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EECS 461 Midterm Exam

Department of Electrical Engineering and Computer Science
University of Kansas
March 13, 2008
Instructor: Erik Perrins

Problem | Points Score
1 15
~ 2 25
3 20
4 20
T 5 20
Total: 100

The following rules apply for this exam:
1. Closed book and closed notes. A calculator is required for full credit.
2. Provide numerical answers as four-place demimals.
3. The exam must be completed within the class period (75 minutes).
REMEMBER:
¢ Show all your work!

e The exam is double-sided.

Helpful formulas and tables are found in the back of the exam.

If you can’t finish a problem, then at least set it up.

Be neat, write legibly.
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1. [15 points] Fifty-two percent of the students at a certain college are females. Five percent of the students in this
college are majoring in computer science. Two percent of the students are women majoring in computer science.
If a student is selected at random,

(a) find the probability that this student is female, given that the student is majoring in computer science;

(b) find the probability that this student is majoring in computer science, given that the student is female.
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2. [25 points] The Rockwell hardness of a particular alloy is normally distributed with a mean of 70 and a variance
of 16.
(a) A specimen is acceptable only if its hardness is between 62 and 72. What is the probability that a randomly
chosen specimen has an acceptable hardness?
(b) If the acceptable range of hardness was between (70 — a) and (70 + a), for what value of a would 95% of all
specimens have acceptable hardness?

(c) Going back to the acceptable range between 62 and 72, we randomly select nine specimens and indepen-
dently determine their hardness. What is the expected number of acceptable specimens among these nine
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3. [20 points] The manufacturing of semiconductor chips produces 2% defective chips. Assume the chips are inde-
pendent and that a lot contains 100 chips.

(a) Using the binomial distribution, compute the probability that more than 2 chips in the lot are defective.

(b) Using the Poisson approximation to the binomial distribution, approximate the probability that less than 3
chips in the lot are defective.

(c) Using the normal approximation to the binomial distribution, approximate the probability that between 2 and
3 chips in the lot are defective.
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4. {20 points] The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean of
10 minutes.

(a) What is the probability that you will wait longer than one hour for a taxi?

(b) Suppose you have already been waiting for one hour for a taxi, what is the probability that one arrives within
the next 10 minutes?

(¢) Determine x such that the probability that you wait less than z minutes is 0.10.
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5. [20 points] Suppose that X is a random variable whose probability density function is given by

Cldz —22%), 0<z <2
fla) = { S —2), 0 <z
0, otherwise.

(a) Determine the value of C.

(b) Determine the cumulative distribution function of X.
(c) Compute the mean of X.

(d) Compute the variance of X.

(e) Find P(X > 1).
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