A soda bottling company uses a machine to fill the cans. If the variance of the fill volume exceeds 0.02 (fluid ounces)2, then an unacceptably large number of cans will be underfilled. The bottler is interested in testing the hypothesis:

$$H_0: \sigma^2 = 0.02$$

$$H_a: \sigma^2 > 0.02 \quad (a \text{ one-sided hypothesis})$$

In a random sample of $n=20$ cans, the sample variance is $s^2 = 0.0225$.

Using a significance level of 5%, what can we conclude?

Use the X^2_n random variable; the value we observed is

$$X^2_{19} = \frac{(n-1)s^2}{\sigma^2} = \frac{19 \times (0.0225)}{0.02} = 21.375$$

The critical value in this instance is

$$X^2_{19, 0.05} = 30.1435$$

Since $21.375 < 30.14$, the evidence is not strong enough to indicate that the variance is greater than 0.02, in fact, the p-value is 0.316, so instead of being 95% confident, in this case we are only 68.4% confident.