EECS 360 - Signal and System Analysis
Laboratory Syllabus
Spring 2010

Instructor: Prof. Eric Perrins
Email: esp “at” eecs.ku.edu

Teaching Assistant: Mahmood Hameed
Office: 2029 Eaton Hall
Office hours: Tuesday 13:30-14:30 and Thursday 11:30-12:30 and by appointment.
Email: hameed “at” ku.edu

Schedule: Tuesday 14:30-16:50 and Thursday 12:30-14:50; 1005A Eaton Hall

Lab web page: http://people.eecs.ku.edu/~esp/class/S10_360/lab/

Labs: (Note - Lab schedule and contents might be changed with regards to the lecture.)

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/19/2010</td>
<td>01/21/2010 Lab 1: Introduction to Matlab</td>
</tr>
<tr>
<td>01/26/2010</td>
<td>01/28/2010 Lab 2: Matlab Functions</td>
</tr>
<tr>
<td>02/02/2010</td>
<td>02/04/2010 Lab 3: Loops in Matlab</td>
</tr>
<tr>
<td>02/09/2010</td>
<td>02/11/2010 Lab 4: Discrete Convolution</td>
</tr>
<tr>
<td>02/16/2010</td>
<td>02/18/2010 Lab 5: Fourier Series</td>
</tr>
<tr>
<td>02/23/2010</td>
<td>02/25/2010 Lab 6: Audio Filtering</td>
</tr>
<tr>
<td>03/02/2010</td>
<td>03/04/2010 Lab 7: Continuous time Fourier Series</td>
</tr>
<tr>
<td>03/09/2010</td>
<td>03/11/2010 Lab 8: Approximation of CTFT</td>
</tr>
<tr>
<td>03/23/2010</td>
<td>03/25/2010 Lab 9: DFT and FFT</td>
</tr>
<tr>
<td>03/30/2010</td>
<td>04/01/2010 Lab 10: Sampling and Signal Reconstruction</td>
</tr>
<tr>
<td>04/06/2010</td>
<td>04/08/2010 Lab 11: Sampling Frequency and Aliasing</td>
</tr>
<tr>
<td>04/13/2010</td>
<td>04/15/2010 Lab 12: Laplace Transform</td>
</tr>
<tr>
<td>04/20/2010</td>
<td>04/22/2010 Lab 13: Z-Transform</td>
</tr>
<tr>
<td>04/27/2010</td>
<td>04/29/2010 Lab 14: Introduction to Simulink</td>
</tr>
</tbody>
</table>

Requirement and Grading:

The grading is based on your performance during the lab session and your report. You are required to turn in a lab report individually for each lab with the lab report format attached below. Lab report has to be in printout format, NO handwriting is accepted except some plots. Each weeks lab report is due the following week BEFORE the lab sessions. Your lab report will NOT be graded if turned in late. Exceptions might be considered with notice ahead of time.
Lab Report Format:

In general, your lab report should consist of the following sections:
1. Cover page: Lab title and number, date submitted, name, KUID.
2. Objectives: Describe briefly what you are trying to do in this lab.
3. Procedure: How are you solving the problem, describe methodology and your approach.
4. Description: Answer all the questions listed in the lab handout with descriptions (plots, equations, derivation, and etc).

Note: Most of the plots generated by Matlab can be converted and imported into MS word compatible format.
5. Conclusion

Sample Lab Report: Next page
Lab 1 Report

Introduction to Matlab

Ima K.U. Student
KUID: 1234567

Date submitted: 01/01/2010
Objectives:

In this lab, we learn how to use simple functions in Matlab to solve engineering problems such as calculation and plotting.

Procedure:

We used matlab to calculate some function values with a certain range, and plot them.

Description:

Calculate function \(f(x)=1+x^2 \) with \(x \) ranging from \([-10, 10]\)
\[
\begin{array}{cccccccccccc}
101 & 82 & 65 & 50 & 37 & 26 & 17 & 10 & 5 & 2 & 1 & 2 \\
5 & 10 & 17 & 26 & 37 & 50 & 65 & 82 & 101
\end{array}
\]

Calculate function values by using command
\[
x=[-10,10]; f =1+x.^2;
\]
Plot function \(f(x) \) by using command: plot(x, f)

![Sample Matlab Plot](image-url)
Conclusion:

I learned how to use Matlab to calculate and plot function values, and this lab was a success.