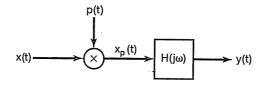
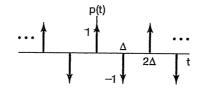
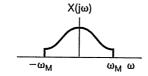
7.22. The signal y(t) is generated by convolving a band-limited signal $x_1(t)$ with another band-limited signal $x_2(t)$, that is,

$$y(t) = x_1(t) * x_2(t)$$

where


$$X_1(j\omega) = 0$$
 for $|\omega| > 1000\pi$
 $X_2(j\omega) = 0$ for $|\omega| > 2000\pi$.


Impulse-train sampling is performed on y(t) to obtain


$$y_p(t) = \sum_{n=-\infty}^{+\infty} y(nT)\delta(t-nT).$$

Specify the range of values for the sampling period T which ensures that y(t) is recoverable from $y_p(t)$.

- **7.23.** Shown in Figure P7.23 is a system in which the sampling signal is an impulse train with alternating sign. The Fourier transform of the input signal is as indicated in the figure.
 - (a) For $\Delta < \pi/(2\omega_M)$, sketch the Fourier transform of $x_p(t)$ and y(t).
 - (b) For $\Delta < \pi/(2\omega_M)$, determine a system that will recover x(t) from $x_p(t)$.
 - (c) For $\Delta < \pi/(2\omega_M)$, determine a system that will recover x(t) from y(t).
 - (d) What is the *maximum* value of Δ in relation to ω_M for which x(t) can be recovered from either $x_p(t)$ or y(t)?

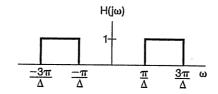


Figure P7.23