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Abstract— We consider highly-simplified decision feedback
detectors for shaped-offset quadrature phase-shift keying (SO-
QPSK), a highly bandwidth-efficient and popular constant-
envelope modulation. In particular, we show that the state
complexity can be reduced to a minimal level—two states—
with asymptotically optimum performance, as demonstrated by
performance analysis and confirmed by computer simulations.
The complexity reduction is achieved by a novel manipulation
of the differential encoder and the SOQPSK precoder, which
are both part of the transmission model for SOQPSK. We
give two possible architectures for achieving this complexity
reduction: the pulse amplitude modulation (PAM) technique
and the pulse truncation (PT) technique. We also formulate
these detectors for coherent and noncoherent detection. The
resulting family of detectors makes use of recent advances in
SOQPSK technology based on a continuous phase modulation
(CPM) interpretation of SOQPSK. The proposed simplifications
are significant since they minimize the complexity of trellis-
based SOQPSK detectors, which have only become available
in recent years. Since trellis-based SOQPSK detectors are 1–2
dB superior to the widely-deployed family of symbol-by-symbol
SOQPSK detectors, the proposed two-state detectors offer the
simplest means of achieving these performance gains. Thus, these
simple detection schemes are applicable in settings where high
performance and low complexity are needed to meet restrictions
on power consumption and cost.

I. INTRODUCTION

Shaped-offset quadrature phase-shift keying (SOQPSK) is a
popular bandwidth-efficient special-case of continuous phase
modulation (CPM) [1]. While CPM has a number of ad-
vantages, one advantage in particular is responsible for its
widespread deployment: it has a constant signal envelope.
This makes it compatible with nonlinear power amplifiers,
which are highly efficient in converting limited (i.e. battery)
power into radiated power. This in turn allows for a smaller
(miniature) physical size and lower cost for the transmitter.
To date, SOQPSK has been incorporated into military and
aeronautical telemetry standards, although wider use is merited
since it is applicable in any setting where bandwidth-efficient
constant-envelope modulations are needed.

In addition to its name, SOQPSK shares a number of
similarities with conventional OQPSK. These similarities are
exploited at the receiver, where symbol-by-symbol OQPSK-
type detectors are the most commonly deployed means of
detecting SOQPSK, e.g. [2], [3]. The advantage of the OQPSK
interpretation at the receiver is its simplicity. Thus, the low-cost
advantage of SOQPSK can be shared by the transmitter and the
receiver. However, the disadvantage of OQPSK-type detectors

is that they ignore the memory that is inherent in the SOQPSK
signal. Depending on the details of their construction, symbol-
by-symbol OQPSK-type detectors are suboptimal by 1–2 dB
when applied to SOQPSK [3]. This loss is significant since it
erodes some of the power efficiency enjoyed by SOQPSK in
the first place.

Because SOQPSK is a modulation with memory, its optimal
detector requires a trellis. Such detectors were first studied
only recently in [4], where a cross-correlated trellis-coded
quadrature modulation (XTCQM) [5]–[7] viewpoint was taken
for SOQPSK. The XTCQM model was applied to the simplest
version, military standard SOQPSK, or “SOQPSK-MIL,” and
resulted in a detector with a four-state trellis. More recently
in [8], a CPM interpretation of SOQPSK was applied at the
receiver. This also resulted in an optimal four-state detector for
SOQPSK-MIL; furthermore, the CPM-based approach opened
the door for two reduced-complexity methods for detecting the
more complicated version of SOQPSK adopted by the teleme-
try group, “SOQPSK-TG” [9]. These two techniques, pulse
amplitude modulation (PAM) [10], [11] and pulse truncation
(PT) [12], [13] result in four-state detectors for SOQPSK-TG
that are within 0.2 dB of the impractical 512-state optimum
detector.

In this paper, we show that the size of the trellis can
be reduced to its minimum—two states—for both SOQPSK-
MIL and SOQPSK-TG. This is accomplished by a novel
manipulation of the differential encoder and the SOQPSK
precoder which leads to a simplified representation of the
transmitter’s state memory. This manipulation achieves for
SOQPSK the same thing that minimal encoder representations
achieve for convolutional codes, e.g. [14]. This simplified
transmitter model, combined with decision-feedback at the
receiver, yields the overall state reduction. We show how to
implement this state reduction in a two-state detector using
the PAM and PT techniques, in both coherent and noncoherent
formulations. This results in a family of four distinct detectors,
which demonstrates the versatility of the simplified state
model.

For the coherent case, we use performance analysis to show
that the two-state PAM and PT detectors have no losses relative
to their four-state counterparts for asymptotically large signal-
to-noise ratios (SNRs); however, the accompanying simulation
results show that for moderate SNRs, the PT technique results
in a negligible loss on the order of 0.1 dB.

The proposed reduction to two states is significant since the



major drawback of trellis-based detectors is their complexity
compared to their symbol-by-symbol cousins. Since the pro-
posed detectors reduce the state complexity to its minimum of
two states, these detectors represent the most attractive means
of realizing the 1–2 dB advantage trellis-based detectors have
over symbol-by-symbol detectors.

The paper is organized as follows. In the next section we
describe the signal model for SOQPSK, including the four-
state transmitter model and the proposed two-state transmitter
model. In Section III we develop the family of coherent and
noncoherent two-state detectors. In Section IV we study the
performance of the proposed detectors and give simulation
results in Section V.

II. DESCRIPTION OF SOQPSK

A. CPM Signal Model

The SOQPSK signal in complex baseband representation is
defined as a CPM [1]

s(t;α) ,

√
Eb
Tb

exp {jψ(t;α)} (1)

where Eb is the energy per bit and Tb is the bit duration.
The transmitted symbol sequence is α , {αi}, where each
symbol has a duration equal to Tb and is drawn from a ternary
alphabet, i.e. αi ∈ {−1, 0,+1}. The phase of the signal,
ψ(t;α), is a pulse train of the form

ψ(t;α) , 2πh
∑
i

αiq(t− iTb) (2)

where i ∈ Z is the discrete-time index and h = 1/2 is the
modulation index. The phase pulse q(t) is defined as

q(t) ,


0 t < 0∫ t

0

f(τ) dτ 0 ≤ t < LTb

1/2 t ≥ LTb
(3)

where f(t) is the frequency pulse, which has a duration of L
bit times and an area of 1/2. When L = 1 the signal is full-
response and when L > 1 it is partial-response. Due to the
constraints on f(t) and q(t), and given the use of a rational
modulation index, the phase in (2) may be expressed as

ψ(t;α) = 2πh
n∑

i=n−L+1

αiq(t− iTb)︸ ︷︷ ︸
θ(t)

+πh

n−L∑
i=0

αi︸ ︷︷ ︸
θn−L

(4)

where nTb ≤ t < (n + 1)Tb. The phase state θn−L ∈
{0, π/2, π, 3π/2} can assume only four distinct values when
taken modulo-2π, which gives ejθn−L ∈ {±1,±j}.

In this paper, we focus on the two standardized versions of
SOQPSK. The first, SOQPSK-MIL [15], is full-response with
a rectangular-shaped frequency pulse

fMIL(t) ,

{
1

2Tb
, 0 ≤ t < Tb

0, otherwise.
(5)
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Fig. 1. Transmitter models for SOQPSK with (a) the original precoder with
a four-state trellis and (b) the differential precoder with a two-state trellis.

The second, SOQPSK-TG [9], [16], is partial-response with
L = 8 and a frequency pulse given by

fTG(t) , A
cos
(
πρBt
2Tb

)
1− 4

(
ρBt
2Tb

)2 ×
sin
(
πBt
2Tb

)
πBt
2Tb

× w(t) (6)

where the window is

w(t) ,


1, 0 ≤

∣∣∣ t
2Tb

∣∣∣ < T1

1
2 + 1

2 cos
(
π
T2

(
t

2Tb
−T1

))
, T1≤

∣∣∣ t
2Tb

∣∣∣≤ T1+T2

0, T1 + T2 <
∣∣∣ t
2Tb

∣∣∣ .
The constant A is chosen such that the area of the pulse is
equal to 1/2 and T1 = 1.5, T2 = 0.5, ρ = 0.7 and B = 1.25.

B. Original SOQPSK Precoder and Four-State Trellis

With SOQPSK, the symbol sequence α, which is trans-
mitted over the channel, is not the underlying information
sequence; instead, the symbol sequence α is derived from the
original bit sequence a , {ai} by the series of operations
shown in Fig. 1 (a). The first of these operations is a double
differential encoder [17] given by

un = an ⊕ un−2, an, un ∈ {0, 1} (7)

where ⊕ is the modulo-2 addition operator with identity 0.
The differential encoding rule in (7) can be summarized as
“change phase on 1” since an input of an = 1 causes the
output value un to change relative to the state value un−2. The
state memory of the differential encoder (un−2) is explicitly
labled in Fig. 1 (a).

The second operation in Fig. 1 (a) is the SOQPSK pre-
coder, which converts the differentially encoded sequence
u , {ui} into a ternary data sequence α, with elements
αn ∈ {−1, 0,+1}, according to the rule [18]

αn(u) = (−1)n+1(2un−1 − 1)(un − un−2). (8)

For convenience, we drop the cumbersome notation αn(u) in
favor of the more streamlined notation αn, but we emphasize
the fact that αn is a function of the input un and three binary-
valued state variables: n-even/n-odd, un−1, and un−2. The
state memory of the precoder is explicitly labeled in Fig. 1 (a).
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Fig. 2. Four-state time-varying trellis for the original precoder. The states
are labeled with the state vector Sn and the branches are labeled with the
input-bit/output-symbol pair an/αn.

The precoder imposes three important constraints on the
ternary data [18]:

1) While αn is viewed as being ternary, in any given bit
interval αn is actually drawn from one of two binary
alphabets, {0,+1} or {0,−1}.

2) When αn = 0, the binary alphabet for αn+1 switches
from the one used for αn, when αn 6= 0 the binary
alphabet for αn+1 does not change; this rule can be
summarized as “switch alphabets on αn = 0.”

3) A value of αn = +1 cannot be followed by αn+1 =
−1, and vice versa (this is implied by the previous
constraint).

The last operation in Fig. 1 (a) is a conventional CPM
modulator with h = 1/2 and the desired pulse shape fMIL(t) or
fTG(t). For the special case of full-response CPM (L = 1), the
only state variable within the CPM modulator is the phase state
θn−1, which is explicitly labeled in Fig. 1 (a). In Section III
we show how partial-response SOQPSK-TG can be modeled
as a full-response CPM at the receiver; thus, the full-response
model is the only case that must be considered as it can be
applied to both versions of SOQPSK.

Fig. 2 shows the four-state time-varying trellis that describes
the SOQPSK precoder in Fig. 1 (a) [8]. In this trellis, n-
even/n-odd is not treated as a state variable (since this would
require an 8-state trellis) but is handled instead with the time-
varying sections of the trellis. The remaining precoder state
variables are un−1 and un−2. For convenience, we combine
these variables to form Sn ∈ {00, 01, 10, 11}; these are
ordered (un−2, un−1) for n-even and (un−1, un−2) for n-
odd [18]. This means that the inphase (I) bit of the pair is
always most significant and the quadrature (Q) bit of the pair
is always least significant. The states in Fig. 2 are labeled
with Sn and the branches are labeled with the input-bit/output-
symbol pair an/αn.

The advantage of the four-state precoder trellis is that its
state variable Sn has a one-to-one correspondence with the
phase state θn−1 of the full-response CPM modulator that
follows the precoder. In other words, a separate trellis is not
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Fig. 3. Two-state trellis for the differential precoder. The states are labeled
with the state vector Sn and the branches are labeled with the input-bit/output-
symbol pair an/αn.

required by the CPM modulator, and the entire system in
Fig. 1 (a) is described by the four-state time-varying trellis
in Fig. 2. The mapping from precoder trellis states to CPM
phase states is [8]

00↔ 3π
2
, 01↔ π,

10↔ 0, 11↔ π

2
.

(9)

C. Modified SOQPSK Precoder and Two-State Trellis

The SOQPSK precoder in (8) can be combined with the dif-
ferential encoder in (7) to produce a differential precoder. The
steps are given in the Appendix and the resulting expression
is

αn = (−1)Snan, an, Sn ∈ {0, 1}, (10)

where the sign state Sn is updated with the operation

Sn+1 = (Sn + αn + 1) mod 2 (11a)
or equivalently

Sn+1 = (Sn + an + 1) mod 2. (11b)

This simplified series of transmitter operations is shown in
block diagram form in Fig. 1 (b). We point out that the binary-
valued sign state Sn is the only state variable required by the
differential precoder, as explicitly labeled in Fig. 1 (b).

All of the binary-to-ternary constraints are clearly visible
in (10) and (11a); since the input bit an is drawn from a
binary alphabet, αn is also drawn from a binary alphabet
whose “sign” is controlled by the sign state Sn; the switching
rule for the binary alphabets is “switch alphabets on αn = 0,”
which is exactly how (11a) works. Furthermore, an elegant
side effect of the differential precoder is that it makes the
binary-to-ternary mapping “systematic” in the sense that one
can easily identify the information bits in the ternary symbol
sequence: an = 0 always maps to αn = 0 and an = 1 always
maps to αn = ±1. This also means that the “change phase on
1” rule is directly observable in the output of the differential
precoder since αn = ±1 changes the phase of the CPM signal.

Fig. 3 shows the two-state time-invariant trellis that de-
scribes the differential SOQPSK precoder in Fig. 1 (b) and
equations (10) and (11). The states in Fig. 3 are labeled with
Sn and the branches are labeled with the input-bit/output-
symbol pair an/αn.

The obvious advantage of the two-state trellis is its sim-
plicity with respect to the four-state time-varying trellis in
Fig. 2. Unfortunately, the two-state simplification does not do



anything to reduce the number of CPM phase states θn−1.
Thus, a four-state trellis is still required to fully (i.e. optimally)
describe the entire system in Fig. 1 (b). In the next section
we will show how a simple decision feedback scheme can
be employed at the detector to resolve the value of the phase
state θn−1; this technique allows the simple two-state trellis to
be successfully applied to SOQPSK and yields asymptotically
optimal performance.

III. DECISION FEEDBACK SOQPSK DETECTORS

A. Received Signal Model

The received signal is modeled as

r(t) = s(t;α)ejφ(t) + n(t) (12)

where n(t) is complex-valued additive white Gaussian noise
(AWGN) with single-sided power spectral density N0 and
φ(t) is the carrier/channel phase which, for the moment, we
assume to be perfectly known and zero-valued. (i.e. coherent
detection). Since the transmitted signal s(t;α) has memory,
the optimal detector must perform maximum likelihood se-
quence detection (MLSD). This is efficiently implemented via
the Viterbi algorithm (VA), which is summarized below. In
what follows, we refer to estimated and hypothesized values
of a quantity w as ŵ and w̃ respectively. Also, ŵ and w̃ can
assume the same values as w itself.

The VA operates on a trellis diagram, such as the one in
Fig. 2. Over the duration of a symbol interval, the transmitted
signal is in one of its possible states, Sn, the exact value of
which is unknown to the receiver. Given the received signal,
the likelihood that the transmitter is in a particular hypothetical
state S̃n at time step n is quantified by the cumulative metric
λn(S̃n). A cumulative metric is maintained for each state
in the trellis. These metrics are updated by extending each
branch from its starting state S̃n to its ending state Ẽn via the
recursion

λn+1(Ẽn) = λn(S̃n) + Re
{
z(n, [ãn, S̃n])

}
(13)

where Re{·} is the real part of a complex number and
z(n, [ãn, S̃n]) is a generic branch metric increment, which is a
function of the starting state S̃n and the branch symbol ãn; we
refer to [ãn, S̃n] as the branch vector. In the case of SOQPSK,
there are two branches that merge into each ending state Ẽn.
The merging branch with the maximum metric is declared the
survivor and its metric is stored for later use in the next round
of updates.

This general VA framework will be used for both the four-
state and two-state SOQPSK detectors. In order to realize such
simple detectors for SOQPSK-TG, we must first summarize
how partial-response SOQPSK-TG is handled at the receiver
as if it were a full-response signaling scheme.

B. Branch Metric Increment Using Pulse Truncation

One technique for reducing the complexity of SOQPSK-TG
at the receiver is known as pulse truncation (PT) [12], [13].
This approach stems from the fact that frequency pulses which
are long and smooth are oftentimes near-zero for a significant

portion of their duration. This is the case for fTG(t) in (6).
Using these arguments, we base the detector on a frequency
pulse which has been truncated to a duration of one bit/symbol
time (full-response). Of course, the detector uses a phase pulse
instead of a frequency pulse, so we translate these arguments
accordingly and obtain a modified phase pulse

qPT(t) =


0, t < 0
q(t+ (L− 1)Tb/2), 0 ≤ t ≤ Tb
1/2, t > Tb.

(14)

Note that the phase pulse in (14) is defined for all values of
t; however, its time-varying portion has been shortened by a
total of (L− 1)Tb and is restricted to the interval [0, Tb]. The
truncation is centered such that half is applied to the beginning
of the pulse and half to the end. Since qPT(t) has variations
only in the time interval [0, Tb] it behaves like a full-response
pulse.

The truncated pulse can be used in a standard CPM-type
branch metric increment [1]

zPT(n, [ãn, S̃n]) , e−jθ̃n−1

∫ (n+1)Tb

nTb

r(t+ (L− 1)Tb/2)

× e−j2πhα̃nqPT(t−nTb)dt.

(15)

The hypothesized branch vector [ãn, S̃n] has a one-to-one
correspondence with a hypothesized ternary symbol α̃n and
a hypothesized CPM phase state θ̃n−1, as shown in Fig. 2
and Eq. (9), respectively. There are three complex-valued filter
outputs needed to implement (15) (one for each possible value
of the ternary α̃n).

While the notation in (14) and (15) is valid for SOQPSK-
MIL and SOQPSK-TG, in the case of SOQPSK-MIL (L = 1)
the pulse qMIL(t) is already full-response and no truncation
takes place; thus the filters needed to implement (15) are
matched filters (MFs). For this reason, we refer to (15) as the
“MF metric” in the case of SOQPSK-MIL since it is in fact
the optimal CPM-type metric. In the case of SOQPSK-TG, we
refer to (15) as the “PT metric” and it results in near-optimal
performance, as discussed in Sections IV and V.

C. Branch Metric Increment Using the PAM Representation

The PAM representation of CPM [10], [11] is a well-known
technique where the right-hand side of (1) can be written as

s(t;α) =
√
Eb
Tb

R−1∑
k=0

∑
i

bk,igk(t− iTb) (16)

which is simply a linear combination of R pulses gk(t) that
are modulated by pseudo-symbols bk,i. The pseudo-symbols
are derived from the original data symbols αi by a nonlinear
mapping. The full definitions needed to describe the pulses and
pseudo-symbols for SOQPSK are somewhat lengthy and do
not contribute in a meaningful way to the present discussion;
these definitions are found in [11].



TABLE I
THE RELATIONSHIP BETWEEN THE TERNARY BRANCH SYMBOL αn , AND

THE PSEUDO-SYMBOLS βk(αn) FOR SOQPSK.

αn β0(αn) β1(αn)

−1 exp {−jπ/2} = −j exp {−jπ/4} =
√

2
2

(1−j)
0 1 cos(π/4) =

√
2

2

+1 exp {+jπ/2} = +j exp {+jπ/4} =
√

2
2

(1+j)

For the present case of SOQPSK, an important property of
the PAM technique is the following: when (16) is approxi-
mated with the first two terms in the outer summation, i.e.

s(t;α) ≈
√
Eb
Tb

1∑
k=0

∑
i

bk,igk(t− iTb) (17)

the pseudo-symbols that remain, b0,i and b1,i, can be described
by the full-response trellis in Fig. 2. Thus, the PAM approx-
imation in (17) can be used to realize four-state detectors for
partial-response SOQPSK (and SOQPSK-TG in particular).

Using (17), the PAM-based branch metric increment is given
by [8]

zPAM(n, [ãn, S̃n]) = e−jθ̃n−1

1∑
k=0

yk(n)[βk(α̃n)]∗ (18)

where (·)∗ is the complex conjugate. The pseudo-symbols
βk(·), 0 ≤ k ≤ 1, in (18) are listed in Table I. The sampled
matched MF output is

yk(n) =
∫ (n+L+1−k)Tb

nTb

r(t)gk(t− nTb) dt, 0 ≤ k ≤ 1,

(19)
where the PAM pulses gk(t) serve as the impulse responses
of the MFs. The hypothesized branch vector [ãn, S̃n] has a
one-to-one correspondence with α̃n and θ̃n−1, as discussed
before. In this case, each possible value of α̃n corresponds to
a row in Table I. The PAM pulses g0(t) and g1(t) are shown
in [8, Fig. 6] for SOQPSK-TG.

Here again, the notation in (18) and (19) is valid for
SOQPSK-MIL and SOQPSK-TG. In the case of SOQPSK-
MIL, the exact PAM representation has only R = 2 terms so
the approximation in (17) turns out to be exact. Thus, (18) is
optimal in the case of SOQPSK-MIL. In the case of SOQPSK-
TG, the exact PAM representation has R = 4374 terms, so (17)
is truly an approximation and (18) results in a near-optimal
detector, as discussed in Section IV and V.

D. Noncoherent Branch Metric Increment

Up to this point, we have considered the case where the
carrier/channel phase is perfectly known and is zero; this
case corresponds to coherent detection. A closely related case
is when φ(t) is perfectly known but is non-zero; this case
also corresponds to coherent detection and it requires that
the generic VA increment in (13) be augmented to become
e−jφ(t)z(n, [ãn, S̃n]), where z(n, [ãn, S̃n]) is again a generic

placeholder for any of the branch metric increments defined
above.

When φ(t) is unknown but slowly varying so that it is
roughly constant over several bit times, then we have the
case that has received much attention over the years for
differential and noncoherent detection, e.g. [19], [20]. Using
the noncoherent approach in [20] as a starting point, and the
modified version of this approach proposed in [21], we obtain a
noncoherent formulation zNC(n, [ãn, S̃n]) of the generic branch
metric increment as

zNC(n, [ãn, S̃n]) = Q∗n(S̃n)z(n, [ãn, S̃n]) (20)

where the phase reference Qn(·) is defined via the recursion

Qn+1(Ẽn) = aQn(S̃n) + (1− a)z(n, [ãn, S̃n]) (21)

where 0 < a < 1 is the forgetting factor and its choice
trades performance for constant phase offset versus robustness
against phase variations. The noncoherent metric increment
zNC(n, [ãn, S̃n]) is used in the VA exactly as specified by
the placeholder in (13). The order of operations between (13)
and (21) is important. The cumulative metric update (13) is
performed first, which determines the survivors at each ending
state. The phase reference update (21) is performed afterward
for each ending state, Ẽn, using Qn(S̃n) and z(n, [ãn, S̃n])
from the surviving branch at each ending state, i.e per-survivor
processing (PSP) [22].

E. Two-State Detectors for SOQPSK

As mentioned earlier, the difficulty with the two state trellis
in Fig. 3 is that a one-to-one correspondence between the sign
state Sn and the CPM phase state θn−1 does not exist. Thus,
when given the branch vector for the two-state trellis, [ãn, S̃n],
there is not enough information to compute the branch metric
updates in (15) and (18). We propose decision feedback as a
means of overcoming this problem.

As stated earlier, at the end of each symbol interval, a
surviving branch is declared at each ending state Ẽn in the
trellis. We use α̂n(Ẽn) to denote the symbol associated with
the surviving branch at each ending state Ẽn. In the decision-
feedback VA, a cumulative phase θ̂n−1(S̃n) is maintained
for each state S̃n in the trellis, in addition to the above-
mentioned cumulative metric λn(S̃n). Once the survivors have
been declared, the cumulative phase for each ending state is
updated via the recursion

θ̂n(Ẽn) =
[
θ̂n−1(S̃n) + πhα̂n(Ẽn)

]
mod 2π. (22)

As it turns out, in the case of the four-state detector the
cumulative phase θ̂n−1(S̃n) is identical to the phase state θ̃n−1

provided the four cumulative phases are initialized according
to (9) at the start of the algorithm. This is equivalent to saying
that, given the proper initialization, the two branches merging
at each ending state in the four-state trellis will result in the
same value for the cumulative phase. This is true by definition
of the phase state in (4) and the cumulative phase in (22). Thus,
the decision feedback does not introduce any sub-optimality
to the four-state detectors.



In the case of the two-state detector, using θ̂n−1(S̃n) instead
of θ̃n−1 does make the detector suboptimal, but it is a
necessary step in order to implement the detector in the first
place. The impact of decision feedback on the performance of
the two-state detectors is now studied.

IV. PERFORMANCE ANALYSIS

The bit-error probability of SOQPSK with coherent detec-
tion in AWGN is described using error events and minimum
distance concepts. The normalized squared Euclidean distance
of CPM is [1]

d2 =
log2Minfo

2Tb

∫
|s(t;αTx)− s(t;αRx)|2dt (23)

where log2Minfo is the number of bits per symbol (for
SOQPSK we have Minfo = 2).

A. Minimum Distance Error Event

The minimum distance error event for the four-state SO-
QPSK detectors occurs when the transmitted and received bit
sequences satisfy

aTx = · · · , ae−1, ae, ae+1, ae+2, ae+3, · · ·
aRx = · · · , ae−1, ae, ae+1, ae+2, ae+3, · · ·

(24)

In words, this is a double bit error event where the first bit
error occurs at some arbitrary bit location ae and the second
bit error occurs with bit ae+2. In [8] it was shown that when
ae+1 = 0, the precoded symbol sequences satisfy ±γ0, where

γ0 = αTx −αRx = · · · , 0,−1, 0,+1, 0, · · · (25)

and a squared distance of d2
0 results. It was also shown in [8]

that when ae+1 = 1, the precoded symbol sequences satisfy
±γ1, where

γ1 = αTx −αRx = · · · , 0,+1,+2,+1, 0, · · · (26)

and a squared distance of d2
1 results. These cases are easily

verified by examining the four-state trellis in Fig. 2.

B. Additional Error Event for Two-State Detectors

For the two-state detectors, an additional error event is
introduced and occurs when the transmitted and received bit
sequences satisfy

aTx = · · · , ae−1, ae, ae+1, ae+2, · · ·
aRx = · · · , ae−1, ae, ae+1, ae+2, · · ·

(27)

In words, this is a double bit error event where the first bit
error occurs at some arbitrary bit location ae and the second
bit error occurs with the following bit ae+1. In this case, it is
easily verified from Fig. 2 that the precoded symbol sequences
satisfy ±γ2, where

γ2 = αTx −αRx = · · · , 0,+1,+1, 0, · · · (28)

We denote the squared distance in this case by d2
2.

TABLE II
RANGE OF DISTANCE VALUES IN THE SET {d22,l} FOR THE TWO-STATE

SOQPSK DETECTORS.

Configuration min
l

n
d22,l

o
max

l

n
d22,l

o
MIL-MF (d20 = 1.73) 2.00 2.00

MIL-PAM (d20 = 1.73) 2.83 3.03

TG-PT (d20 = 1.60) 1.71 2.23

TG-PAM (d20 = 1.60) 2.57 3.35

C. Probability of Bit Error

The PT and PAM approximations discussed earlier result in
mismatched detectors [12], [13], i.e. the detector is no longer
matched to the transmitted signal. The mismatched detectors
require the analysis to be more intricate. The minimum
distance error event is still given by (24), and the two-state
detectors still have the additional error event (27), but instead
of having a single distance value in each case, say d2

0, we get
a set of distance values, {d2

0,l}. For example, with SOQPSK-
TG the optimal (fully matched) detector has d2

0 = 1.60. When
the four-state PT detector is used, the distance is slightly
influenced by the values of the bits surrounding the error
event on each side, {ae−k}3k=1 and {ae+k}5k=3, due to the
partial-response phase pulse that is present in the transmitted
signal. This results in a set of distance values {d2

0,l}63l=0 that
are clustered around the value d2

0 = 1.60 and range in value
from 1.38 to 1.77. The methods for calculating these distances
are discussed in [12], [13], [23]

Taking this behavior into account, the final expression for
the union bound on the bit-error probability of the four-state
detectors is

Pb,4 ≤ 1
|d0,l|

∑
{d20,l}

Q

(√
d2
0,l

Eb
N0

)
+

1
|d1,l|

∑
{d21,l}

Q

(√
d2
1,l

Eb
N0

)
(29)

where Eb/N0 is the bit energy to noise ratio, | · | denotes the
cardinality (number of elements) of a given set, and

Q(x) =
1√
2π

∫ ∞
x

e−u
2/2du. (30)

For example, with the MF detector for SOQPSK-MIL, we have
singleton sets of d2

0 = 1.73 and d2
1 = 2.36, so (29) simplifies

to a summation of only two terms. In the case of SOQPSK-
TG, (29) contains the 128 terms in {d2

0,l}63l=0 and {d2
1,l}63l=0

that are clustered around the values d2
0 = 1.60 and d2

1 = 2.59.
For the two-state detectors, the union bound on the bit-error

probability is the same as that of the four-state detectors but
with an additional summation, i.e.

Pb,2 ≤ Pb,4 +
1
|d2,l|

∑
{d22,l}

Q

(√
d2
2,l

Eb
N0

)
. (31)

Since (29) and (31) differ only by the terms introduced by
the additional error event in (27), the values in {d2

2,l}, which
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Fig. 4. Performance of reduced-complexity coherent detectors for SOQPSK-
MIL.

are summarized in Table II, are the key to quantifying the
performance of the two-state detectors relative to the four-
state detectors. The first observation from Table II is that,
with all four of the two-state configurations, the distances in
{d2

2,l} exceed the value of d2
0, i.e. the minimum distance is not

worsened by the two-state detectors. This means that the two-
state detectors each have a performance that is asymptotically
equivalent (i.e. for large Eb/N0) to their four-state counterpart.
The second observation from Table II is that the PAM-based
detectors have values in {d2

2,l} that are far greater than d2
0,

while the MF and PT detectors have values that are relatively
close to d2

0; thus, even for low to moderate ranges of Eb/N0 we
would expect the PAM-based detectors to have performance
identical to the four-state detectors, while the MF and PT
detectors should have minor losses for low to moderate values
of Eb/N0. These expectations are borne out in the simulation
results we present next.

V. SIMULATION RESULTS

There are two carrier/channel conditions (coherent and
noncoherent), two modulation types (SOQPSK-MIL and
SOQPSK-TG), two branch metric types (MF/PT and PAM),
and two trellis sizes (two-state and four-state) that have been
discussed above. This yields a total of sixteen detector config-
urations, eight of which involve a newly proposed two-state
decision-feedback detector. The primary intent of the simu-
lation results herein is to confirm that the two-state detectors
have negligible or minor performance losses compared to their
four-state counterparts. In the figures that follow, we use a
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Fig. 5. Performance of reduced-complexity coherent detectors for SOQPSK-
TG.

notation with four fields, “channel-modulation-metric-trellis,”
to refer to each of the sixteen cases, i.e. “ND-MIL-PAM-2”
refers to noncoherent detection of SOQPSK-MIL using PAM-
based branch metrics and the two-state trellis.

We first examine the case of coherent detection. Fig. 4
shows performance curves for the four SOQPSK-MIL con-
figurations (i.e. “CD-MIL-*-*,” where “*” indicates all cases
in a given field are considered). In the low Eb/N0 region
of the figure, the two-state union bounds given by (31) are
not necessarily tight with respect to the simulation points
(shown as points only, with no connections between points);
however, the union bounds and the simulation points show
close agreement rapidly as Eb/N0 increases, which verifies
the accuracy of the performance analysis above. Furthermore,
the results anticipated in the previous section are confirmed.
The simulation points for the two-state PAM-based detector
indicate no observable degradation with respect to the four-
state MLSD detectors (across the entire simulation range of
Eb/N0), while the simulation points for the two-state MF-
based detector indicate a slight performance degradation for
small Eb/N0 that narrows and approaches zero at the large end
of the simulated Eb/N0 range. For comparative purposes, we
also show simulation curves for symbol-by-symbol (“S×S”)
detection for the larger values of Eb/N0 for three cases of
the internal symbol-by-symbol detection filter: integrate-and-
dump, half-sine, and numerically optimized (from [3]). Re-
gardless of the internal detection filter, the symbol-by-symbol
detectors all perform worse than the trellis-based detectors.
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Fig. 5 shows performance curves for the four coherent
SOQPSK-TG configurations (CD-TG-*-*). As with the pre-
vious figure, the two-state union bounds and the simulation
points show close agreement rapidly as Eb/N0 increases.
Also, the two-state PAM-based detector shows no observable
degradation with respect to the four-state PAM detector, while
the two-state PT-based detector has a slight performance
degradation with respect to the four-state PT-based detector.
We give a reference curve for the 512-state MLSD scheme
since it is not simulated due to its impracticality. Regardless
of the trellis size, the PAM technique has a 0.1 dB inherent
advantage over the PT technique, as originally reported in [8].
Here also we show three comparison cases of the symbol-by-
symbol detector, which illustrate the more-pronounced perfor-
mance gains that are realized with trellis-based detection of
SOQPSK-TG.

We now turn to the case of noncoherent detection. Here we
drop the comparison with symbol-by-symbol detection, and we
also drop the comparison between analytical and simulation
results since the analysis was performed only for coherent
detection. However, we are now interested in the performance
of the various detectors over a phase noise channel; we use
a common model for such a channel where the time-varying
carrier/channel phase is of the form [24]

φ(t) = φ(t− Tb) + νn, nTb ≤ t < (n+ 1)Tb (32)

where {νn} is a sequence of independent and identically dis-
tributed Gaussian random variables with zero mean and vari-
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Fig. 7. Performance of reduced-complexity noncoherent detectors for
SOQPSK-TG.

ance δ2. Fig. 6 shows simulation results for noncoherent de-
tection of SOQPSK-MIL (ND-MIL-*-*) with δ = 0◦/symbol
(i.e. AWGN only) and δ = 2◦/symbol, which is a total of
eight curves; in all cases, the value1 of the forgetting factor is
a = 0.875. The simulation curves in Fig. 6 quickly separate
into groups with a common value of δ, and within these
groups the four detectors are ranked the same performance-
wise as they are in coherent detection. The fact that the
two-state detectors have essentially identical performance to
their four-state counterparts (except for the PT case at low
Eb/N0) over the various channel conditions is significant since
it demonstrates that the savings in complexity do not come at
the expense of bit error performance. Fig. 7 shows that last set
of simulation results, which are for noncoherent detection of
SOQPSK-TG (ND-TG-*-*) with δ = 0◦/symbol (i.e. AWGN
only) and δ = 2◦/symbol, where the results also fall into the
pattern established above.

VI. CONCLUSION

We have successfully developed a family of two-state
decision-feedback detectors for SOQPSK-MIL and SOQPSK-
TG using pulse amplitude modulation (PAM) and pulse trun-
cation (PT) techniques; separate coherent and noncoherent
formulations of these detectors were given. Using performance

1Although the values chosen for δ and a are typical with those in other
studies, we do not attach special significance to these values since our intent
is mainly to compare the performance of the noncoherent two-state detectors
with the noncoherent four-state detectors and not to design for any particular
channel conditions.



analysis, we have shown that these two-state detectors each
have performance that is asymptotically equivalent to their
four-state counterparts. This is a satisfying result due to the
minimal two-state level of complexity achieved by these detec-
tors. These simple detection schemes are applicable in settings
where high-performance and low complexity are needed to
meet restrictions on power consumption and cost.

APPENDIX

We show how the differential precoder in (10) and (11) is
obtained by combining the differential encoder in (7) with the
SOQPSK precoder in (8).

We begin by stating some conversions between Boolean
variables and binary antipodal variables. A generic Boolean
variable wn ∈ {0, 1} can be converted into an antipodal
variable w′n ∈ {±1} by

w′n = 2wn − 1 (33)

or

−w′n = (−1)wn . (34)

Also, the differential encoder in (7) and the SOQPSK precoder
in (8) can be expressed in terms of antipodal bits as

u′n = (−a′n) · u′n−2, a′n, u
′
n ∈ {±1} (35)

and

αn =
1
2
(−1)n+1u′n−1(u

′
n − u′n−2), (36)

respectively; as before, the “change phase on 1” rule is in
effect for the differential encoder. We obtain an intermediate
result by substituting (35) into (36), which yields

αn =
1
2
(−1)n+1u′n−1( u′n︸︷︷︸

−a′nu′n−2

−u′n−2)

= (−1)n+1 −a′n − 1
2︸ ︷︷ ︸
−an

u′n−1u
′
n−2

= (−1)nanu′n−1u
′
n−2 (37)

where (33) is also applied.
Next, we show how (37) simplifies to (10). Substituting (35)

with itself recursively gives

u′n−1u
′
n−2 =

n−1∏
i=0

(−a′i)

=
n−1∏
i=0

(−1)ai

= (−1)
Pn−1

i=0 ai (38)

where (34) is also applied. Inserting (38) into (37) results in

αn =(−1)n+
Pn−1

i=0 aian

=(−1)Snan

where the sign state Sn is defined by either of the recursions
in (11). These recursions are equivalent because the rule

“switch alphabets on an = 0” is the same as “switch alphabets
on αn = 0” in the case of the differential encoder.
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