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The sampling theorem, as we have derived it, states that a signal x(¢) must be sam-
pled at a rate greater than its bandwidth (or equivalently, a rate greater than twice its
highest frequency). This implies that if x(z) has a spectrum as indicated in Figure
P7.26(a) then x(¢) must be sampled at a rate greater than 2w,. However, since the
signal has most of its energy concentrated in a narrow band, it would seem reason-
able to expect that a sampling rate lower than twice the highest frequency could pe
used. A signal whose energy is concentrated in a frequency band is often referred ¢,
as a bandpass signal. There are a variety of techniques for sampling such signals,
generally referred to as bandpass-sampling techniques.
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To examine the possibility of sampling a bandpass signal as a rate lefss than
the total bandwidth, consider the system shown in Figure P7.26(b). Assuming that
w] > wy — 1, find the maximum value of T and the values of the constants A, @,,

and w}, such that x.(f) = x(t).
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