Let \(x[n] \) be a discrete-time signal and let

\[
y_1[n] = x[2n] \quad \text{and} \quad y_2[n] = \begin{cases} x[n/2], & \text{if } n \text{ even} \\ 0, & \text{if } n \text{ odd} \end{cases}
\]

\(y_1[n] \) is a speeded up version of \(x[n] \), and \(y_2[n] \) is a slowed down version of \(x[n] \).

Consider the following statements:

1. If \(x[n] \) is periodic, then \(y_1[n] \) is periodic.
2. If \(y_1[n] \) is periodic, then \(x[n] \) is periodic.
3. If \(x[n] \) is periodic, then \(y_2[n] \) is periodic.
4. If \(y_2[n] \) is periodic, then \(x[n] \) is periodic.

Determine whether each of these is true, if so determine the relationship between the fundamental periods of the two signals. If false, produce a counterexample to the statement.

1. True: \(x[n] = x[n+N] \); \(y_1[n] = y_1[n+N_0] \), i.e. \(y_1[n] \) is periodic with period \(N_0 = N/2 \) if \(N \) is even, and \(N_0 = N \) if \(N \) is odd.

2. False: \(y_1[n] \) has less information than \(x[n] \), and we don't know what was in the samples of \(x[n] \) that are not present in \(y_1[n] \).

Let \(x[n] = g[n] + h[n] \), \(g[n] = \begin{cases} 1, & \text{if } n \text{ even} \\ 0, & \text{if } n \text{ odd} \end{cases} \) periodic,

\[
h[n] = \begin{cases} 0, & \text{if } n \text{ even} \\ 1, & \text{if } n \text{ odd} \end{cases} \text{aperiodic}
\]

3. True: \(x[n] = x[n+N] \); \(y_2[n] = y_2[n+N_0] \), where \(N_0 = 2N \).

4. True: \(y_2[n] = y_2[n+N] \); \(x[n] = x[n+N_0] \), where \(N_0 = N/2 \).