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ABSTRACT

Low density parity check (LDPC) codes allow a communications link to operate reliably at
signal to noise ratios that are very close to the Shannon limit. Because of this, in the early 2000s
they were studied in connection with SOQPSK-TG and were eventually adopted into the IRIG-
106. The deployment for SOQPSK-TG has proved to be very successful, which has motivated
interest in finding an LDPC solution for PCM/FM and ARTM CPM. Such a solution, however, has
proved to be elusive for reasons that were not entirely clear in the past. In this paper, we lay out
the fundamental considerations that must be made in order to design LDPC codes for a specific
modulation format. In doing so, we show that SOQPSK-TG enjoys specific similarities with BPSK
that allowed an “easy path” toward an LDPC solution in IRIG-106. Most importantly, we show that
when the design process begins at the proper starting point, it is just as easy to design LDPC codes
that are customized to a particular modulation. We then apply this straightforward design process
to PCM/FM and ARTM CPM and demonstrate that the resulting LDPC codes perform around
one dB from the respective channel capacities of these modulations. In our companion paper,
we develop parallel decoder architectures for these schemes that can achieve high throughput. As
such, these codes can be considered to fill in the options for LDPC codes that are currently absent
in the IRIG-106 standard.

INTRODUCTION

The desired LDPC coding scheme is shown in Figure 1 and consists of an LDPC encoder and a
CPM modulator that are separated by an interleaver (denoted by the symbol Π). In our companion
paper [1], we develop parallel decoder architectures for this system that can achieve high through-
put. For the continuous phase modulations (CPMs), we consider pulse code modulation/frequency
modulation (PCM/FM), the Telemetry Group version of shaped-offset quadrature phase shift key-
ing (SOQPSK-TG), and the multi-h CPM developed by the Advanced Range TeleMetry program
(ARTM CPM), which are all defined in full detail in the IRIG-106 standard [2]. For convenience,
going forward we refer to these, respectively, as ARTM0, ARTM1, and ARTM2.

Our approach to designing LDPC codes for the CPM-based scheme in Figure 1 draws primar-
ily from the references [3–6] with modification and adaptation as needed. A critical step is that
the design philosophy must begin with a characterization of the phenomenon known as extrinsic
information transfer (EXIT) [7] that pertains to the CPM scheme itself. The EXIT properties of the
CPM waveform are thus central to the formation of the matching LDPC code. We focus only on
quasi-cyclic LDPC codes, primarily because the existing IRIG-106 codes are of this type, but also
because they enjoy the twin advantages of good performance and low encoding complexity. We
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Figure 1: LDPC-coded CPM Model.

use the protomatrix EXIT (PEXIT) design technique [3] because of its simplicity and accuracy in
predicting the final performance of the code. Furthermore, a number of additional design consid-
erations (such as error floor performance) can be incorporated into the PEXIT design process.

PROTOMATRIX BASICS

A very large quasi-cyclic LDPC code can be specified by a relatively small protomatrix (or proto-
graph), which is then “lifted” to form the much larger, final version of the parity check matrix for
the code. The protomatrix has the following form

B =


b0,0 b0,1 · · · b0,NB−1

b1,0 b1,1 · · · b1,NB−1
...

... . . . ...
bMB−1,0 bMB−1,1 · · · bMB−1,NB−1

 (1)

which has dimensions MB ×NB. The columns of B correspond to “variable nodes” and we index
the columns with 0 ≤ j ≤ NB − 1. The rows of B correspond to “check nodes” and we index
the rows with 0 ≤ i ≤ MB − 1. The elements of B are drawn from a B-ary alphabet, i.e. bi,j ∈
{0, 1, . . . ,B − 1}. The sum, or “weight,” of the j-th column is referred to as the variable node
degree, and likewise for the degree of the i-th check node (row).

EXIT AND PEXIT BASICS

Just as the transmitter model in Figure 1 consists of two main elements, so does its receiver (cov-
ered in more detail in our companion paper [1]). These two elements are the LDPC decoder and
the CPM soft-input soft-output (SISO) module. These decoder modules take turns iterating back
and forth, sharing updated soft information with each other, in the form of extrinsic log-likelihood
ratios (LLRs). Although a LLR is a rigorous probabilistic concept, it also has a deceptively sim-
ple format, where it can be viewed as if it was a noisy BPSK sample from an AWGN channel.
Consider a simple BPSK channel

Y = X +W (2)

with input values X = ±
√
Es and additive noise W with zero mean and variance N0/2. Although

it is obvious to say so, when conditioned on X , Y has mean ±
√
Es and variance N0/2.

The LLR of this simple BPSK channel is defined as

λ(X) ≜ ln
P (Y |X = −

√
Es)

P (Y |X = +
√
Es)

=
√
EsLc · Y (3)

where P (Y |X) is the conditional PDF of Y given X and Lc = 4/N0. Although (2) and (3) have
entirely different meanings—one is a model of a physical channel and the other is a probabilistic
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expression—they are remarkably similar. In fact, if we view the far right-hand side of (3) itself
as the output of an AWGN channel and condition it on X , then the resulting value is a Gaussian
random variable with mean ±4Es/N0 = ±σ2/2 and variance 8Es/N0 = σ2. Thus, an LLR itself
can be interpreted as the output of a binary AWGN channel where the scaling is such that the
conditional variance is twice the conditional mean. This allows us to use a single value, σ, to
characterize the statistics of the LLR.

Now consider two LLRs that are related to the same X but with independent “noise” compo-
nents and different values of σ, say σ1 and σ2. When such LLRs are added (as they are in the LDPC
decoder’s processing steps), then their conditional means and variances also add, which results in
a combined σ that is

σ =
√

σ2
1 + σ2

2 (4)

The mutual information (MI) between the binary input random variable X embedded in (3)
and the Gaussian distributed output is given by [8]

J(σ) = 1−
∫ +∞

−∞

1√
2πσ2

e−
(y−σ2/2)2

2σ2 · log2
(
1 + e−y

)
dy (5)

and this represents the capacity of the binary-input AWGN channel. Although the form of (5) is
intimidating, a very simple piecewise approximation of J(σ) and its inverse, J−1(I), are given in
the Appendix of [7]. This function provides a simple translation between the σ domain and the I
(information) domain, and its inverse provides the reverse translation [these functions are as simple
to use as, for example, cos(·) and cos−1(·)].

The PEXIT analysis [3] (and the original EXIT analysis [7] before that) employs a structure
that mimics the LDPC decoder itself. However, instead of passing actual received channel samples
to the actual LDPC decoder, the PEXIT approach injects an initial amount of information into the
LDPC model (a simple number in the range 0 ≤ I ≤ 1), this translates into an initial value of σ [by
a simple call to the function J−1(I)]. From there, the values of σ flow from variable nodes to check
nodes in an iterative fashion, accumulating in the process by repeated use of simple arithmetic such
as in (4). The initial amount of information is related to the SNR, again through the function J(σ),
and the desired result is that σ accumulates iteratively without bound, which translates to I → 1,
i.e. convergence to an error free result. The PEXIT computations are surprisingly simple (repeated
calls to J(·), J−1(·), addition, square root, etc.) and remarkably accurate. The structure of the
LDPC code can be adjusted, “tweaked,” or otherwise optimized until the lowest SNR is found that
still results in the information converging to unity. This is the threshold SNR.

The PEXIT analysis is flexible so that it allows for protomatrix features such as multiple edges
(B > 1), punctured variable nodes, and degree-1 variable nodes; furthermore, the PEXIT analy-
sis can accurately resolve decoding thresholds based on the nuances of the connections between
variable and check nodes. A major incompatability with the PEXIT analysis and our current ap-
plication is that the CPM modulator/demodulator is situated between the LDPC encoder/decoder
and the AWGN channel. This fundamentally alters the flow of extrinsic information in the sys-
tem. This issue was addressed in studies such as [4] and requires only that we evaluate the EXIT
“characteristic function” of the modulation scheme, which we explain next.

EXIT Characteristic Function for CPM. To illustrate the role the modulation plays in the
PEXIT analysis, we start with a simple example. For the binary-input AWGN channel (i.e. BPSK),
the a posteriori probability, LLR format, can be expressed as
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λ(X|Y ) = λ(X; I) + λ(X) = λ(X; I) +
√

EsLc · Y (6)

where λ(X; I) is the a priori LLR (we use “I” to denote this “input” LLR). The full a posteriori
LLR is an important “output” of our analysis, but we also have need for an extrinsic version of the
a posteriori LLR, which is λ(X;O) (we use “O” to denote this “output” LLR). To get this version
of the output, we simply subtract (or “back out”) the a priori value, which leaves an extrinsic value
of λ(X;O) =

√
EsLc · Y , which has a value of J(

√
8Es/N0) when expressed in the I domain

in units of information. Figure 3 (a) shows a plot of the extrinsic a posteriori information curve,
IE, BPSK = J(

√
8Es/N0), as a function of the a priori information, IA, BPSK. These curves are given

for the three values of Es/N0 that result in values of J(
√

8Es/N0) of 1/2, 2/3, and 4/5. Because
J(·) represents the capacity of the binary-input AWGN channel, these values of Es/N0 correspond
to the maximum achievable code rates of 1/2, 2/3, and 4/5. That these curves are horizontal lines
underscores the fact that, for BPSK, the extrinsic a posteriori information is independent of the a
priori information.

In the case of CPM, it is not possible to compute these quantities in closed form [9–11] and so
we resort to numerical evaluation via Monte Carlo simulation. The procedure is depicted in block-
diagram form in Figure 2. From an outside perspective, the independent (input) variable is IA, the a
priori information, which we increment in steps of 0.01 (1/100) through the range 0.0 ≤ IA ≤ 1.0.
For each value of IA, we compute (by simulation) a corresponding dependent (output) value of IE,
which is the extrinsic a posteriori information. The simulation is parameterized by the channel
SNR, Es/N0, which remains fixed during a full “sweep” of the input IA values. This results in
an input–output “transfer characteristic,” TEs/N0 [IA], for each SNR value. This is simply a LUT
that returns a value of IE for a given value of IA at the specified SNR. We use square brackets [·]
to denote that the LUT index must be rounded to the nearest 1/100 in order to access the nearest
output. We compute these LUTs for as many values of SNR as are needed for the PEXIT algorithm
in [3, 4], in Es/N0 increments of 0.05 dB.

The inner-workings of this simulation are too detailed to be covered herein due to space lim-
itations. However, we have conducted these simulations for ARTM0, ARTM1, and ARTM2, and
the results are shown in Figure 3 for the values of Es/N0 that correspond to maximum achievable
code rates of 1/2, 2/3, and 4/5. We call particular attention to Figure 3 (c), which shows the EXIT
curves for ARTM1. With ARTM1 (SOQPSK-TG), it is possible to (1) turn off the differential
encoding, and (2) approximate the signal as OQPSK, which in turn is identical to BPSK from a
channel capacity perspective [12]. Although the ARTM1 curves in Figure 3 (c) were computed nu-
merically, the curves for differential encoding off are identical to the BPSK curves in Figure 3 (a)
(aside from minor differences in the Es/N0 values needed to achieve the desired code rates). From
an information theory perspective, these flat curves confirm that ARTM1 (SOQPSK-TG) can be
made to behave exactly like BPSK. Therefore, it is “easy” to apply BPSK-designed LDPC codes
to the case of SOQPSK-TG, which is exactly what was done in IRIG-106. Specifically, the family
of BPSK-optimized AR4JA codes [5] were adopted into the IRIG-106 standard for SOQPSK-TG.

A final observation regarding Figure 3 is that the EXIT transfer characteristics have a positive
slope and join the point (1, 1) (except for ARTM1 with differential encoding off, as discussed
earlier). This means that an increase in a priori information supplied to the CPM SISO module
(i.e. increasing abscissa) will result in a gain in extrinsic a posteriori information produced by the
CPM SISO module (i.e. increasing ordinate). This provides an information theoretic justification
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Figure 2: Monte Carlo simulation of CPM EXIT characteristic function.
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Figure 3: Input–output extrinsic “transfer characteristic,” TEs/N0
[IA], for (a) BPSK, (b) ARTM0, (c)

ARTM1, and (d) ARTM2. The Es/N0 values are indicated in the legend and correspond to the maxi-
mum achievable code rates of 1/2, 2/3, and 4/5. For ARTM1 in (c), curves are also given for differential
encoding off.
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for the iterative LDPC/SISO arrangement studied in our companion paper [1], where additional
CPM SISO passes using updated a priori information from the LDPC decoder lead to performance
gains. Conversely, the flat EXIT curves for BPSK (or ARTM1 with differential encoding off) mean
that additional demodulator passes are pointless because no extrinsic gains are possible.

CPM-Based PEXIT Algorithm. The modifications to the PEXIT algorithm that are necessary
for CPM are essentially the same as those that were developed in [4] for partial response channels.
The original algorithm in [3] maintains a priori (“A”) and extrinsic (“E”) variables going to/from
the variable (“v,” indexed by j) and check (“c,” indexed by i) nodes that are updated iteratively,
with input coming externally from the “channel.” In this case, the “channel” is the CPM SISO
module (“s”), which itself has an iterative update from a priori to extrinsic that involves the EXIT
characteristic function for the SNR of the AWGN channel. The primary points where the algorithm
needs to be modified are where the “channel” interfaces with the LDPC decoder, because in the
present context the “channel” is the CPM SISO module.

In the initialization step, the user specifies Es/N0, which in turn specifies the CPM EXIT
characteristic function (LUT) TEs/N0 [·]. We set IAs = 0, which is the a priori information for the
SISO module and we enter the PEXIT iterative loop. In the SISO update step, we quantize IAs to
the nearest available input index in the LUT, TEs/N0 [·], and then access the LUT to convert the a
priori information to extrinsic information: IEs = TEs/N0 [IAs].

To transfer information to the LDPC decoder, we set Ich(j) = IEs, ∀j, except we set Ich(j) = 0
if the j-th variable node is punctured. This is the a priori information going from the “channel” to
the j-th variable node of the LDPC decoder. From there, the PEXIT algorithm proceeds exactly as
outlined in [3]. At the end of the PEXIT algorithm, when it is time to transfer information back to
the SISO module, the update is given by

IAs =
1

NB

NB−1∑
j=0

J

√∑
s

bs,j [J−1(IAv(s, j))]
2

 (7)

It is worth pointing out that setting Ich(j) = IEs, ∀j implies that the SISO module transfers a
uniform amount of information to the variable nodes, which does not vary from node to node (i.e.
it is independent of j). Likewise, even though Equation (7) operates on information values from
variable nodes that varies with j, they are averaged over j so that a uniform amount of information
is transferred back to the SISO module. This assumption of uniformity back and forth between the
SISO module and the LDPC decoder in the PEXIT algorithm is akin to the functionality [13] of
the interleaver and deinterleaver in the receiver.

LDPC CODE DESIGN FOR CPM
Protomatrix Optimization. In this section, we propose a simple procedure to search for

a good protomatrix (protograph) that is “matched” with a specific CPM scheme. The desired
properties of the resulting protomatrix are a low decoding threshold and preservation of the linear
minimum distance growth property [5], which guarantees no error floor when assigning random
circulants in the lifting stage of the design.

To preserve the linear minimum distance growth property, there are several techniques and
strategies that can be employed; such as [5]: (a) including some degree-1 variable nodes; (b) in-
cluding some degree-2 variable nodes via the check-node splitting technique; (c) including some
punctured variable nodes; (d) including some high-degree variable nodes; and (e) maintaining a
variable node degree of 3 or higher except for the controlled introduction of the degree-1 and
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degree-2 nodes mentioned earlier. All of the above techniques were explored in searching for
LDPC codes to pair with ARTM0, ARTM1, and ARTM2. We did not see any advantage in de-
coding threshold by employing degree-1 and degree-2 variable nodes, or by introducing punctured
variable nodes. Our best decoding threshold results were obtained by a simple search that focused
on variable node degrees between 3 and some upper limit. It is this procedure that we outline next.

We selected a basic protomatrix format with MB = 4 rows and NB columns as required to
achieve the desired code rate:

B =


b0,0 b0,1 · · · b0,NB−1

b1,0 b1,1 · · · b1,NB−1

b2,0 b2,1 · · · b2,NB−1

b3,0 b3,1 · · · b3,NB−1

 (8)

This is consistent with starting protomatrix size in [4]. We allow the elements of B to be drawn
from a 4-ary alphabet, i.e. bi,j ∈ {0, 1, 2, 3}, with B = 4. The remaining task, while of the utmost
importance, is simply to specify the elements of B.

To accomplish this, we optimize the elements of B on a column-wise basis (i.e. on a variable
node by variable node basis), which is similar to the approach in [4]. With a 4-ary alphabet and
four elements per column, there is an alphabet of 44 = 256 possible columns, with a column
sum (column weight, or variable node degree) ranging from 0 to 12. We eliminate any columns
with a weight less than three or greater than some upper limit, and we refer to this initial set of
candidate columns as Sinit. Next, we commence the CPM-based PEXIT algorithm, which was
just described. The algorithm must be supplied with a set of EXIT characteristic function curves
(LUTs) for the specific CPM scheme that are computed (simulated) over a sufficiently large range
of Es/N0 values. Figure 3 gives only three such curves for each of the CPMs of interest in this
study, but a much larger set of curves was computed in order to support the code design procedure.

A starting value of Es/N0, (Es/N0)cur, is selected and a full execution of the algorithm takes
place for each of the candidate columns in Sinit (the remainder of the protomatrix remains con-
stant while the candidate column changes from one PEXIT execution to the next). Any candidate
columns that achieve the desired result (IAPP(j) = 1, ∀j) are deemed “survivors” and are collected
in the set Scur. The value of (Es/N0)cur is decremented (by 0.05 dB in our case) and the results
of the previous step are designated (Es/N0)prev and Sprev. The PEXIT algorithm is again executed
once for each of the survivors in Sprev, which produces a new list of survivors, Scur, that belong to
(Es/N0)cur. This continues until (Es/N0)cur is decremented to the point where Scur is empty (i.e.
no survivors), whereupon (Es/N0)prev and Sprev represent the end result of the optimization for the
given column. An “optimized” value for the column can be selected from Sprev and fixed into the
protomatrix. The focus then shifts to another column and can begin at (Es/N0)prev using Sinit. At
some point, each column has been visited enough that no further progress is made and the decoding
threshold is determined to be (Es/N0)∗ = (Es/N0)prev. Clearly, this approach does not produce
a unique result; however, in repeated runs, the same general statistical results were achieved each
time, which is consistent with other studies on LDPC code ensemble design, cf. e.g. [4, 5, 7].

While there may be many final survivors in Sprev at the end of each column’s optimization,
each has an associated PEXIT iteration count, and preference can be given for the survivors with
the lowest counts. In some cases, a larger-weight survivor is of interest to ensure some diversity
in variable node degree. Furthermore, we added a constraint that any check node degree should
not exceed 32, because a larger check node degree increases the difficulty in assigning random
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circulants in the lifting stage of the design for small lifting factors.
There is a surprising variation in the performance of the final code in terms of BER performance

and the required number of decoding iterations; this variation was noticeable primarily with the
smallest lifting factors (32 and 64 in our study). This problem was addressed simply by trying
several different protomatrix candidate designs (which are, again, not unique), and for each design
creating several instances of the final (randomly lifted) code. The candidate codes were simulated
against each other and the best one was selected. The authors in [14] mention similar head-to-head
trials in selecting the final AR4JA codes. Thus, optimizing the selection of the final code over an
ensemble of candidates is an integral part of the code design process.

Lifting the Protomatrix to Obtain the Final Code. The analysis in [15] showed certain
performance advantages are possessed by the two-stage lifting procedure that was used to obtain
the AR4JA codes [5] and similar codes, e.g. [4]. This provides clear motivation for us to follow
a similar approach. Initially, we followed the exact strategy with the AR4JA codes, which was to
lift the protomatrix by a factor of 4 using the progressive edge growth (PEG) algorithm [16]. This
results in an “intermediate” protomatrix, D, with dimensions MD = 4MB and ND = 4NB. Unlike
the original protomatrix, which has elements drawn from the 4-ary alphabet {0, 1, 2, 3}, D has
elements drawn from the binary alphabet {0, 1}. In other words, when expressed as protographs,
the original protograph was allowed to have multiple parallel edges (protomatrix elements greater
than 1), but lifting by a factor of 4 results in an intermediate protograph where multiple parallel
edges are eliminated.

The downside of this strategy is that it results in relatively small lifting factors in the second
and final stage that follows, which limits minimum distance growth [5]. For example, the AR4JA
codes begin with a protomatrix with fewer rows than (8), which allows for a larger lifting factor at
the end. In our case, lifting by a factor of 4 in the first stage means that the lifting factors in the
second step can be only half as large as the AR4JA codes. Because of this, we explored the idea
of lifting only by a factor of 2 in the first stage, which allows the lifting factors in the second step
to be doubled, thus matching those of the AR4JA codes. Lifting by a factor of 2 means that each
element of B is replaced by a 2× 2 sub-matrix, as follows:

0 →
(
0 0
0 0

)
1 →

(
1 0
0 1

)
2 →

(
1 1
1 1

)
3 →

(
2 1
1 2

)
(9)

In the last case above, lifting a value of bi,j = 3 results in protomatrix elements that remain greater
than 1, and thus the final parity check matrix will have parallel edges. However, relative to lifting
by a factor of 4, we observed no cases over modulation type, block size, and code rate, where the
performance was degraded when lifting by a factor of 2. In fact, in many cases the performance
was improved due to the doubling of the final lifting factor.

In the second and final lifting stage, D is lifted by a factor of ML by assigning random phases
to ML×ML circulants using the ACE algorithm [6]. A circulant is a square matrix where each row
is a right-hand circular (barrel) shift of the row above. As such, the entire circulant can be specified
by providing only the first row; the “weight” of the circulant is the sum of the first row. Because of
our first lifting stage, the intermediate protomatrix contains entries drawn only from the alphabet
{0, 1, 2}, and so this second lifting stage results in weight-2, weight-1, or weight-0 (all-zeros)
circulants. We simplify the discussion by considering a weight-2 circulant to be the superposition
of two weight-1 circulants. A weight-1 circulant can be specified simply by its “phase,” which is
the location of the non-zero element in the first row and is an integer in the set {0, 1, . . . ,ML − 1}.
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Table 1: Dimensions and Coding Gains (at BER = 10−8) of the Final LDPC Codes.
K R N ML MB NB MD ND ∆0 ∆1 ∆2

1024 4/5 1280 32 4 20 8 40 7.6 7.9 7.0
1024 2/3 1536 64 4 12 8 24 8.6 9.1 8.6
1024 1/2 2048 128 4 8 8 16 9.1 9.9 9.3
4096 4/5 5120 128 4 20 8 40 8.7 9.1 8.1
4096 2/3 6144 256 4 12 8 24 9.5 10.1 9.5
4096 1/2 8192 512 4 8 8 16 9.9 10.8 10.2
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Figure 4: BER curves for the six block sizes and code rates in Table 1. The legend identifies the six
cases, however, each modulation type has its own family of six curves: the ARTM0 set is the left-most, the
ARTM2 set is the right-most, and the ARTM1 set is in the middle. The coding gains (relative to the uncoded
cases at BER = 10−8) are listed in Table 1 as ∆0, ∆1, and ∆2 [in dB] for ARTM0, ARTM1, and ARTM2,
respectively.
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This second lifting stage results in the final low-density parity check matrix, H, with dimen-
sions MH = MLMD and NGH = MLND. The companion to this is the generator matrix, G, with
dimensions K = NGH − MH and NGH (i.e., both G and H have the same number of columns,
NGH). Given H, the procedure for obtaining G is provided in [17].

LDPC DESIGN RESULTS
Because of the existing pairing of the AR4JA codes with SOQPSK-TG (with differential en-

coding turned off), as described in the IRIG-106 standard [2], we are interested in designing codes
with similar dimensions and rates. Table 1 shows the desired information block sizes, K, and de-
sired code rates, R (six combinations in total), along with a few parameter values of interest that
are driven by these selections.

ARTM0. For ARTM0, the SNR values that correspond to the maximum achievable rates of
R∗

Es/N0
∈ {1/2, 2/3, 4/5} are (Es/N0)achievable ∈ {−3.80,−1.95,−0.45} dB. Using the PEXIT-

based protomatrix optimization procedure we outlined above, we were able to design protomatrixes
for these code rates with decoding thresholds (Es/N0)∗ ∈ {−2.95,−1.45,+0.05} dB, which is a
gap to capacity of {0.85, 0.60, 0.55} dB (less than one dB in all cases).

The resulting protomatrixes are shown below. The subscript notation B0,1/2 designates that the
CPM scheme is ARTM0 and the code rate is 1/2, and so forth:

B0,1/2 =


0 0 0 0 0 0 1 2
0 0 0 0 1 1 0 2
0 0 1 1 0 0 1 2
3 3 2 2 2 2 1 1

 (10) B0,4/5 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2 0 2 0 1 2 1 1 0
2 2 2 2 2 2 1 1 1 1 1 1 2 0 0 1 1 0 0 1

 (11)

B0a,2/3 =


0 0 0 0 0 0 1 0 0 1 2 1
0 0 0 0 0 1 0 0 1 1 1 2
0 0 0 0 1 0 0 1 0 0 2 2
3 3 3 3 2 2 2 3 3 2 0 1

 (12) B0b,2/3 =


0 0 0 0 0 0 0 0 0 2 1 2
0 0 0 0 0 0 0 1 1 1 1 2
1 1 1 1 1 1 2 0 0 0 0 0
2 2 2 2 2 2 1 2 2 0 1 0

 (13)

For the rate-2/3 case, the protomatrix in (12), B0a,2/3, resulted in excellent BER performance when
lifted for the longer information block length of K = 4096, but resulted in a much shallower BER
slope at low BERs (i.e. an “error floor”) for the shorter information block length of K = 1024.
This was the case regardless of lifting by 2 or 4 in the first lifting stage. With additional trial
and error, for K = 1024 we selected the protograph in (13), B0b,2/3, which has a slightly worse
decoding threshold of (Es/N0)∗ = −1.25 dB but resulted in excellent BER performance.

ARTM1. For ARTM1, the SNR values that correspond to the maximum achievable rates of
(Es/N0)achievable ∈ {−2.85,−0.60,+1.25} dB. We were able to design protomatrixes for these
code rates with decoding thresholds (Es/N0)∗ ∈ {−1.90, 0.0,+1.80} dB, which is a gap to capac-
ity of {0.95, 0.70, 0.50} dB (again, less than on dB). The resulting protomatrixes are:

B1,1/2 =


0 0 0 0 0 0 1 3
0 0 0 0 1 1 1 2
0 0 1 1 1 2 0 1
3 3 2 2 1 0 1 1

 (14) B1,4/5 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2 0 1 0 1 1 1 0 0
2 2 2 2 2 2 1 1 1 1 1 1 2 1 0 1 0 0 0 1

 (15)
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B1a,2/3 =


0 0 0 0 0 0 0 0 1 1 1 3
0 0 0 0 1 1 0 1 1 1 2 0
0 0 0 1 0 0 1 0 0 1 2 3
3 3 3 2 2 2 3 3 2 1 1 0

 (16) B1b,2/3 =


0 0 0 0 0 0 0 0 1 2 2 1
0 0 0 0 0 0 0 1 0 2 2 2
1 1 1 1 1 1 1 0 1 0 1 2
2 2 2 2 2 2 2 2 1 0 0 0

 (17)

As with the ARTM0 case, we settled on two different protomatrixes for the rate-2/3 case for
ARTM1, in order to address an error floor for the K = 1024 block length. The decoding threshold
for B1b,2/3 is slightly degraded at (Es/N0)∗ = +0.10 dB but resulted in excellent BER perfor-
mance.

By way of comparison, the protomatrixes for the AR4JA codes have decoding thresholds of
(Es/N0)∗ ∈ {−2.40,−0.25,+1.60} dB when applied to ARTM1 with differential encoding turned
off, which is a smaller gap to capacity of {0.45, 0.35, 0.35} dB. It has already been established
in [18] that LDPC codes paired with MSK-type CPMs without differential encoding (referred to as
“nonrecursive MSK” in [18]) perform better than pairings where differential encoding is present.
Thus, the superior performance of the AR4JA codes is to be expected.

ARTM2. For ARTM2, the SNR values that correspond to the maximum achievable rates of
(Es/N0)achievable ∈ {+0.40,+2.75,+4.60} dB. We were able to design protomatrixes for these
code rates with decoding thresholds (Es/N0)∗ ∈ {+1.75,+3.60,+5.50} dB, which is a gap to
capacity of {+1.35,+0.85,+0.90} dB (nearly one dB). No error floors were observed when lifting
these protomatrixes to the various block lengths. The resulting protomatrixes are:

B2,1/2 =


0 0 0 0 0 0 1 2
0 0 0 0 0 1 1 1
0 0 0 1 2 0 1 0
3 3 3 2 1 2 1 1

 (18) B2,2/3 =


0 0 0 0 0 0 0 1 0 0 1 2
0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 0 1 0 0 2
3 3 3 3 3 2 2 2 3 3 2 0

 (19)

B2,4/5 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3
0 0 0 1 1 1 1 1 1 1 2 2 2 2 1 1 2 1 2 0
3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0 0 0

 (20)

BER PERFORMANCE AND CONCLUSION

Figure 4 shows bit error rate (BER) simulations for the 18 LDPC codes (six codes times three
modulations) that were produced in this study and Table 1 lists their coding gains, which range
from 7.0 to 10.8 dB! The coding gains are denoted as ∆0, ∆1, and ∆2 [in dB] for ARTM0,
ARTM1, and ARTM2, respectively, and use the uncoded BER = 10−8 crossing points of Eb/N0 ∈
{10.8, 12.9, 13.3} dB as a reference. The gains are comparable across the code and modulation
types, which validates the consistency of the design approach. Furthermore, our decoder in [1] has
a high enough throughput to simulate down to very low BERs. Overall, these LDPC codes paired
with ARTM0 (PCM/FM) and ARTM 2 (ARTM CPM) can be considered to fill in the “missing”
LDPC coding options in the current version of IRIG-106.

In future work, we plan to refine and finalize a specific LDPC code for each of the above cases,
i.e. 18 pairs of H and G, that can be considered for the IRIG-106 standard. Final BER results and
other details (parameter optimizations, etc.) will be published at a later date.
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