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Abstract |We consider carrier phase and symbol timing synchronization for M-ary partial-response continuous phase modulation
(CPM).We focus on developing a classical phase locked loop (PLL)-basedmethod that is robust even forM-ary partial-response CPMs,
which has proven to be elusive thus far in the literature. A key part of our design is a simple yet e�ective timing false lock detector, which
solves the problems faced byM-ary partial-responseCPMs in the past.�e lock detectormaintains a running count of successive, simple,
short-term false lock decisions, rather than evaluating a single, long-term decision. Using a Markov chain model, we show that the lock
detector can provide accurate and rapid timing corrections. We provide a comprehensive set of numerical performance results for three
di�erent M-ary partial-response CPM schemes, including S-curves, probability of false detection, acquisition time, steady-state error
variance, and transient error tracking; we also consider the so-called tilted phase CPMmodel in our analysis, which has fundamentally
di�erent synchronization behavior from the traditional CPMmodel. Our results emphasize the low signal-to-noise ratio (SNR) regime,
to show that our system can be used in modern, capacity-approaching, coded CPM applications.

1 | INTRODUCTION

Continuous phase modulation (CPM) [1] has long been ap-
preciated for being bandwidth e�cient when used with power-
e�cient nonlinear ampli�ers. Recently [2], a large-scale study
was undertaken to identify capacity-approaching CPMs under
varying bandwidth and complexity constraints; many of the
CPM schemes that were identi�ed fall into the category of M-
ary partial-response CPM, which presents the greatest challenge
when it comes to symbol timing recovery and carrier phase
synchronization (see [3] and the references therein for a longer
discussion of these challenges).

In sorting through the existing works on CPM synchroniza-
tion, they can be categorized as data aided (DA), non data
aided (NDA), decision directed (DD), etc. For example, the DA
approach in [3] is very e�ective, even forM-ary partial-response
CPMs. Our focus in this work is to develop a classical phase
locked loop (PLL)-based DD scheme—of the type shown in
Fig. 1—that is targeted for use with capacity-approaching CPMs
operating at very low signal-to-noise ratios (SNRs). Although
the basic scheme in Fig. 1 is of widespread interest and has
broad applicability, it has proven challenging for M-ary partial-
response CPMs because of timing false locks.We tackle the false-
lock challenge in this work, because it represents the “last piece”

in the otherwisewell-understood system shown in Fig. 1.We�rst
treated this problem in [4], but here we give expanded coverage
and a much larger set of numerical results. We readily acknowl-
edge that our solution is adapted from previous e�orts in [5]
and [6]; however, we assemble our system in a novel, reduced-
complexity manner, and demonstrate that accuracy and rapid
synchronization can be achieved at the lowest SNRs required by
the capacity-approaching schemes in [2]. As such, our approach
enables an important class of receivers to be e�ective when used
with modern, capacity-approaching CPMs.
�is paper is organized as follows. In Section 2 we outline the

CPM signal model. In Section 3 we develop the receiver archi-
tecture shown in Fig. 1. In Section 4 we develop the timing false
lock detector, including the false lock detection algorithm—
which is modeled as aMarkov chain—and the quantized timing
error correction that is inserted when a false lock is detected.
In Section 5 we give a comprehensive set of performance re-
sults for three capacity-approaching, M-ary, partial-response
CPM schemes; these results include S-curves, probability of
false detection, acquisition time, steady-state error variance, and
transient error tracking. An important contribution of our work
is that we give full consideration to the so-called tilted phase
model [7] of CPM, which has fundamentally di�erent synchro-
nization behavior from the traditional CPMmodel. Our results
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show that the receiver in Fig. 1 achieves excellent overall per-
formance with modest complexity for M-ary partial-response
CPMs.

2 | SIGNAL MODEL

We consider CPM signals with complex envelope

s(t; α) = exp{ j2πh∑
i

α iq(t − iTs)} (1)

where α i ∈ {±1,±3,⋯,±(M − 1)} is anM-ary data symbol, Ts is
the duration of each α i , and h is themodulation index.�e phase
response q(t) is the time-integral of a frequency pulse f (t)with
area 1/2 and duration LTs . When L = 1 the signal is full response
and when L > 1 it is partial response. Popular frequency pulse
shapes are length-L rectangular (LREC), raised cosine (LRC),
and Gaussian (LG) [1, p. 52].
�e complex envelope of the received signal is modeled as

r(t) = √
Es/Tss(t − τ; α)e jϕ +w(t) (2)

where Es is the energy per symbol, τ is the symbol timing o�set,
ϕ is the carrier phase o�set, and w(t) is complex-valued addi-
tive white Gaussian noise (AWGN) with zero mean and power
spectral density N0. �e received signal is passed through an
anti-aliasing �lter (AAF) that is assumed not to distort the signal
component of the received waveform.�e output of the AAF is
sampled at a rate 1/T , which we assume is an integer multiple N
of the symbol rate 1/Ts (we have usedN = 4 herein).�e samples
of r(t) at the instants t = nT are denoted as ru[n], where the
subscript indicates that they are unsynchronized with respect to
symbol timing and carrier phase.�e relationship between the
sample index n and the symbol index k is kN ≤ n < (k + 1)N
with n = kN +m and 0 ≤ m ≤ N − 1.
Our focus is on estimating and correcting for ϕ and τ for

CPM schemes with M > 2 and L > 1 (M-ary, partial response),
especially at the low ratios of Es/N0 that are encountered in
modern, capacity approaching coding schemes. To that end,
we provide numerical results and examples for 4 speci�c CPM
schemes:

Scheme 1: M = 4, h = 1/4, 2RC;
Scheme 2: M = 4, h = 1/4, 2REC;
Scheme 3: M = 8, h = 1/8, 2RC;
Scheme 4: M = 2, h = 1/2, 4G.

�e last scheme (a version of Gaussian minimum shi� keying,
or GMSK) is not an M-ary scheme, but is included to illustrate
the e�ectiveness of our �nal results.

Inwhat follows, we refer to estimated and hypothesized values
of a generic quantity x as x̂ and x̃, respectively. Also, x̂ and x̃ can
assume the same values as x itself.

3 | RECEIVER ARCHITECTURE

A block diagram of the receiver is shown in Fig. 1. Many of
the receiver modules are described in the existing literature and
are summarized as follows:

● �e phase corrector applies the phase estimate ϕ̂[k] via
the operation e− jϕ̂[k]ru[n]. �e interpolator applies the
timing estimate τ̂[k], which results in the synchronized

Phase corrector
Interpolator

MF
Bank VA

PED

TED

PLL

PLL

Lock
Detector

ru[n] r[n] α̂k−DT

α̂k−DZk

eϕ[k−D]

eτ[k−D]

ϕ̂[k]

τ̂[k]

δ̂τ(A)

Figure 1 | Block diagram of a CPM receiver with decision-directed (DD) PLLs.

samples of the received signal, r[n]; we have implemented
the piecewise-parabolic interpolator described in [8], [9].

● �e matched �lter (MF) bank can be implemented in a
number of ways. We have applied the standard MF bank,
e.g. [1, Ch. 7], and the pulse amplitude modulation (PAM)
MFbank [10]–[12], although other reduced-complexity op-
tions are equally applicable, e.g. [3], [13]–[17].

● �e Viterbi algorithm (VA), e.g. [1, Ch. 7], makes use of
the set of MF samples, Zk , to update its path metrics (over
a possibly reduced trellis) and produce a detected symbol
α̂k−DT , where DT is the traceback delay.

● �e DD phase error detector (PED) and timing error de-
tector (TED) are developed in [5]; these are selected due to
their excellent steady-state performance, which approaches
the modi�ed Cramér-Rao bound (MCRB) [18].�ey make
use of tentative decisions α̂k−D (and the corresponding MF
samples Zk−D), where D < DT in general and we have
adopted D = 1 [5].�e expression for the DD PED output
is

eϕ[k − D] = Im{γk−D(êk−D)} (3)

where êk−D denotes the edge (branch) in the trellis at time
step k − D with the best overall metric (i.e. the global
survivor), and γk−D(êk−D) is the complex-valued metric
increment associated with that edge.�e expression for the
DD TED output is

eτ[k − D] = Re{γ̇k−D(êk−D)} (4)

where γ̇ is the time derivative of γ; this can be obtained
from derivative MFs or it can be approximated by taking
the di�erence of early/late samples of the regular MFs [5].

● �e phase locked loops (PLLs) are standard in their de-
sign, e.g. [19, Appx. C]. �eir outputs constitute the �nal
carrier phase and symbol timing estimates, ϕ̂[k] and τ̂[k],
respectively. In a more general model of (2) with time-
varying ϕ(t) and τ(t), a second-order PLL should be used
to resolve residual frequency o�sets.

In [5] it was identi�ed that the DD TED is susceptible to
false locks when used with M-ary, partial-response CPMs.�is
is veri�ed by the so-called S-curve shown in Fig. 2, which was
obtained by simulation for Scheme 1; the lock points manifest
themselves as zero-crossings with a positive slope, and thus the
false lock points occur at δτ ≈ ±0.35Ts , where δτ ≜ τ − τ̂ is the
timing error.�us, we de�ne δf = 0.35Ts as the false lock point
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Figure 2 | S-curve for the DD TED in [5] for Scheme 1.
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Figure 3 | Block diagram of the timing false lock detector.

for Scheme 1 in Fig. 2. �e authors of [5] proposed a solution
to the false-lock problem based on the NDA TED in [6]. One
of the contributions of our work is to simplify and re�ne the
basic false lock detector proposed in [5], and to show how it
can be integrated into the system in Fig. 1 to achieve robust
performance at low SNRs.

4 | TIMING FALSE LOCK DETECTOR

4.1 | Simplified NDA TED

�e timing false lock detector consists of the two modules
shown in Fig. 3. For convenience, the block diagram of the NDA
TED from [6, Fig. 2] is reproduced here in Fig. 4 using the
following notation:

● �e input to the NDA TED is r[n], which is segmented
into non-overlapping intervals of L0 symbol times (NL0
samples); each segment is indexed by l .

● �e impulse response of the internal �lter block is h1[n]
(see [6]), which is real-valued and typically has a duration
of four or more symbol times.

● �e �nal output of the NDA TED, which follows the sum-
ming operation shown in Fig. 4, is A1[l].

● �e input to the summing operation is a1[n].
● �e relationship between the input and output of the sum-

r[n]

e jπn/N

e− jπn/N

a1[n] A1[l]
h1[n − ND]

Delay
ND

(⋅)∗
Sum NL0
Samples

Figure 4 | Block diagram of the NDA TED from [6], labeled with the notation
used herein.�e TED is greatly simpli�ed by using the quantized �lter response
Q1(h1[n]) in place of the original response h1[n].

Im{A}

Re{A}

+δf

−δf

C(A) ≠ 0
Figure 5 | �e unit circle divided into two regions by the condition C(A), with
−sgn(Im{A}) used to di�erentiate between the two false lock points of±0.35Ts
for Scheme 1.

ming operation is

A1[l] ≜ (l+1)NL0−1∑
n=l NL0

a1[n]. (5)

As was done in [20], we achieve amajor reduction in complexity
by quantizing the impulse response h1[n] using the function
Q1(⋅) de�ned in [20, Eq. (12)], which returns only three values,
i.e. Q1(h1[n]) ∈ {−Mh1 , 0,Mh1}, where Mh1 ≜ maxn(∣h1[n]∣).
�is quantization obviates the need for multiplications within
the �lter. �is reduces the complexity of the NDA TED to 8
multiplications per sample a1[n]. For the special case of N = 4,
the number of multiplications is only 5 per a1[n] due to the
mixers in Fig. 4 assuming values of {±1,± j} half of the time.

By comparison, when the original (unquantized) h1[n] is
used, 2[(Lh − 1)/2 + 1] additional multiplications per sample
a1[n] are needed for the most e�cient discrete-time implemen-
tation (i.e. exploiting even symmetry), where Lh is the number
of non-zero samples in h1[n]. For example, Fig. 11 gives a plot
of h1(t) and Q1(h1(t)) for Scheme 1; because h1[n] has Lh = 19
with N = 4, this amounts to 20 additional multiplications per
a1[n].
4.2 | Quantization of the NDA TEDOutput

Because the NDA TED processes r[n], and because r[n] has
already been synchronized by the receiver’s primary method of
timing recovery (i.e., the phase corrector and the interpolator in
Fig. 1), we recognize that the NDA TED estimates any residual
timing error that may be present. If this residual error is “small,”
then the receiver is assumed to have locked correctly; if it is
“large,” then a false lock is assumed.

Adapting [6, Eq. (29)] to the present context, an estimate of
the residual timing error is obtained as

δ̂τ = − Ts

2π
arg{A1[l]}. (6)

Because the arg{⋅} function is non-trivial in hardware, we are
interested in simple-to-compute quantities involving A1[l] that
can be used to divide the unit circle into “correct lock” and “false
lock” regions.�is questionwas entertained brie�y in [4], butwe
give additional results here.
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Figure 6 | �e unit circle divided into eight “phase sectors" based on the three
binary-valued conditions: Ca(A), Cb(A), and −sgn(Im{A}).

1) “Binary” Quantization: We begin by partitioning the unit
circle into two regions.�e lock detector does this by testing the
following condition for the generic complex number A:

Let C(A) ≠ 0, if (Re{A} < 0) or (∣Im{A}∣ > ∣Re{A}∣);
C(A) = 0, otherwise.

(7)

When this condition is false1 (C(A) = 0) we have ∣δ̂τ ∣ < 1
8Ts ,

which is well inside the region of the S-curve in Fig. 2 where the
primary timing recovery system operates correctly. When this
condition is true (C(A) ≠ 0) we have ∣δ̂τ ∣ > 1

8Ts , which is the
region of the S-curve in Fig. 2 that contains the false lock points.

Motivated by the above arguments, we propose a simple es-
timate of the residual timing error based on C(A) for M-ary
partial response CPMs in general:

δ̂τ(A) ≜ ⎧⎪⎪⎨⎪⎪⎩
0, C(A) = 0−sgn(Im{A}) × δf , C(A) ≠ 0

(8)

where δf is determined by the false lock points on the S-curve
for the given CPM scheme (once again, δf = 0.35Ts for Scheme 1
in Fig. 2). Fig. 5 illustrates the timing estimate in (8).�e signum
function is de�ned as

sgn(x) ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1, x > 0
0, x = 0−1, x < 0

(9)

where the x = 0 case almost never occurs when x is real [as it is
in (8)], but occurs regularly when x is an integer [as will be seen
later].

2) Expanded Quantization: �e estimate in (8) favors ex-
treme simplicity, which can come at the expense of accuracy if
there is more than one false lock point, or if there is a false lock
“region.” Additionally, it requires calibration toward a speci�c
value of δf (which is, admittedly, straightforward to accom-
plish).

As an alternative, the lock detector can test the following two

1We note that the polarity of Eq. (7) is reversed from that found in [4, Eq (4)].
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Figure 7 | S-curves for the tilted phasemodel (red solid line) vs. the traditional
model (gray dashed line).�e period for the tilted phase model is 2Ts , whereas
it is Ts for the traditional model. Both S-curves are for the DD TED in [5] for
Scheme 1.

sub-conditions of (7), which sub-divide the true (C(A) ≠ 0) case:

Ca(A) ≜ ⎧⎪⎪⎨⎪⎪⎩
1, Re{A} < 0
0, otherwise

(10)

Cb(A) ≜ ⎧⎪⎪⎨⎪⎪⎩
1, ∣Im{A}∣ > ∣Re{A}∣
0, otherwise.

(11)

�ese can be combined to form an expanded version of (7):

C(A) ≜ 2Ca(A) + Cb(A), C(A) ∈ {0, 1, 2, 3}. (12)

�e 4-ary condition C(A) in (12), along with −sgn(Im{A}),
divides the unit circle into eight “phase sectors,” as shown in
Fig. 6. A quantized timing correction is then obtained as the
center-point of the sectors with C(A) ≠ 0:

δ̂τ(A) ≜
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, C(A) = 0−sgn(Im{A}) 3
16Ts , C(A) = 1−sgn(Im{A}) 5
16Ts , C(A) = 3−sgn(Im{A}) 7
16Ts , C(A) = 2

(13)

3) Quantization for the Tilted Phase Model: �e tilted
phase model for CPM [7] is advantageous because it reduces
the number of phase states (and therefore the overall number of
trellis states) by a factor of two. However, another consequence
of the tilted phase model is that it fundamentally alters the
synchronization behavior of the receiver.

For the traditional CPM receiver, the timing recovery S-curve
has a period of Ts , as seen in Fig. 2. �e tilted phase model
introduces a notion of even and odd symbol indexes, which
causes the timing recovery S-curve to have a period of 2Ts .�is
is illustrated in Fig. 7, which shows S-curves for the tilted phase
model vs. the traditional model for Scheme 1. �e expanded
period of 2Ts poses a problem for the lock detector, which is
completely outside of theVAblock in Fig. 1 and is thus “unaware”
of which model (tilted phase or traditional) is being used for the
trellis. Ideally, what is needed is a lock detector that is sensitive
to the entire length-2Ts interval, i.e., −Ts < δτ < Ts . However,
because the lock detector is sensitive only to δτ in the interval− 1

2Ts < δτ < 1
2Ts , some adjustments are needed.

As with all of the above cases, we assign the interval 0 < ∣δτ ∣ <
1
8Ts to the “correct lock” case, where no timing correction is
needed. Because of the limited range of the lock detector, this
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Figure 8 | �e unit circle for the tilted phase model.�e timing correction is
designed to accommodate timing errors only in the range 1

2 Ts < ∣δτ ∣ <
7
8 Ts .

means that the interval 7
8Ts < ∣δτ ∣ < Ts is also (unavoidably)

assigned to the “correct lock” case. We must now decide what to
do with the intervals 1

8Ts < ∣δτ ∣ < 1
2Ts and 1

2Ts < ∣δτ ∣ < 7
8Ts .

In Fig. 7, we see that the tilted phase TED has a false lock at
δf = 0.65Ts , which the lock detector perceives as being at−0.35Ts . �ese �ndings are typical of other CPM schemes, as
we shall see. �erefore, the interval 1

2Ts < ∣δτ ∣ < 7
8Ts is given

priority by the timing correction rule, which means it is not
possible to accommodate the interval 1

8Ts < ∣δτ ∣ < 1
2Ts within

this rule for the tilted phase model.�e timing correction rule
that thus emerges is

δ̂τ(A) ≜
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, C(A) = 0
sgn(Im{A}) 13

16Ts , C(A) = 1
sgn(Im{A}) 11

16Ts , C(A) = 3
sgn(Im{A}) 9

16Ts , C(A) = 2

(14)

which is pictured in Fig. 8 and is basically Ts − δτ with respect
to the previous rule in (13).
With several options for the timing correction rule now de-

�ned, we now address the challenge of making the false lock
decision more robust.�is is necessary because the NDA TED
is known to be quite noisy for M-ary, partial-response CPM
schemes and small L0.

4.3 | False Lock Detector Algorithm

In order to reduce the probability of false detection, and
also to reduce the noise in the estimated timing correction, we
introduce a counting algorithm.�e state of the count at index
l is S[l], where S[l] ∈ {0,±1,⋯,±Ns}. When a new value
of A1[l] becomes available, if C(A1[l]) ≠ 0 then the count
is incremented in the direction of sgn(Im{A1[l]}) in order
to strengthen the hypothesis of a false lock in that direction
on the unit circle. If C(A1[l]) = 0, then the “correct lock”
hypothesis is strengthened and the count is incremented toward
zero (whichever direction that may be), or it remains at zero if it
is already there, i.e. the increment in this case is −sgn(S[l − 1]).
When the count is non-zero, the algorithm stores a running sum
of A1[l] in the variable A, which is reset if the count ever returns
to zero. In the event that the count over�ows/under�ows, i.e.∣S[l]∣ > Ns , then a “timing false lock” is declared; the lock

−Ns −1 0 1 Ns⋯⋯
q+pp q+pp

pn pn

q+pnq+pn
pppp

pn pp

q

Figure 9 | State diagram for timing false lock detector algorithm.

detector then inserts a timing correction into the receiver’s pri-
mary timing recovery system based on the running sum A, i.e.
δ̂τ(A)—based on one of the timing correction rules in (8), (13),
or (14)—and the count is returned to the zero state. We have
also observed that the pathmetrics of theViterbi algorithm (VA)
within the demodulator are “biased” during a timing false lock;
therefore, we also reset the VA path metrics to zero when a false
lock is detected.
�e above steps are summarized in Algorithm 1.�e counter

is modeled in Fig. 9 as a time-homogeneous Markov chain.
�ere are three probabilities that describe the state transitions:
pp is the probability of transitioning in the positive direction due
to C(A1[l]) ≠ 0, pn is the probability of transitioning in the
negative direction due to C(A1[l]) ≠ 0, q is the probability of
C(A1[l]) = 0, and we have pp + pn + q = 1.�ese probabilities
do not vary with the particular timing correction rule that is
employed [(8), (13), or (14)], and thus Algorithm 1 and the
analysis below are applicable to all three cases.

5 | PERFORMANCE

5.1 | List of Figures

�e following is a list of the types of �gures that are presented
for Schemes 1, 2, and 3:

● �e �lter response h1(t) and quantized version Q1(h1(t)).
● For the traditionalmodel, the S-curves for theDDPED and
TED in [5].

Algorithm 1 Timing False Lock Detector
1: Initialize S[−1] = 0, A = 0;
2: for l = 0, 1, 2,⋯ do
3: Compute A1[l];
4: if C(A1[l]) ≠ 0 then,
5: Update S[l] = S[l − 1] + sgn(Im{A1[l]});
6: Update A = A+ A1[l];
7: else
8: Update S[l] = S[l − 1] − sgn(S[l − 1]);
9: end if ;
10: if S[l] = 0 then,
11: Set A = 0;
12: end if ;
13: if ∣S[l]∣ > Ns then,
14: Update τ̂[k] = τ̂[k] + δ̂τ(A);
15: Set VA path metrics to zero;
16: Set S[l] = 0;
17: Set A = 0;
18: end if ;
19: end for



Perrins: Robust and Simple Phase and Timing Synchronization for M-ary Partial-Response CPM 6

● For the tilted phase model, the S-curves for the DD PED
and TED in [5].

● �e probabilities pp and pn when the receiver is in the
correct lock state (δτ ≈ 0), where pn = pp .

● �e probabilities pp and pn when the receiver is in the false
lock state of δτ ≈ +δf, where pn ≫ pp .�e reverse situation
of δτ ≈ −δf, where pn ≪ pp , is not shown because of
redundancy.

● �e probability of false detection, Pfd.
● �e acquisition time, td/Ts .
● �e bit error rate (BER).
● �e phase error variance, Var(ϕ), and the normalized tim-
ing error variance, Var(τ)—both of which are compared
with their respective MCRBs.

● For the traditional model, the phase error (δϕ , in cycles)
and the normalized timing error (δτ/Ts) vs. time at three
di�erent Es/N0, with the lowest Es/N0 near channel capac-
ity.

● For the tilted phasemodel, the phase error and the normal-
ized timing error vs. time at the same three di�erent Es/N0.

For Scheme 4 (the GMSK scheme), the lock detector is not nec-
essary, as con�rmed by the S-curves for this scheme in Figs. 44
and 45. As such, only the S-curves, BER plot, variance plot, and
phase/timing error vs. time plots are given. We now discuss the
entire body of results in greater detail.

5.2 | S-Curves
S-curves for the traditional model are shown in Figs. 12, 23,

and 34 for Schemes 1, 2, and 3, respectively; the S-curve for the
PED in [5] is shown on the top and the S-curve for the TED
in [5] is shown on the bottom. For all three schemes, the S-curve
for the PED shows that—as expected—there are 2p correct lock
points around the unit circle, or that the S-curve has a period of
1
2p cycles, where p is the denominator of the modulation index
when it is expressed as a rational number, i.e., h = k/p. Also, for
all three schemes, the S-curve for the TED shows that it has a
period of Ts , but that in-between these symbol-spaced correct
lock points there are false lock points, which are of course the
main problem addressed by this work.

S-curves for the tilted phase model are shown in Figs. 13, 24,
and 35 for Schemes 1, 2, and 3, respectively, using the same
top/bottom format for the PED/TED. As was stated previously,
the tilted phase model fundamentally alters the synchronization
behavior of the receiver. For the PED, this means that there are
only p correct lock points around the unit circle, or that the S-
curve has a period of 1

p cycles. For the TED, this means that the
correct lock points are spaced two symbols apart (i.e., the period
of the S-curve is 2Ts) and that the false lock points are spaced
di�erently than before.

As we mentioned above, the S-curves for Scheme 4 (the
GMSK scheme) are shown in Figs. 44 and 45 for the tradi-
tional model and the tilted phase model, respectively. Because
Scheme4 is a binaryCPM(M = 2), it does not su�er from timing
false locks.

5.3 | Probabilities pp and pn
In order to evaluate the usefulness of the false lock detector,

the performance impact of the parameters pp , pn , Ns , and L0

must be understood. Because no analytical method is available
to evaluate pp (or pn), we resort to computer simulations.

We �rst examine the case where the receiver is in a state of
correct timing lock (i.e., δτ ≈ 0). �ese results are shown in
Figs. 14, 25, and 36 for Schemes 1, 2, and 3, respectively. We have
evaluated pp vs. Es/N0 for four di�erent observation intervals
L0. During these simulations, pp is determined at each Es/N0 by
counting the occurrences of the joint events C(A1[l]) ≠ 0 and
Im{A1[l]} > 0, and then dividing this count by the number of
trial values of A1[l] observed; pn is determined in a similar fash-
ion except with Im{A1[l]} < 0. Each simulation is conducted
until at least 1,000 counts is observed. As would be expected,
pp decreases with increasing Es/N0 and increasing L0; also, as
would be expected, pn = pp when the receiver is in the correct
lock state (δτ ≈ 0).

We next examine the case where the receiver is in the false
lock state of δτ ≈ +δf. �ese results are shown in Figs. 15, 26,
and 37 for Schemes 1, 2, and 3, respectively, where the same
four values of L0 are used and the same simulationmethodology
is employed. As expected, because δτ ≈ +δf, the values of pn
approach unity and the values of pp vanish with increasing
Es/N0. �e reverse situation of δτ ≈ −δf, where pn ≪ pp , is
not shown because of redundancy.

5.4 | ProbabilityofFalseDetection,PFD, and theAcquisition
Time, tD/Ts
We turn our attention to the competing design objectives of

minimizing the probability of false detection, Pfd, while simul-
taneously minimizing the time needed for correct detection,
td. With the availability of pp and pn , these quantities can be
evaluated analytically. Let the stationary distribution π of the
Markov chain in Fig. 9 be a length-(2Ns + 1) row vector, with
the i-th element π i equal to Pr(S[l] = i) at equilibrium, and
let P be the state transition matrix with the (i , j)-th element
equal to p i j = Pr(S[l + 1] = j∣S[l] = i). π is the solution
to the eigenvalue/eigenvector equation π = πP corresponding
to the eigenvalue of unity [21]. In terms of Fig. 9, Pfd is the
probability of being in states±Ns and transitioning directly back
to state zero, given that the receiver is in the correct lock state;
it is normalized by L0 so that it conveys the probability of false
detection per symbol.�erefore,

Pfd = pp ⋅ πNs + pn ⋅ π−Ns

L0
. (15)

Similarly, td/Ts is L0 times the expected number of time steps
l until a transition occurs from state ±Ns directly back to state
zero, given that the receiver is in the false lock state; therefore,

td
Ts

= L0

pp ⋅ πNs + pn ⋅ π−Ns

. (16)

We emphasize the fact that pp and pn in (15) are obtained in a
simulation where the receiver is in the correct lock state (as in
Figs. 14, 25, and 36), and pp and pn in (16) are obtained in a
separate simulation where the receiver is in the false lock state
(as in Figs. 15, 26, and 37).

In [2], Es/N0 ≥ 2 dB is found to be the region where Scheme 1
is optimal, thus Es/N0 = 2 dB is the lowest SNR that must be
considered for this scheme. Likewise, the lowest SNR that need
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Table 1 | Design pairs (L0 ,Ns) for Cases 1 and 2 for each Scheme.�e
designs in bold result in good Pfd and td/Ts and thus appear in both cases.

Scheme 1
Case 1 (8,13) (16,11) (32,9) (64,7)
Case 2 (8,9) (16,9) (32,8) (64,7)

Scheme 2
Case 1 (32,13) (64,11) (128,9) (256,7)
Case 2 (32,9) (64,9) (128,8) (256,7)

Scheme 3
Case 1 (8,12) (16,10) (32,8) (64,7)
Case 2 (8,8) (16,8) (32,7) (64,7)

be considered for Scheme 2 is Es/N0 = 2 dB and for Scheme 3 is
Es/N0 = 5 dB. We now design lock detector schemes for use at
these target SNRs. Each design consists of a pair of parameters(L0 ,Ns). �e designs are grouped according to two di�erent
design rules, or design cases:

Case 1: �ese designs are chosen to yield tightly-grouped
values of Pfd at the target SNR, as shown Figs. 16, 27, and 38
for Schemes 1, 2, and 3, respectively. �e design pairs for
Case 1 are listed inTable 1. Although Pfd at the target SNR for
these designs is nearly identical, td/Ts varies signi�cantly,
as shown in Figs. 17, 28, and 39 for Schemes 1, 2, and 3,
respectively.
Case 2: �ese designs are chosen to yield tightly-grouped
values of td/Ts at the target SNR, as shown in Figs. 17, 28,
and 39 for Schemes 1, 2, and 3, respectively.�e design pairs
for Case 2 are also listed in Table 1. Although td/Ts at the
target SNR for these designs is nearly identical, Pfd varies
signi�cantly, as shown in Figs. 16, 27, and 38 for Schemes 1, 2,
and 3, respectively.
�ese results show that when L0 is decreased, Ns must be

increased (and vice versa), in order to maintain steady perfor-
mance for Pfd (or td/Ts).�ere are values that are too extreme
(e.g. L0 = 8 for Scheme 1 does a poor job of balancing the
tradeo� between Pfd and td/Ts); but there are also designs that
provide very low Pfd whilemaintaining a rapid acquisition time.
For example, the design with (64, 7) belongs to both Cases
for Scheme 1 and signi�es that a balance can be achieved be-
tween competing tradeo�s; its Pfd is at or below 10−6, with an
acquisition time in the range 500 < td/Ts < 1500, which is
comparable to a PLL with a normalized loop bandwidth in the
range 3 × 10−4 < BTs < 1 × 10−3.
5.5 | Steady-State Performance of the PLL-Based Receiver

1) BER Performance: Figs. 18, 29, 40, and 46 show theBER for
Schemes 1–4, respectively. Each plot shows the theoretical max-
imum likelihood sequence detection (MLSD) bound, the BER
performance of a receiver with perfect synchronization, and the
BER performance of the proposed receiver in Fig. 1; the phase
and timing PLLs in Fig. 1 have normalized loop bandwidths of
BTs = 10−3 for all Schemes, and the lock detector uses the design
pair shown in bold in Table 1 for each Scheme. �e BER plots
show that the proposed receiver in Fig. 1 achieves a steady-state

BER that is essentially the same as perfect synchronization, even
at low SNRs.

2) Phase and Timing Error Variance: Figs. 19, 30, 41, and 47
show the phase and normalized timing error variances for
Schemes 1–4, respectively. Because the performance of the phase
and timing PLLs has already been studied in [5], these plots are
simply an extension for Schemes 1–4 of the data reported in [5].

3) Phase and Timing Error vs. Time: Figs. 20, 31, 42, and 48
show the phase and timing error vs. time (i.e., transient behav-
ior) for Schemes 1–4, respectively, using the conventional CPM
model; the results are repeated for three di�erent SNRs for each
scheme, as noted in the �gure captions.�e exact same condi-
tions are repeated for the tilted phase model in Figs. 21, 32, 43,
and 49 for Schemes 1–4. In each of these plots, 64 trial operations
of the proposed receiver in Fig. 1 were conducted; in each trial,
the receiver was initialized with a random phase and timing
o�set before being set into operation. �e �gures also show a
red envelope, which depicts the ideal operation of a PLL with
normalized loop bandwidth BTs = 10−3.
�ese data clearly show the PLLs settling into false timing

locks, during which time the phase error remains large. �e
timing error corrections appear in the plots as step functions and
are very noticeable; we used the timing correction rule in (13) for
the traditional model and (14) for the tilted phase model. As one
would expect, the transient period is longer for low SNRs. It is
also slightly longer for the tilted phase receivers. At high SNRs,
the overall acquisition time—including false lock correction and
PLL settling time—is in line with the ideal PLL operation.

5.6 | Additional Discussion on the False Lock Detector
�ere are some added results given in [4, Figs. 5–6] for

Scheme 1 with the extreme designs (2048, 0) and (1536, 0),
which do away with the counting algorithm all together (i.e.,
Ns = 0) and simply increase L0 until a su�ciently low Pfd =(pp + pn)/L0 is achieved (or until the desired td/Ts is not ex-
ceeded).�ese designs correspond to the lock detector solution
that was proposed in [5].�e results in [4] show that a low Pfd
can be achieved with this approach, but that the large value of L0
results in a large value of td/Ts that is more or less “�xed” and
cannot decrease with increasing SNR.�is helps underscore the
contribution of our approach of counting shorter observations.
�ese �nal results are perhaps counterintuitive and prompt

this important question: How is it possible that the lock detector
performs better by assembling many brief observations (i.e.,
smaller L0 and Ns > 0), than it does by using one long observa-
tion (i.e., larger L0 and Ns = 0)? In other words, how can better
performance be obtained with a shorter observation interval?
�is important question is answered by the data presented in
Fig. 10.

Fig. 10 (a) plots the running accumulation of the variable
a1[n]:

kN∑
m=0

a1[m] (17)

and thus it is similar to (5).�e observation interval extends out
to 1536 symbols.�e value at the end of this observation interval
corresponds to the value of A1[l] for the L0 = 1536 case. Note
that the imaginary part of the accumulation exceeds the real part
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Figure 10 | Detailed time sequences for Scheme 1 for: (a) the accumulation of a1[n]; (b) A1[l] for the L0 = 64 case; (c) the condition C(A1[l]) for the L0 = 64
case; and (d) state of the counter, S[l], and the values of the counter increments.

at symbol index k = 1536 (and the real part is positive), which
means that C(A) ≠ 0.�erefore, this data set corresponds to a
“false detect” for the L0 = 1536, Ns = 0 con�guration.

Fig. 10 (b) plots A1[l] for the L0 = 64 case. �us the raw
data {a1[n]} are segmented into non-overlapping intervals of 64
symbols and summed, as indicated in (5). Note that the abscissa
of Fig. 10 (b) is the index l , which indexes 64 symbols at a time;
however, we emphasize that all four sub�gures in Fig. 10 are in
time alignment.

Fig. 10 (c) plots the condition C(A1[l]) for the L0 = 64 case
[i.e. it is the condition in (7) applied to the data plotted in

Fig. 10 (b)]; a 1 is used to represent C(A1[l]) ≠ 0. It is easy to
visually con�rm that the seven occasions where the condition
evaluates to 0 (false), the real value in Fig. 10 (b) is positive(Re{A1[l]} > 0) and the imaginary value has a smaller mag-
nitude than the real value (∣Im{A}∣ < ∣Re{A}∣).
Fig. 10 (d) contains the key data for the �nal explanation.�e

sequence with circle markers (blue) corresponds to the state of
the counter, S[l], for L0 = 64. As stated in Algorithm 1, S[l] can
be incremented according to Line 5 or Line 8, depending on the
result of the conditionC(A1[l]) [or equivalently, using Figs. 5, 6,
or 8, depending on whether or not the observed angle of A1[l]
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falls in the shaded (true) or unshaded (false) regions].
�e sequence with square markers (green) in Fig. 10 (d) cor-

responds to the counter increment of Line 5; this increment
is non-zero only when C(A1[l]) ≠ 0 (true). �is sequence
behaves more or less as one would expect. It is based on shorter
observations of the data.�e general trend shown in Fig. 10 (a)
is that the imaginary part (green) is positive and greater than
the real part (blue).�is is re�ected more coarsely in Fig. 10 (a),
as would be expected, and this trend (i.e. positive increments)
follows in Fig. 10 (d) with the sequence with square markers
(green).
�e sequence with the triangle markers (red) in Fig. 10 (d)

corresponds to the counter increment of Line 8, and is non-
zero for the seven occasions where the observed angle of A1[l]
falls in the unshaded (false) region of Figs. 5, 6, and 8. As
can be seen by all of the data in Fig. 10 [i.e., the gap between
the real and imaginary parts in Fig. 10 (a), the �nal margin of
victory in Fig. 10 (a) of the imaginary part over the real part, the
many positive square-marker (green) increments in Fig. 10 (d)],
everything is pointing toward a false detection. However, as
can be seen by the circle-marker (blue) sequence of S[l] in
Fig. 10 (d), the counter never exceeds the value of Ns = 7, and
thus the L0 = 64, Ns = 7 con�guration does not falsely detect.
�is is because the triangle-marker (red) increments set the
counter back. In other words, when the angle of A1[l] falls in
the unshaded (false) region of Figs. 5, 6, or 8, the counter is
penalized and thus the probability of false detection is reduced.
In order for the counter to over�ow, there must be a regular
and consistent trend of square-marker (green) increments in
the same direction, and few triangle-marker (red) increments.
Figs. 17, 28, and 39 demonstrate the unavoidable consequence,
that when we want the counter to over�ow quickly, the triangle-
marker (red) increments can prolong the process; this is the
reason for the larger td/Ts at low SNRs.
�is “intuitive” discussion is meant to motivate why it is that

a low Pfd can be achieved in Figs. 16, 27, and 38 for short
observation intervals. We emphasize that all of these dynamics
are fully captured by the analysis of theMarkov chainmodel.�e
probability of a triangle-marker (red) increment is measured by
simulation as q. �e probabilities of the positive and negative
square-marker (green) increments are, respectively, pp and pn .
Once we have measured these probabilities, we can design L0
and Ns to jointly minimize Pfd and td/Ts .

6 | CONCLUSION
We have developed a classical PLL-based receiver architec-

ture that is robust especially for M-ary partial-response CPMs,
which has proven to be an elusive task in previous studies.�e
main new element to this system is a timing false lock detector
for CPM that is adapted from an existing basic scheme. Our ap-
proachmaintains a running count of successive, short-term false
lock decisions, rather than evaluating a single, long-term deci-
sion. Using analysis of aMarkov chainmodel for our scheme, we
have demonstrated that it can achieve low probability of false
detection and rapid synchronization for capacity-approaching
CPMs over their SNR operating range. We have provided a
comprehensive set of numerical results, which demonstrate the
e�ectiveness of our design. A key aspect of our analysis is the

inclusion of the tilted-phase CPMmodel, whichmust be treated
separately due to its distinct synchronization behavior.
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Figure 11 | Scheme 1 (M = 4, h = 1/4, 2RC): Filter response h1(t) and
quantized version Q1(h1(t)).
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Figure 12 | Scheme 1: S-curves for the DD PED (top) and TED (bottom) in [5].
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Figure 13 | Scheme 1: S-curves for the DD PED (top) and TED (bottom) in [5]
for the tilted-phase model.
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Figure 20 | Scheme 1: Phase error (δϕ , in cycles) and normalized timing
error (δτ/Ts) at three di�erent Es/N0 : 2 dB, 7 dB, and 12 dB (top to bottom,
respectively).
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(δτ/Ts) with tilted phase at three di�erent Es/N0 : 2 dB, 7 dB, and 12 dB (top to
bottom, respectively).
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Figure 22 | Scheme 2 (M = 4, h = 1/4, 2REC): Filter response h1(t) and
quantized version Q1(h1(t)).
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Figure 23 | Scheme 2: S-curves for theDDPED (top) and TED (bottom) in [5].
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Figure 24 | Scheme 2: S-curves for the DD PED (top) and TED (bottom) in [5]
for the tilted-phase model.

2 4 6 8 10 12 14
10

−2

10
−1

10
0

 

 

2

5

2

5

L0 = 32
L0 = 64
L0 = 128
L0 = 256

Es/N0 [dB]

Tr
an
sit
io
n
pr
ob

ab
ili
tie

s,
p p
=p n

Figure 25 | Scheme 2:�e probabilities pp and pn when the receiver is in the
correct lock state (δτ ≈ 0), where pn = pp .
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Figure 26 | Scheme 2:�e probabilities pp and pn when the receiver is in the
false lock state of δτ ≈ +δf , where pn ≫ pp . �e situation is reversed in the
other false lock state of δτ ≈ −δf , where pn ≪ pp (not shown).
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Figure 27 | Scheme 2:�e probability of false detection, Pfd .
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Figure 28 | Scheme 2: Acquisition time, td/Ts .
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Figure 29 | Scheme 2:�e bit error rate (BER).
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Figure 30 | Scheme 2:�e phase error variance Var(ϕ) and normalized timing
error variance Var(τ).
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Figure 31 | Scheme 2: Phase error (δϕ , in cycles) and normalized timing
error (δτ/Ts) at three di�erent Es/N0 : 2 dB, 7 dB, and 12 dB (top to bottom,
respectively).
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Figure 32 | Scheme 2: Phase error (δϕ , in cycles) and normalized timing error
(δτ/Ts) with tilted phase at three di�erent Es/N0 : 2 dB, 7 dB, and 12 dB (top to
bottom, respectively).
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Figure 33 | Scheme 3 (M = 8, h = 1/8, 2RC): Filter response h1(t) and
quantized version Q1(h1(t)).
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Figure 34 | Scheme 3: S-curves for theDDPED (top) and TED (bottom) in [5].
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Figure 35 | Scheme 3: S-curves for the DD PED (top) and TED (bottom) in [5]
for the tilted-phase model.
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Figure 36 | Scheme 3:�e probabilities pp and pn when the receiver is in the
correct lock state (δτ ≈ 0), where pn = pp .
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Figure 37 | Scheme 3:�e probabilities pp and pn when the receiver is in the
false lock state of δτ ≈ +δf , where pn ≫ pp . �e situation is reversed in the
other false lock state of δτ ≈ −δf , where pn ≪ pp (not shown).
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Figure 38 | Scheme 3:�e probability of false detection, Pfd .
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Figure 39 | Scheme 3: Acquisition time, td/Ts .
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Figure 40 | Scheme 3:�e bit error rate (BER).
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Figure 41 | Scheme 3:�e phase error variance Var(ϕ) and normalized timing
error variance Var(τ).
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Figure 42 | Scheme 3: Phase error (δϕ , in cycles) and normalized timing
error (δτ/Ts) at three di�erent Es/N0 : 5 dB, 10 dB, and 15 dB (top to bottom,
respectively).
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Figure 43 | Scheme 3: Phase error (δϕ , in cycles) and normalized timing error
(δτ/Ts) with tilted phase at three di�erent Es/N0 : 5 dB, 10 dB, and 15 dB (top to
bottom, respectively).
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Figure 44 | Scheme 4 (M = 2, h = 1/2, 4G): S-curves for the DD PED (top)
and TED (bottom) in [5].
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Figure 45 | Scheme 4: S-curves for the DDPED (top) and TED (bottom) in [5]
for the tilted-phase model.
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Figure 46 | Scheme 4:�e bit error rate (BER).
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Figure 47 | Scheme 4:�e phase error variance Var(ϕ) and normalized timing
error variance Var(τ).
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Figure 48 | Scheme 4: Phase error (δϕ , in cycles) and normalized timing
error (δτ/Ts) at three di�erent Es/N0 : 0 dB, 5 dB, and 10 dB (top to bottom,
respectively).
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Figure 49 | Scheme 4: Phase error (δϕ , in cycles) and normalized timing error
(δτ/Ts) with tilted phase at three di�erent Es/N0 : 0 dB, 5 dB, and 10 dB (top to
bottom, respectively).


