EECS 360 – SIGNAL AND SYSTEM ANALYSIS
LABORATORY SYLLABUS
SPRING 2014

Instructor:
Prof. Victor Frost
Email: frost@eecs.ku.edu

Teaching Assistant:
Ghaith Shabsigh
Office: 2029 Eaton Hall
Office hours: Wednesday 1:00PM – 3:00PM
Email: g492s378@ku.edu

Schedule:
Tuesday 2:30PM – 4:45PM
Thursday 2:30AM – 4:45PM
1005A Eaton Hall.

Lab web page: http://people.eecs.ku.edu/~esp/class/S14_360/lab/

Labs: (Note – Lab schedule and contents might be changed with regards to the lecture).

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
<th>Lab 1: Introduction to MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/21/2014</td>
<td>01/23/2014</td>
<td></td>
</tr>
<tr>
<td>01/28/2014</td>
<td>01/29/2014</td>
<td>Lab 2: MATLAB Functions</td>
</tr>
<tr>
<td>02/04/2014</td>
<td>02/06/2014</td>
<td>Lab 3: Loops in MATLAB</td>
</tr>
<tr>
<td>02/11/2014</td>
<td>02/13/2014</td>
<td>Lab 4: Discrete Time Convolution</td>
</tr>
<tr>
<td>02/18/2014</td>
<td>02/20/2014</td>
<td>Lab 5: Fourier Series</td>
</tr>
<tr>
<td>02/25/2014</td>
<td>02/27/2014</td>
<td>Lab 6: Continuous Time Fourier Series</td>
</tr>
<tr>
<td>03/04/2014</td>
<td>03/06/2014</td>
<td>Lab 7: Audio Filtering</td>
</tr>
<tr>
<td>03/11/2014</td>
<td>03/13/2014</td>
<td>Lab 8: Approximation of CTFT</td>
</tr>
<tr>
<td>03/25/2014</td>
<td>03/27/2014</td>
<td>Lab 9: DFT and FFT</td>
</tr>
<tr>
<td>04/01/2014</td>
<td>04/03/2014</td>
<td>Lab 10: Sampling and Signal Reconstruction</td>
</tr>
<tr>
<td>04/08/2014</td>
<td>04/10/2014</td>
<td>Lab 11: Sampling and Aliasing</td>
</tr>
<tr>
<td>04/15/2014</td>
<td>04/17/2014</td>
<td>Lab 12: Laplace Transform</td>
</tr>
<tr>
<td>04/22/2014</td>
<td>04/24/2014</td>
<td>Lab 13: Z-Transform</td>
</tr>
<tr>
<td>04/29/2014</td>
<td>05/01/2014</td>
<td>Lab 14: Simulink</td>
</tr>
</tbody>
</table>

Requirements and Grading:

- The grading is based on your performance during the lab session and your lab report (maximum grade for each report is 20)
• Each person is required to submit a paper report for every lab session. Each lab report is due at the beginning of the next lab session.

• **No plagiarizing.**
 • Lab reports will not be graded if they are turned in late; exceptions might be considered with a notice ahead of time.
 • There will be a quiz either on lab 6 or lab 7.

Note: You can use the lab report format attached below as a reference.

Lab Report Format:

In general, your lab report should consist of the following sections:

1. **Cover page:** Lab title, date submitted, and name. Make sure lab number is correct.
2. **Objective:** A few lines describing the goal of the lab.
3. **Description:** Provide a short background on the topic discussed. Provide detailed description of the problem, and your approach to solving it.
4. **Results:** Include all your graphs, derivations, answers to questions, etc. Comment on your result.
5. **Conclusion.**
6. **Appendix:** MATLAB code goes here. If the lab handout contains several sections, divide the appendix accordingly.

Note: The plots generated by MATLAB can be copied into MS Word.
EECS 360
INTRODUCTION TO MALTAB
Lab Report #0

Student Name
KUID: 1234567
OBJECTIVE:
In this report, the general format of the EECS 360 lab report is provided.

DESCRIPTION:
Organize your report:

1. Provide a short background on the topic discussed in the lab.
2. Mention the sequence of steps used to achieve the objectives.
3. Use numbering if needed.

RESULTS:
Provide your results in the form of graphs and answers to both questions given during the lab and questions in the lab handout. Give a detailed analysis of your results. This is a good place to note and explain interesting and/or important observations.

CONCLUSION:
Conclusions and main points learned by the student.

APPENDIX
Code:

% Using comments makes your code easy to read.
stringVariable = 'Give meaningful names to your variables';