200000002100004020
00000000000000000000000000000000
00000000000000000000000000000000
04000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
01000402110000000108000201000400
440914864400100A160004824429000A
423040AC40B11AEC408140A82000182D
02100004020008000200080402000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

5750DC8AAT6391A0217A190690C30CC8
6BCEF3778953CE04B8F59EDAT757869D9
00480502804000021042040280480102
BFFBA04A1707F825A2DF 60CAF8BF56DD
00000000000000000000000000000000
22E72594FCCA38DF59781D80D3EACY98
00000000000000000000800000000000
359B0AA87388A06ABCO57EC54AD1BDBS
00000000000000000000000000000000
9D54F0BE6E6384EE86479BFBDCBC6604
00000000000000000000000000000000
1E7649AE33276BF566A3D4D48B49AB53
05985762241A25010010C12A30920562
D9301FDBO5C9BEAT589873CDECFB6863
80000000840001008002080080020100
800AD6F46FB8C1744A70DD12ABIB068E
00020000000080000000000000000000
BASA37F5E68554714B38A098198AA699
00000000000000000000000004000000
13FB1672336E0315211D4DB7D9I5AFA51
00200000000000000000000000000000
8D86EBEAC542206BF 9C8AE004F359E7B
00000000000000000000000000000000
CDO89C2EA1349F1B1B5528169FCTA3C3
12A3092056205985762241A05010010C
3D5FA9B1C04A6B44A304E70177D99FDB
00080020100800000008400010088020
CE47E92E480CC5625DDE92D94 6EABT75B
00000000000000000000000000000000
380D50DA3D23ED3866357B94A037E04C
00000000000000000000000000000000
AC86BEAB5A87CEFB76E5D9C6B1ASAD20
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Generator Matrix for ARTM1 with K = 4096 and R = 4/5

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM1 (SOQPSK-TG) with K =
4096 and R = 4/5. Each string has a length of 32 hexadecimal
characters and represents the top row of a size-128 circulant
(M = 128 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 32 x 8 grid of (possibly) dense circulants, and so there are a
total of 32 x 8 = 256 circulants in this list. These dimensions
correspond to K/M;, = 32 and Mp = 8. Because of the length
of the strings for this code, only 2 will fit on each line below and
thus the circulants on 4 lines must be concatenated to form the
32 x 8 arrangement of circulants in the generator matrix:

00000000000000000000000000000000
5D198C9233076B9F19532BB784292CA9
00000000000000000000000000000000
31693A59B59E6D7029A77TAASF1BS3F55
00000000000000000040000000001000
B3DE74CC892CE1689423125DF2A88A33
00000000000000100000000000000000
36A1C10884C215E931DA91AS01EDASL6
00000000000000000000000000000000
4899AAT9AF16F9CBIDF3D023EF3945B2
00000000000000000000000000000000
BEED635DE6285E2EACD7 7BDCCES5E876
00000000000000200000000000000008
137D0B07B6DDDFEE068B7A0645E0F 9E7
00000000000800000000000000000000
69D51657A4132F231311B5C9TES548FBF
00000000000001000000200000000000
6008F41E0B953817F671527B59E19588
00000000000000000800000000000000
B26A52A941DD71B6728265336C2BDEBS
00000000000000080000000020000000
6827E7673D9B465931903BA91B043442
00000000000200000000000000000000
6670C43BOFFB314ABB7725E94A34ABED
00000000000000000000000000000000
84FB89736E0FO0B061E8SDB5D288F69F 7DD
00000000000000000000000000000000
DB84E4B739ABEFD472F2A0C94AC38027C
00000000000000000000000000000000
5B6C2E0B5030357883BF306413526C59
00000000000000000000000000000000
7A2A12BDBFB8A3F7184D42FBB30C0OD61
00000000000000000000000000000000
0DC4E05B271BD2FFDDED5165FAF17CT7D
00000000000000000000000000000000
214E1E8CCOB7BDBA6FB9836838251E07
00000000000000000000000000000000
54E994F6530F77ECBIAARABY670B389C
00000000000000000000000000000000
49897CCOECC8721E00DDF634832F8D63
00000000000000000000000000000000
ECD55BD5SECE9F60DFE57EQOE2DOB7B356
00000000000000000000000000000000
7BBD8314518CDD5DADCE4826F53E6991
00000000000000000000000000000000
5COBADBE9774CFF57097AFC297732285
00000000000000000000000000000000
658046B6DDB229449E49B7ETA0021838
00000000000000000000000000000000
ED243E9BOBF6F14C45548ACA99A1B19A
00000000000000000000000000000000
B7B95D09AE540391AAD1B1389FBDDD28
00000000000000000000000000000000
DF71C2E3404E7806E2F16329C5F128CB
00000000000000000000000000000000
DC43CO9A6FA6FC3CCCO07A85923E347F
00000000000000000000000000000000
649E4EDE6AD2DAF820118552F44D0FFF
00000000000000000000000000000000
AOF83BF7129D587F0DD6D98D64641E0A
00000000000000000000000000000000
72757800F09DB63D5CAE6C08847CD2D2
00000000000000000000000000000000
F4B54A16B9403F6EEACOCE08A7700206
20000000000000008000000000000000
B94F9C12F228524C6C18CBB5648A6DCB
00000000000000000000000000000800
14284A1AF9C540B7AA6DD4EF6E304414
00000000200010000000000000000000
EOF665DAD090647E9282EC3EESA8EBFD
00000800000000000000000000000000
B7440F04AE80B5848565CA915FBA6D1S
00000000000000100000000000000000
5327FA6772812D3C5F12A621EDB18A8S8
00000000000400000000000000000000
C8DA1DDD17CDC6C470FAASFB3811659C
00000000000000000000000000000000
43F606F052A20326BF52B38A547B83CF
00000000000000000000000000000000
5C389670B0B9607548D89CBET196506B
00000000000000000000000000000000
DE60F75COBD7C2E449A7C77D72F5A804
00000000000000000000000000000000
0A544921EE583D4BE25BCBAE2D0D5152
00000000000000000000000000000000
EB4992EC1A56442432255D548FC86A61
00000000000000000000000000000000

00000000000000000000000000000000
D61FDIEECOFCOF31B54E7FA3FSABDBA4S
00000000000000000000000000000000
3104B330321F6441BE2081C87796A014
02001000000000000004000000400000
06EFAFF2EF4F998D0CB3F84B9F203273
00000020000000000800400000002000
923E76BE593E5BB0160446578BD4B0B2
00000000000000000000000000000000
7BB6E41FF011576D940F8B72330287EA
00000000000000000000000000000000
89CCA10170BDF06010629E1EC58C739D
00000008000010020000002000000000
496095C65AB55AA2EFEA4C32E5952D22
00100000000000002004100000000000
9CB8C24B47CBCD24DB2B350EF308A24A9
00000000000000000000030800002000
77C2C2FCC42698C39AEALEFEEDETF33F
08800000100000000000002000000000
AOA5E9662127CFDA182A873F96F02BD3
20000000000000008000000C00000000
796F7C11AAF34B0425FEF3CF1C0F280D
00040080000010000800000000000000
B350B72FBEC325616BFF70A56D349F99
00000000000000000000000000000000
342749CEB612CCAC58600F94300D1F69
00000000000000000000000000000000
34E119E8495C8B15B395E2A598831337
00000000000000000000000000000000
698F1DDB0386E67C0C76005B0902BF5C
00000000000000000000000000000000
24960D1C207527D6ASAADOBDIDDOFB20
00000000000000000000000000000000
265240795C3EBC940BBB363CETAES976
00000000000000000000000000000000
9D12914202282E38B48CAOF2A2E68ADC
00000000000000000000000000000000
70R46C3409F233146FAED3AFACASCS59A
00000000000000000000000000000000
15ECEC51A5030FD337A94B492386A186
00000000000000000000000000000000
1A4E3C2C5E1D5F5C001154DB3E3085BB
00000000000000000000000000000000
865DBC414EA30B389BB24022E450AF83
00000000000000000000000000000000
4B4DFD630FC7AD4330E9F142E63718D7
00000000000000000000000000000000
A17681693BA1B65E267EB1A2143EA2B2
00000000000000000000000000000000
C73C9AFF731ABEODCESFCC25392A020A
00000000000000000000000000000000
9D669B84DD572D26B6516C383FBDTBES
00000000000000000000000000000000
A9F5E01DBFBDE9BD4ABB89F8777EDF30
00000000000000000000000000000000
11149B8D7CEC1A38FBD77F940A76D413
00000000000000000000000000000000
918812CF3C83FF86BAFFAAAF0TBCOFES
00000000000000000000000000000000
B998C739B8190BC796DD839189D08BYS
00000000000000000000000000000000
6ED84816979714D529D3095ADEF89663
00000000000000000000000000000000
C39CBD314B6882061B54E575AE2DFFBE
02000000200100000000000080000000
0527188932A0E1C21AA3338024CCD30A
00204000000000000000500000000000
91E212A646B82FBBOF4F0D4849846C6D
00000000020000002000100001000000
E94E776F96877DCO0AC392432A382BEF
08008000002000000000000000001000
04DEECC202FCD453F72FF8B359E1C32F
00000000000000010000001000000000
27EDARAS34BB9B0168737075A1F3765D
00080000000000001000000000000000
2302903214FD7D9A37CBASEECTD133D1
00000000000000000000000000000000
148B1FA56CC2184FF360BE3AE565D0B7
00000000000000000000000000000000
EAB5FB347F9DCF8BC239D3F86F1CD507
00000000000000000000000000000000
0C41200878DB14E4FE83E928ACD18834
00000000000000000000000000000000
D1E28D1D724667EE5C91BD4FFAE04788
00000000000000000000000000000000
41F6A6DEAIET74DDA537391D1B34FBD56
00000000000000000000000000000100

C4327COE52B969601FETE50DF6C8D2D7
80000000000000000000000800000000
C495C28BEC5BB87A2072B41C03066C85
00000000000000000002000000000000
BB089D22296257423EC67AD64DT4B75F
00000000000000000000100000000000
6776CFDF027B1DFO0F428E7ED2E8867DC
00000000000000000000000000000000
3E3C14ABC5742DF1D9E4A6A54FC31801
00000000000000000002000000020000
F48EF4D9E63C2A5872442AB5467E438C
00000000000000008000000000000000
03B08B4FFB552A66F90DDD7D017AC29C
00000000000000000000000000000000
E11CD30131CB265DDBC599E78D58E43C
00000000000000000000000000000000
C4FAEEAD800275FD42C6A76DF57B0D5D
00000000000000000000000000000000
FI9B26E6DFBIF248423EC120800ADARE6
00000000000000000000000000000000
91A0663EDB793DC2C332CF58C4054388
00000000000000000000000000000000
4C20D968143AE24C38E431592B9A1E94
00000000000000000000000000000000
F588BC2E5DDD1D9E2D3801F1A1DDECT 1
00000000000000000400000000000000
1FOD8E67DD7611F1ED5C7ED3EBF59AA3
00000000000001000000000000000000
TD5E4704FE6212A64779AB0610258D12
00000000000000000000000000000000
FA6C27A03116B61EAECTAE30C3710B49
00000000000000000000000000000000
01664E080DEABSODSB2EDB16526C2EC2
00000000000000000000000000000000
A341B6DE055364DA054F71A49A47401B
00000000000000000000000000000000
9D3FAODF10D1A96D8279DAT78F231A314
00000000000000000000000000000000
C3CAE11EC2A2CB67AE309A8E529DA1D4
00000000000000000000000000000000
9FC837C57E1635A8EB586A2AA64FE3AY

FA4FTFF18F8215574229A1F56AB5DA2CS
00000000800000000000008080000008
EB99A5B647EDDTEIFBE3E86C6D6020E3
00000000000400000000400008000010
D63A508B1072C4CC88AC688CE9676CFF
00000000000000000000000000001000
8FBFE3FAOBBF5E45AEQ00E1B1908047AC
00000000080000000000000000000000
0B285DA01401D47B2B7FD5246501C80D
00020000000000040000200000020000
55812D7D868C2FBOODCOC365A54B0E91
00000001000000010000020000000000
F491027D0D713BF5334E37E53D8C4040
00000000000000000000000000000000
FE7848F1137FB8164D5DDFE514E087F2
00000000000000000000000000000000
588892E88F0298119751AEB2558924E6
00000000000000000000000000000000
965E45AA16A328F0D7DEE9106C2A274E
00000000000000000000000000000000
F9EA541281688424969B2728B12CDEE6
00000000000000000000000000000000
82E5FEC6620AC271FEF638B259A12148
00000000000000000000000000000000
B8CDCF29028ECCSD4EDFEQOEE85CAF 99D
00000000000000000040000004000000
D2A63BF03BCF9A196274B425C0594406
00000200000000000004000000000000
AA9F12444C132DCBY9ASB7D7BC3704D07
00000000000000000000000000000000
E0769913D6541007EE981ADBEIB37FF8
00000000000000000000000000000000
F4BC7729FE68A52D590031333EDF6D27
00000000000000000000000000000000
DE7DCE2F61244285516C3DF36AEFBCCO
00000000000000000000000000000000
25F2E124647B59283B9BC5044EBBB65F
00000000000000000000000000000000
F760A4B8279A2624B87FD2C6D188EEFS
00000000000000000000000000000000
11CEC821BB33D4E53888D6A8161205C2
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Generator Matrix for ARTM1 with K = 4096 and R = 2/3 2D85636A391DDISSFC16E4563B218AB4E08C6C84369919E1BDFOFF805EDIEBGA
. . . . 0000000000000000000000000000000000000000000000000000000000000000

The followmg list of hexadecimal character strmgs represents ABOEODE66D3804C9ICI5F4809D422F4F452161B6470D07F307D29D932ADE3974D
. A 0000000000000000000000000000000000000000000000000000000000000000

the generator matrix, G, for ARTM1 (SOQPSK-TG) with K = 0000000000000000000000000000000000000000000000000000000000000000
. . 0000000000008000000000000000000000000000000000000000000000000000

4096 and R = 2/3 Each strmg has a length of 64 hexadecimal 0000000000000000000000000000000000000000000000000000000000000000
. . 0000000000000000000000000000000000000000000000000000000000000000

characters and represents the tOp row of a size-256 circulant 19501115A5A30530EABIBD004BC832197315D2AA6D8DCFA6005AESBTE682D6DF
. c1s 0000000000000000000000000000000000000000000000000000000000000000

(ML = 256 for this code). This list follows the Sparse represen- 8272DFDD7381DDAET9387210F 9FFF7BD1A2D7585CE1CTD4056A9AC08185E29E7
. . . . . 0000000000000000000000000000000000000000000004000000000000000000
tation Of G deﬁned in Section 3.2, which is actually the sparse 0000000000000000000000000000000000000000000000000000000000000000
. . . . . 2000000000000000000000000000000000000000000000000000000400000000
representatlon of the submatrix W in (17) For this code, W is  0000000000000000000000000000000000000000000000000000000000000000
. . . 0000000000000000000000000000000000000000000000000000000000000000

alé x8 grld of (pOSSlblY) dense c1rculants, and so there are a  asrs492899r157725r 951 95EEAB0ECID37B03972884EEA5 2082998 53R 1DT SEA
. . c e . . 0000000100000000000000000000000000000000000000000000000000000000

total of 16 x 8 = 128 circulants in this list. These dimensions 5312AE0649D415ED025D55C0BE1 99458058 9BF314FF1549FCAB4C5684CF8D43C
0000800000000000000400000000000040000000000000000000010000000000

COI'I'eSpOIld to K/ML =16 and MD = 8. Because of the length 0000000000000000000000000008000000000000000000000000000000000000
. . . . 0000000008000040000000040000040000000020086000000102000000000011

of the strlngs for this code, Ol’lly 1 will fit on each line below and 4000000000000000000000000000200000000000000000000000000000000000
. . 2004000000000000000000000000000000004000000000000000000000000000

thus the circulants on 8 lines must be concatenated to form the 5E9C32DCADIAG4F6ES52518111791EEBOESBA9D464959DIEB0044F6020109DIEL
. . . 0000008000000000400002000000002000000000000001004100000000100000

16 x 8 arrangement of circulants in the generator matrix: D365F4B81ABB52187A825987664BESFIC8367AACTOC67D83C1DDB5986869A807
0000000000000000000000002000000000000010000000000000008000000000
0000000000000000000000000000000000000000000000000000000000000100

4E3F301ABB81E45CC8B375C4A284320B4966A2C52A954B566910B415AE2DEDFF 8000000004010000000020000000000002200000000100001800000000800000

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
5C6A04710A86535A10098C063C8CICO9CISOBEFB43B7CA470FC1IB10161A503AE9
0000000000000000000000000000000000000000000000000000000000000000
D6CF80D6F3C8067001AEEC4BB7FCFAO41AF38B070DF56DEOE3A3431E05011D89
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000080000000000000000000000000000
0000000800000000000000000000000000010000000000000000000000000000
2A6B5A26F12E515D88F4166D2094D19AA4TEOE4CBBSDB76E1098F0AB318D5CB4
0400000000000000200800000000000000000000100000000008000040000000
0754963FDDE2FF70D1DC0512677E75B4D1FACBAB96A0CDD32A7A31D46173F611
0004000000000800020000000000000010000000000000000000000000000020
0000000000000000000000000000000000000000200000000000000000000000
00000000200044000100002C0003000044001000001000000000802000100004
0000000004000100000000000000000000000000000000000000000000000000
0000000000000000000000000000000000100000000004000100000000000000
87EF28D4A700F0ABC8900CFC313C1EE42A23347B52BBE02247AC8F216821441D
0000000000000000000200000800012000080002000080000000000000040100

0000000000000000000000000000000100000000000000000000000000000000
FBCF6DOEF11E7304FE758F720CEB663604F53DDFE91DSE848D6AACTA46622018
0000000000000000000000000000000000000000000000000000000000000000
CCF18ACB4C4DIE23F6FE6D839B899E95A44974AA8B3F617FA029014A5E23B53D
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
B14F3E668A83256600DE220CD07B91A3472C124F45EECC4604D1A932F917E258
0000000000000000000000000000000000000000000000000000000000000000
AADE3D98FBB5D1548B2477DFBTCO9E3CB47137BB5E67EEEA2A200C206892A41F
0800000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
00000000000C0000000040000000000000000000000000100000000000000000
0000000000000000000000000000000000000000000000000000000000000400
0000000000000000000000000000000004000000000000000000000000000000
4F9D3ADIFFF6067050C8B4492D749C34A2F31C15841690C6BEDIAOCI92AFAEBSB
0000000000000000002000000002000000000000000000000000000000000000
09046652A5B9ABCCIALIATF2CD149FD97BE24361AF30F0CC94018005E91294E7F
0000000000000000000000000000004000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000400000000200000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
895DD7B29BBCFO0D43459FFO0EBA20FFA01584D8EF8E445F5E95FEDACIC3F252F2
0000000000000000000000000000000000000000000000000000000010000000
F9690D6ADCT2C57A8EEE294B50B12DE9C6046550AD582C9D2CB34F0AD9989F25
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000010000000000000000000000000000000000000000000000000000
1F064F49EC81150CA0ECI9CC8C62FESEIOFDBBB627B595B0453954FBF6EBDB37A
0000000000000000000000000000000000000000000000000000000000000000
7CEE931507EFFD2B93FAAD77B26AA5A921632C277338D6DD4A85B621108E0CE4
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
E9F82300644D87938BBAA8AT609F8F433808C1D3A273296352CF6A24619AE3A9
0000000000000000000000000000000000000000000000000000000000000000
8DFCF5D6435FB812309ED57455ACBE40DCAE4TCECAALIADA1F22C0F4C5A83A95E
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000020000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
D7CE5C5485B00DCD2788D0466AF267851838E76DCAE2095DCAFEDSATFA3006E9
0000000000000000000000000000000000000000000000000000000000000000
DC4918B173C38F98EB7AD375F5158392B443867C911C97FA03D37056EE22A9C9
0000020000000080000000040000080004000000000400002000000000200010
0040000000000000000001000000000000000000000000000000000000000000
0001280018000103408000009800040002010088002420004004260002200020
0100000000000000000200000000000000000002000000000000000000080000
0000000000020000000000000000000800000100000000000000000200000000
A500E6D648B232DD782128B33C70A97398B121C5E2FCIEF04CT7A9896BB044A53
10000100000800004000080A0400000080002000300804000100000200011000
8EAB3081C167B1689A3D61B3DFOFF2C38D7C917A0058EDIEBC6FBD367DIEESAA
0000000000000000000000000000000000000000000000000000000000400000
0000000000000000000000000000000000000000000000000000000000000000
0000600000000200000000000000000000000000800000000000000000000000
0000000000000000000000000000000000000000000000000000002000000000
0000000000000000000000000020000000000000000000000000000000000000
03BADA33CF6327A4C71DEBID3DB92B15A013E1DF975468AF2A99ECE3D85A46A8
0000000000010000000010000000000000000000000000000000000000000000
8DBES5F474D78E6E10053395405DB2DBESFBEDIC1IC13011F98A55F13FFA3953BC
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
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Generator Matrix for ARTM1 with K = 4096 and R = 1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM1 (SOQPSK-TG) with K =
4096 and R = 1/2. Each string has a length of 128 hexadecimal
characters and represents the top row of a size-512 circulant
(M = 512 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is a
8 x 8 grid of (possibly) dense circulants, and so there are a total
of 8 x8 = 64 circulants in this list. These dimensions correspond
to K/Mj, = 8and Mp, = 8. Because of the length of the strings for
this code, only 1 will fit on each line below and thus the circulants
on 8 lines must be concatenated to form the 8 x 8 arrangement
of circulants in the generator matrix:

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
67488F812902C865DDE17A9CD19E78E8CD50CDEE86EA2CB350084E4B3CE312FA1351B7A35A8086DDA246F0872540760C5398499E2AB8F0059E96F6D04E4951B2
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
E323EE6447E5073E62A0CD9E42C18B39C29E19B0BBF1F3C5F403CD4B3B3F8505502A5153DF555B4C7A50F1B121DC837B83EAOF581B3E637EE2287EFFDO60AES2
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
76216F42899D199719552A238D4AB07C9157CCDB46476C52D174145F3DE6CIFD122E1293843C9B9005FEBA51ADEEES76FE1AE54CDBO3CEA3CS5F2DDCTF470D951
8F2322970F502ADF20795D23140B33A218701F94C5C7059E468D824D793CC79EDCO7E3765B988E1FC13365D0D7E7AR662166CEFTDC2AF2A18E9B2C1FC8C6146B
C74913DC28970A5DD40C6836668E9AIDD6BF6DD8BE63EFFAD2637BDAF2D285856FEC45372883CBC1B71B12D8EABEDF007E8D1AC40DA3DF123CB54CA75DCDD50F
DA594CAEA8BAT1BA35E2470966ECCCAF1304626CCCODDFC216701B1B871D2656E590AA7F8112C04E36A8DD85539599509B77ED44BBDE4CB1FATB53C8BA6583104
45372883CBC1B71B52D8EABEDF007E8D1AC40DA3DF123CB54CA75DCDD50FC74913DC28970A5DD40C6836668E9A9DD6BF6DDSBE63EFFAD2637BDAF2D285856FEC
B558FC9632ECA0547A2BAFFD04826D3422C8AA8C6C2AT77B0A419853C827CBABDIB84DFBD3DCID4ABFD52647TA620B9A48382CCA5464F184E2C2FBSEEAQOA4DF3AES
CCFEO5CD1941A32B729E4AC11EF935D4ED052533F3C31A72440390C01C75D8CB852CB652FCB3DA02EFFEAFT733CFB62B39BB7F04D4790CC891BES8C34A887FD70
633BC64E8359ACIDFEOF9B4824F6C639D023C14CO0F8A679F9B63172EC6FEOCCS53BABCESDD14484A5B2A94B33469CEF6418B747EF85DEAICE64EF253DDEDCAS4A
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
7A5CBBE83ES589FBOB21B65FB4CICCAA90393AR64DA8C16C424CT7462912251752454BFC2D16413CFDBAFD483FBA62E0070BDDC286ERB590CEC3B5389B811C16311
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
E1D204409DB25F6C306B4A07A7B622E01FB8AR063DCE232574E027441C573EBFA869ABC67B34452F84FC305844C95866CE3ACF700F97E88D415F4DB7449E85CD
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
EE40A39576F718EC89E3ED92BB4451DE55473E1DECDF40DD446594F 9A49B06FD28A07C558FBAEAC830121FC5AAS52F08A3F8D17FABAGADOE6868AF398EDCCA2F0
A2EE3775EE9CAB56D2C7771C378642F1E784A1B1E2535F3DAD2716F453F47A5B31A5169BBF774D3DDC2DC56BATTC834248BCTE16E32921706DE2807AF695C28F
821C5FBOF0FCF735F99F7B9D2E811D681FCA3B7511DBF28D40C8AD12833BDD259B9B807D223B8F218D45ED8329638EAB8BF25278BC825FDEC24D145B530027DB
81D1824E6BA270E4F20ED06D045AC55E9B907EBCD6825CES5AD6DB669FDSA904F4D35988F71840CD05C204C532B64CE4252A1BDBBFB31D84CAED31E29959A26C
807D223B8E218D45ED8329638EAB8BF25278BC825FDEC24D145B530027DB821C5FBOFO0FCF735F99F7B9D2E811D681FCA3B7511DBF28D40C8AD12833BDD259B9B
0299B9CD7AACIC70825E5E0FCA61F0AEBSDD2E9EBOCI3E8AB196DC24637790237E5DE081569115A6B7CAEEO04BB37BF9F50DB666BFE878596D9E2F72EADOF8CSF
D7201AREBOCDDC5A1754DF1222C80638D33639F93B5F959F 78AC3E4AF0541C074C159FAD218CD75902B238D7AF6123B10DA8C323A8F5D32D1A38E8F8B6C65270
25R65422ED86C22ADCC53DE489BBAEO16DCE23AA86179DEBSDF8126E2DATIE6CHE4AEBTDELI691DICBODEL6FA4F75CCA2BFC9120CC0440CB32B0C427121943EA6C
1A9560F922AF99B68C8ED8ASA2E828BETBCD93FA245C2527087937200BFD68A35BDDDOEDFC35CA99B6079D478BESBBSFESE1IB2A2EC42DE85133A332E32AA5447
BOBFB1D59DE8676D7DA0FA68976562BBFCFA4590490614F2A5B5310FAB88F14A8D986923F0154AA5024E052A0CE38DF3CBF0B1D2523913359227BA517CEF6B3B
CD1D353BAD7EDBB17CCTDFF5A4C6F7B5E5A50B0ADFD88A6E510797836E3625B1D57DBEOOFD1A35881B47BE24796A994EBBIBAALIFEE9227B8512E14BBA818D06C
238AA72CCT7524D82EF82873C2C1B32C26F9410742449275C36D7FD1D02863DF2F69E070C4E14528DD4C76B6133D75072043EB30BA7625ED2AETA4BED22950283
BEOOFD1A35881B47BE24796A994EBBIBAAIFBE9227B8512E14BBA818D06CCD1D353BADTEDBBL7CCTDFF5A4C6F 7TBSESAS0BOADFD88A6ES10797836E3625B1D57D
0904DA6845915518D854EF6148330A7904F9757B3709BF7ATB93A97FAR4C8F4C4173490705994A8CIE309C585F6BDD4149BET75CD6ABIF92C65D940A8F4575FFA
3DF26BASDAOA4A6TET8634E48807218038EBB1970A596CA5F967B405DFFDSEE679F6C567376DE09ABF21991237CB1869510FFAE199FCOBI9A32834656E53C9502
49ED8C73A04782981F14CF3F36C62E5D8DFC198A77579CBBA289094B655296668D39DEC8316E8FDFOBBD539CCIDE4ATBBDBY94A94C6778CID06B3593BFD3F3690
FESE1B2A2EC42DE85133A332E32AA54471A9560F922AF99B68C8EDSASA2E828BE7BCDY3FA245C2527087937200BFD68A35BDDDOEDFC35CA99B6079D478BESBBS
855378F7DB0214417E0AC5662ABDD088E4560E213572A52099972A636B6714136CF87394AAC58A767DF48CELFB3778707F6D7TE8A09FA45BF2C3BCI61EDEDO9AS
EBBY9BAA1F8E9227B8512E14BBA818D06CCDID353BAD7EDBBL7CCTDFF5A4C6F 7TBSESAS0BOADFD88A6ES10797836E3625B1D57DBEOOFD1A35881B47BE24796A994
47520034B945301748FBCIAE99ABFCDDIE40C88D5DICT624FCFE26FE127ADE378125CI9DE22EFB87CBC6841B143A830120E5E7797E064742328D22D3231E19917
50BOADFD88A6ES510797836E36A5B1D57DBEOOFD1A35881B47BE24796A994EBBIBAALF8E9227B8512E14BBA818D06CCD1D353BADTEDBB17CCTDFF5A4C6F 7BSESA
149BE75CD6AB1F92C65D940A8F4575FFA0904DA6845915518D854EF6148330A7904F9757B3709BF7ATB93A97FAR4C8F4C4173490705994A8C9E309C585F6BDD4
9510FFAE199FCOBIA32834656E53C95823DF26BA9DA0A4A6TET8634E48807218038EBB1970A596CASF967B405DFFDSEE67IF6C567376FEQ09A8F21991237CB186
BBDB94A94C6778CID06B3593BFD3F369049EDSCT3A04782981F14CF3F36C62ESDBDFC198A77579CBBA289094B655296668D39DEC8316E8FDFOBBD539CCIDELAT
CDC2F8C8791A60968F6B5743E96EA02E0104C661E6EC57B6CA3ABI0D6DDIF889D584B98B8D60E2BAE4IFEFD688A0C23FC1IB6329A38C2D5BBACIDDC213750002F
8DEF60D6EF71B013349F235FDE8F61CB8AAD978A3CA3460BC3E00490654C558EE88A806FBCI94B04C507F1BIB6EIB57AFEE2A1013FE4DICB54B26F6A9FCBF4012
EC083A9851D2011971580541A4877AD6CE8647D78C13A465043454653714732210DBCEF8F04D34894463E387D4622C2F53B4A6F76830A744BC938483A3AC1IDFB
49A3E4B6BE15CT7C4817BOBFC05A68D5800B74EFO0C1A8F667EA74FDF3CFEBD78D3E7CFBD96FB66C3C626CDCT711DF60DOD17DB11206EFESABIA27618C562A389F4
CEF8F04D34894463E387D4622C2F53B4A6F76830A744BC938483A3AC1DFBEC083A9871D2011971580541A4877AD6CE8647D78C13A465043454653714732210DB
4CC398377B65F34B582E74B90817839ABF409EBF69BCCACOEB468F087759C278D0CESFA4EB79BC1CABB02262EE53639A9C8BD915B2C0D12F7034B4D87B4D50EA
CE1843756C28AB93ABB2268E37E029F0227E82B8243C0A34745A9E5A5ADF TECBF07126789D9134AECI956F TDF2E963740076D445A01FC8D9056A7DD6EBB581359
94297FBBE916DDE579D3925149C8948A75D3CB0OF1D6642A3AAT8CTDFEBICAIBBBFBEOB6CASCIDSAFDI6ETAT34A94108EAACFTB484416954734ACEIFB8FABE4L6
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
9F27199D58A3E81DDIEFEEAA6FCIC337DDEF65CASB10DA2C1756ED649082640D15FBA5579EF6B1C2EBADIFCESB4AEEOD29F7904D989F34A75515EF222546A821C
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
F7C8D733617DBDF81DEOSED3F9C10F5A576AESFFOEB95814860503206F4549A7A24B6CC3AEDD71A32318C891B213F87EF882F4B5BI96ES55B1B5B13019472826CD
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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APPENDIX
GENERATOR MATRIXES FOR ARTM2 (ARTM CPM)

Generator Matrix for ARTM2 with K =1024 and R = 4/5

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
1024 and R = 4/5. Each string has a length of 8 hexadecimal
characters and represents the top row of a size-32 circulant
(My, = 32 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 32 x 8 grid of (possibly) dense circulants, and so there are a
total of 32 x 8 = 256 circulants in this list. These dimensions
correspond to K/My, = 32 and Mp = 8. Because the strings are
so short for this code, they can be arranged below with 8 strings
per line and so the listing below corresponds exactly to the 32 x 8
arrangement of circulants in the generator matrix:

00000000 569A613E 29ADFO8E 00000000 17060088 00000000 5859D8E1 00000000
00020000 D993E182 562ABOES 00200000 D71E0543 00000004 7344DA73 00011800
00000000 6F32DCBO D3BB74BF 00000000 2110D73F 00000000 EO37FE82 00000000
00000000 77F3C400 DA3D7CFF 00000000 OE24F7FF 00000000 00336882 00000000
80804000 B6017797 179C4ClA 00040000 25E6BAOE 04000000 313DC9C5 00100110
04008000 38FO0D658 295C2E14 00080000 290A28C1 00000000 48C6FD48 00000200
00000000 9DB65D5D 2AC4F666 00000000 20FEC647 00000000 6FC5F68F 00000000
00000000 1038710A 2228E7B7 00000000 51A6F991 00000000 A6AC82B3 00000000
00000000 BE2DF07D 90E9ABEB 00000000 7FFA9EAA 00000000 821E3E18 00000000
00000000 65B8AF01 38385D5D 00000000 572056EE 00020000 CDS5BE084 08000000
00000000 1BF308DE DO0141BF7 00000000 EF6CF8C6 00000000 8CD79E4B 00000000
00000000 EDCFC7F2 A52BA270 00000000 9E620C4E 00000000 C6056643 00000000
00000000 D8D3FDE3 53BCD8ES 00000000 FEA934C5 00000000 BO582D2B 00000000
00000000 06585C43 0BC6290B 00000000 4740B954 80000000 FC306COE 00000200
04000000 54F9E335 475ARBF6 00000000 693AD377 00000000 563A283E 00000000
00000000 F6991541 FC41243C 00000000 386D74E0 00000000 O09E4B4F2 00000000
00000000 D3BDBEDO 640B3F10 00000000 6EAF03C2 00000000 41FF41FF 00000000
00000000 E2ACC12D 40160C21 00000000 8A0345BD 00000000 9C452DBA 00000000
00000000 D17C4792 560F1004 00000000 FS5A99E69 00000000 3C56CAED 00000000
00000000 7929AB7F A64983A3 00000000 D2EABOEO 00000000 2725E65F 00000000
00000000 48DB297C O0BD218E0 00000000 7DFC62F1 00000000 B8A95200 00000000
00000000 721D5CCC AOES929E 00000000 CF39E7D4 00000000 57264FD6 00000000
00000000 6D50D3C2 EF25629A 00000000 CC685BDE 00000000 DAB87EE8 00000000
00000000 62BFBOAF 6FECB785 00000000 F59B7ED6 00000000 61A514D0 00000000
00000000 2DAA2B54 080F1E94 00000000 F6D0O59F0 00000000 DO6B7611 00000000
00000000 O013FC8E9 ABF4618C 00000000 5B5C2F41 00000000 B9FA46D4 00000000
00100000 12916D71 479DB2B4 01000000 76A80276 00000000 53BC6F64 00004000
00000000 94CD99F6 6BY9F5B62 00000000 8FCCBCCY 00000000 A01058E8 00000000
00000000 BAODF5B9 CF3AC310 00000000 51EICE60 00000000 11B68561 00000000
00000000 44BC4105 02164531 00000000 02432F9D 00000000 AC850D1D 00000000
00048000 149A343C 7FF48CC6 00080000 25CCBEC3 01000800 A96D47C2 20200204
00000000 06E03D14 BB342DEA 00000000 C3219B05 00000000 5797F8D6 00000000

Generator Matrix for ARTM2 with K = 1024 and R = 2/3

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
1024 and R = 2/3. Each string has a length of 16 hexadecimal
characters and represents the top row of a size-64 circulant
(M, = 64 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 16 x 8 grid of (possibly) dense circulants, and so there are a
total of 16 x 8 = 128 circulants in this list. These dimensions
correspond to K/My, = 16 and Mp = 8. Because of the length
of the strings for this code, only 4 will fit on each line below and
thus the circulants on 2 lines must be concatenated to form the
16 x 8 arrangement of circulants in the generator matrix:

0000000000000000 0000000000000000 C5274DDD7C78F9DC  0000000000000000
0000000000000000 D3775F1E3E773149 24B7D752BBE5372B A4EIBBAF8F1F3B98
0000000000000000 0000000000000000 OEF720BOBF516529 0000000000000000
0000000000000000 C82C2FD4594A43BD BI15A52BA6228C823 DEE41617EA2CA521
0000000000000000 0000000000000000 C4B62A%94065A5382 0000000000000000
0000000000000000 8AAR5019694E0B12D B287FC11841B9B78 96C55280CB4A7058
0020000000000000 0000000000000000 BDO5B4222DF4F683 2000000000000000
0000000000000010 6D088B6D3DA0OEF41l 6CBBD6436F220CE0  A0968445B69ED077
0000000000000000 0000000000000000 BAD9B91BE9458622 0000000000000000
0000000000000000 6E46FA516188AEB6 60AE27A94630BA28 5B37237D28B0C457
0000000000000000 0000000000000000 76428135682904F6 0000000000000000
0000000040000000 A04D5A0A413D9D90 7DOFA8843CFD10B4 C85026AD05209ECE
0000000008000000 0000000000000001 092BDA7ARACAF477 0000000000000000
0000000000000000 F69EAS32BDIDC24A 0969511BT7A6C996D 257BAF54995E8EEL
0000000000000000 0000000000000000 0937C4E3EF562A96 0000000000000000
0000000000000000 F138FBD58AA5824D 0736BC6669F8A898 26F89CTDEACS552C1
0000000000000000 0000000000000000 SE8EBA734CB04304 0000000000000000
0000000000000000 AE9CD32C10C117A3 BD75FB3765DDE33B DI1D74E699608608B
0000000000000000 0000000000000000 168C19964A9B73C7 0000000000000000
0000000000000000 066592A6DCF1C5A3 CB89CCY98FEE94972 D18332C9536E78E2
0000000000000000 0000000000000000 300A9306106E5E16 0000000000000000
0000000000000000 A4C1841B97858C02 244EB2D927518D26 015260C20DCBC2C6
0000000000000000 0000000000000000 4378F1172ADAEFCA 0000000000000000
0000000000000000 3C45CAB6BBF290DE 1F83990C76F85ACD 6F1E22E55B5DF948
0000000000000000 0000000000000000 C4C60555A0495743 0000000000000000
0000000000000000 8155681255D0F131 16F78CESDE6C15B8 98C8AAB4092AES78
0000000400000000 0000000000000000 985D9AC6185EAT40 0000040000000000
0002000000000000 66B18617A9D22617 33B95C112922457F O0BB358C70BD4E913
0000000004000000 8000000000000000 DF748119EF21F5DD 0000000000000000
0000000000000000 20467BC87D7777DD EB819268FFC1722EA EE90233DE43EBBBB
0080000000011000 0000000010000000 O0A83F8C1C522A372 0000000001000000
0000000080001000 7E307148A8D482A0 9B702955632096CA 503F1838A4556A41

Generator Matrix for ARTM2 with K = 1024 and R = 1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
1024 and R = 1/2. Each string has a length of 32 hexadecimal
characters and represents the top row of a size-128 circulant
(M, = 128 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is a
8 x 8 grid of (possibly) dense circulants, and so there are a total
of 8 x8 = 64 circulants in this list. These dimensions correspond
to K/My, = 8and Mp = 8. Because of the length of the strings for
this code, only 2 will fit on each line below and thus the circulants
on 4 lines must be concatenated to form the 8 x 8 arrangement
of circulants in the generator matrix:

00000000000000000000000000000000
00000000000000000000001000000000
00000000000000000000000100000000
5D99D2252E0823A2FEAC125B75E42E6F
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
TCE63EA3C48530AC561810E1599F761B
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
OB7B4AFBCD72C30FA885A00AF23481EE
00000000000000000000000000000840
00000000000000000000100000000000
00000000000000000000000000001000
CCBASFEAEFA3F67F9C812B258655AR4E
00000000000000000000000000000000
00000000000000000000000020000000
10000000000000000000000000000000
29D246558F732C51A2FBFF346ABT7C162
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
8892D27F9DA1DE2B5CO7E96CDAF10A61
20000000000000000000000000000000
00000000000800000000000800000000
00000000000000000000000000000000
C27D58F0AB890F4F7C8D5DE444986BED
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
BAD925F9017D30BOEDB1677735F7D0B8

392CCA875CCDE4BCE7B5DB5A62456B99
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
67ACE31F6AAD74927674A2CF2580ADTE
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
EBBDDOAF43952DBABA4B3ABB57E4FDCS
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
DI1C9AAAASDB26B870D2EECF99C2A0D23
00000000000000100000000000000000
00000000000000000000000000400000
00000000000000000010000000000000
8748C85212575EEA4CE936FDFFD4B943
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
48BDIAYECIA969259ET6258B3C3BE3E3
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
2BD9481A43DDA6D74701F90A0ECT35B0
00000800000000000800000000000000
00000000000000000000000000002000
00000010080000000000080000000000
963552582F69D0DD385A9031140A990D
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
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Generator Matrix for ARTM2 with K = 4096 and R = 4/5
The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
4096 and R = 4/5. Each string has a length of 32 hexadecimal
characters and represents the top row of a size-128 circulant
(M = 128 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 32 x 8 grid of (possibly) dense circulants, and so there are a
total of 32 x 8 = 256 circulants in this list. These dimensions
correspond to K/M;, = 32 and Mp = 8. Because of the length
of the strings for this code, only 2 will fit on each line below and
thus the circulants on 4 lines must be concatenated to form the
32 x 8 arrangement of circulants in the generator matrix:

00000000000000000000000000000000
A2ECBD51EE1ADBA24616D631D1D5DA2A
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
C89383C1C157DBFAC4419496A3723B9A
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
9ED868987EBB829570A77753AA5BEDFA
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
CB048A707AC67907C088AEAS51720327
00800000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
57A338C0C9AAB86298FD6182364BD49DA
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
137DE37ECA98F6CE17672D835E07AD36
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
87B02C65ABF6B6E374C300F543ED3BAF
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
CEDA15AC91551945371E89C38514300F
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
AR6B5B1672D6C6B14130826F854C2E8D
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
E23B63AB780F81BCF98CASF632AE5B29
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
B98B2A157C03A94DD239FCD5B6B08BELY
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
59003AFAC984922F7E8764D40BC1B81A
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
083D3C772551AE66DB7777BD7C6B288F
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
E76E9F2052F4771C77CBB944A7905DD2
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
FCC2B36B38CD1CEAS5E6B2C1FCTFAEEC
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
2327E3F6AA0C2E9A79576B730A0F3D8C
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
15C906075A4D7DAEF4BDA9364D36EA8D
00040000000000008000000000000000
00000000000000000000000000020000
00000000000000000000000000000000
E21C13E1E229447BBF3D776421F9C4C8
00000000020000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
56B186BAF691163461C55B79D10C6093
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000400000000000000
AC1F69CF5C619CA32428DA3DA201266F
01000048000000000000080020000000
00000000000004000000000000000000
00000000000000000000000000000000
B460800B4B10DOAOFAIA2FEAD4FBD871
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
2A7B49404F1ED90499031D85BD51B2F3
00000000000000000000000000000000

BD62016C5FA3202640DB0O3D0AFIF613A
00000000000000000000000000000000
OF42BE7D84EAF58805B17E8C8099036D
1E857CFBOSDSEB100B62FD19013206DA
14177CD65622146E14D965CF454DF5EE
00000000000000000000000000000000
973D1537D7B8505DF379588851B85365
2E7A2A6FAFT70A0BBE6F2B110A370A6CB
D6B4AA25BEEIFE206EB7542111103FD1
00000000000000000000000000000000
50844440FF475AC2A896FB87F881BADD
Al088881FESBEB585512DF70FF10375BA
13D376FDA6D3FCIBF6FF054CF1372862
00000000000000000000040000000000
15B3C4DCA1884F4DDBF69B4FF24FD3FC
2BE789B943109E9BB7FD369FE49FATF8
4COC49C89AF091353C4A12AB2ED16A26
00000000000000000000000000000000
4RACBB45A899303127226BC244D4F128
9559768B513260624E44D78489A9E250
B8F122F2C57F8B1663D40ABC27BC7140
00000000000000000000000000000000
2AF09EF1C502E3E48BCB15FE2C598F50
55E13DE38A05C7C917962BF458B31EAD
F722AR2EEFBAD5B41BA6886EE1018038
00000000000000000000000000000000
21BB840600E3DC8AABBBBEEB56D06E9A
4377080C01C7391551777DD6ADAODD34
F22D7ECEBF9EEFA8572594A1F3EB2A2A
00000000000000000000000000000000
5287CFACA8ABC8BS5FB3AFETBBEALISC96
A50F9F595157916BF675FCF77D42B92C
EBB7298225EA69FFE90869176FAACS5CC
00000000000000000000000000000000
A45DBEAB1733AEDCA60897AIATFFA421
48BB7D562E675DB94C112F534FFF4843
CADCE9491DE53A015108C59FB3F7ECF3
00000000000000000000000000000000
167ECFDFB3CF2B73A5247794E8054423
2CFD9FBB679E56E74A48EF29D00A8846
31BEAGEDBOEFOEFB274E483AE10186AF
00000000000000000000000000000000
20EB840E1ABCC6FA9BB6C3BC3BECID39
41D7081C35798DF5376D877877D93AT2
2F2EC4ABB4B531F6312CB9BD024A9DES
00000000000000000000000000000000
E6F4092A7794BCBB12AED2D4C7D8C4B2
CDE81254EF297966255DA5A98FB18965
2907E84A4E2B04512C27CC665B6DB6EF T
00000000000000000000000000000000
31996DB6DBDCA41FA1293AAC1144B09F
6332DB6DB7B9483F425275582299613E
1DC4BE7865EB6676AE017BOBE4B8EAED
00000000000000000000000000000000
EC2F92E3ABA07712F9E197AD99DABB0S
D85F25CT75740EE25F3C32F5F33B5700B
AF4BAF3A36AAA303C571058A5B567B42
00000000000000000000000000000000
16296D59EDOAAD2EBCESDAAABCOF15C4
2C52DAB3DA15525D79D1B555181E2B88
2EAFD5B2962712A24E88C169A1F85EA3
00000000000000000000000000000000
05A687E17A8CBABD56CA589C4A893A23
0B4D07C2F519757ARD94B13895127446
AF146B9458607BD017E0C1CF2CC55E35
00040000000000000000000000000000
0738B31558D6BC512E516181EF401F83
OE71262AB1AD78A2DCA2C303DE8O3F06
E5050022384C92D7BDB5D51E94C3A6CC
00000000000000000000000000001000
54FA5B0E993394140088E1324B5EF6D7
A9F4B61D306728280111C26496BDEDAE
BDCA257C646B24FEF59C32FESEF8BDFO
00000000000000000000000000000000
C3F97BE2FT7C2F72895F191AC93FBD670
87F2F7CS5EF85EE512BE3235927F7ACEL
9BE0267A4D73BB2A60ARF66554E85726
00000000000000000000080002400000
D89453E95CIA6F0099EI3DCECCEIB2BY
BO028E79AB934DE0133D27B9D99D30573
87A4C892C6A1132201589B22FFAB8946
00000000000000000000000000000000
6C8BFEAE251A1E93224B1A844E880562
D917FD5C4A343D26449635889D100AC4
1F1ASEAFE138CF15A29BDDEEBB750EA4S
00000000000000000000000000000000
77BAEDD43A907C697ABF84E33C568A6F

00000000000000000000000000000000
00000000000000000000000000000040
AQF7B55FC0975602EFA951121D173B7F
00000000000000080010000000010000
00000004000000000000000000000000
00000000000000010000000000000000
61A97AE2F939B31C9C5E03B1EE834310
80000000000010000000000000000000
00000000000000000000000040000000
00000000000000000000000000000000
59B0587F62F6B5C233E74301B2BF15D7
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
446CACT7344033C10C3A5CT793B0E023D4
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
BB4F72E696E2DC02369E0FC544FEA9EC
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
4AB654DET9F7703C55299EFDD3B0647D
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
0D04138506BF87A915E35D7A8141B29F
00000000000000000000000000000000
00000000000000000000000000000000
00000000002020000000000000000000
13F54379AC2A83CCC5AT489558AF1CE9
00000000004000000020000000002004
00000000001000000000000000000000
00000000000100000000000000000000
68CE5D5000B256FCB42012BB529EAFD6
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00BD54D61A9DF14DC78A15A5DEQ405F7
00000000000000000000000000000000
00000000000000000000000000000000

EF75DBA87520F8D2F57F09C678AD16DE
EEAE469C07E128F015B5C24F8C16D1E3
00000000000000080000000000000000
093E305BC7T8FBAB10A605F84A3C156D7
127C60B78E1F756210C0BF094783ADAE
3A5E2E070F220A7D66F38F04328F1318
80000000000000000000000000000000
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C4BESCB41397E97F346C13EAE270FAFE
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F74388DCY9A16181DB797A274FC1ECL 9A
B723088CESE75C1D184269D733ADBB1F
00000000000000000000000000000000
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Generator Matrix for ARTM2 with K = 4096 and R = 2/3

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
4096 and R = 2/3. Each string has a length of 64 hexadecimal
characters and represents the top row of a size-256 circulant
(My = 256 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is
a 16 x 8 grid of (possibly) dense circulants, and so there are a
total of 16 x 8 = 128 circulants in this list. These dimensions
correspond to K/M;, = 16 and Mp = 8. Because of the length
of the strings for this code, only 1 will fit on each line below and
thus the circulants on 8 lines must be concatenated to form the
16 x 8 arrangement of circulants in the generator matrix:
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0000000000000000000000000000000000000000000000000000000000000000
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
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D9B0984914A232DCA646100AES0B8B4ABCOEBI2533CCD5799B0EODIDD304941
269B97F2F949A9D019A2A8060B6556CIECET7337D14D961F4E3CDIFAE3ACIEL8B
961F4E3CDIFAE3ACIE48B269B9TF2F949A9D019A2A8060B6556CIECET337D14D
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911BB7774BBAD5SAC31AF113E6C2A2D09F27C5BD2E182DB2DADEDS8C81EBF1448
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0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
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Generator Matrix for ARTM2 with K = 4096 and R = 1/2

The following list of hexadecimal character strings represents
the generator matrix, G, for ARTM2 (ARTM CPM) with K =
4096 and R = 1/2. Each string has a length of 128 hexadecimal
characters and represents the top row of a size-512 circulant
(M = 512 for this code). This list follows the sparse represen-
tation of G defined in Section 3.2, which is actually the sparse
representation of the submatrix W in (17). For this code, W is a
8 x 8 grid of (possibly) dense circulants, and so there are a total
of 8 x8 = 64 circulants in this list. These dimensions correspond
to K/Mj, = 8and Mp, = 8. Because of the length of the strings for
this code, only 1 will fit on each line below and thus the circulants
on 8 lines must be concatenated to form the 8 x 8 arrangement
of circulants in the generator matrix:
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00000000000000000000000000000000800000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000
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00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
82D1FEDDAS5SD66BF9336E6BBA40BCICB6FCCTOF48F9C432B75D28464AB56E920BF53D3D0FAD4B82390823510CB6FA6CC8CC6A6CCACAIDF32D03B7BDSEC620C188
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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53590D3749FDBOF7A4F383BA5831441F1DCEC8BCO1DE87E0629947 7F0BDFBB1FEAEDEFCEBSCE671F7ASDD92DF67CE4164F16FFE11261C622C7CABC6A2B983999
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000



