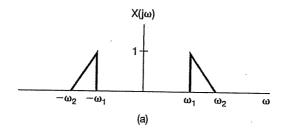
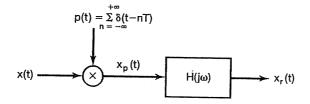
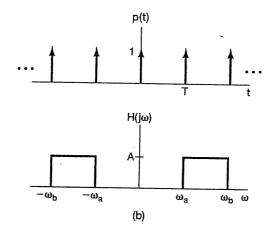
The sampling theorem, as we have derived it, states that a signal x(t) must be sampled at a rate greater than its bandwidth (or equivalently, a rate greater than twice its highest frequency). This implies that if x(t) has a spectrum as indicated in Figure P7.26(a) then x(t) must be sampled at a rate greater than $2\omega_2$. However, since the signal has most of its energy concentrated in a narrow band, it would seem reasonable to expect that a sampling rate lower than twice the highest frequency could be used. A signal whose energy is concentrated in a frequency band is often referred to as a bandpass signal. There are a variety of techniques for sampling such signals, generally referred to as bandpass-sampling techniques.







To examine the possibility of sampling a bandpass signal as a rate less than the total bandwidth, consider the system shown in Figure P7.26(b). Assuming that $\omega_1 > \omega_2 - \omega_1$, find the maximum value of T and the values of the constants A, ω_a , and ω_b such that $x_r(t) = x(t)$.

We start with the fact that
$$P(j\omega) = \stackrel{2}{=} \stackrel{\sim}{=} \sigma(\omega - \kappa \stackrel{2}{=})$$

and since $X_p(t) = X(t)p(t)$,

$$X_{p}(j\omega) = \frac{1}{2\pi} \left\{ X(j\omega) \not\in P(j\omega) \right\} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k \frac{2\pi}{T}))$$

$$X_{p}(j\omega)$$

$$X_{p}(j\omega)$$

$$X_{p}(j\omega)$$

$$X_{p}(j\omega)$$

$$X_{p}(j\omega)$$

$$X_{p}(j\omega)$$

As T increases, $\frac{2\pi}{T}$ - ω_z decreases. Aliesing occurs when the triangles bump into each other. The overlapping will start when $2\pi - \omega_z < \omega_z$, and it will continue as long as $\omega_i < \frac{2\pi}{T} - \omega_z + (\omega_z - \omega_i)$,

we can re-arrange this last expression as $2\omega_1 - \omega_2 < \frac{2\pi}{7} - \omega_2$, and combining with the first expression yields

 $2\omega_1 - \omega_2 < \frac{2\pi}{T} - \omega_2 < \omega_2$ alrasing occurs under these conditions

It is given that $0 < 2\omega_1 - \omega_2$, so if we pick T such that $0 < \frac{2\pi}{T} - \omega_2 < 2\omega_1 - \omega_2$, then will be no aliesing

For maximum T, choose minimum value of 200-we (which to zero)

$$T_{Maps} = \frac{2\pi}{W_2}$$
 $W_b = \frac{2\pi}{T}$

$$A = T$$
 $\omega_{a} = \omega_{1}$

