1. Let X be a random variable with mean μ_x and variance σ^2_x. Show that the random variable $Y = X + b$ has mean $\mu_y = \mu_x + b$ and variance $\sigma^2_y = \sigma^2_x$. This problem demonstrates that any random variable can be thought of as a zero mean random variable plus a constant; the addition of the constant changes the mean but not the variance.

2. Let X be a random variable with mean μ_x and variance σ^2_x. Show that the random variable $Y = aX$ has mean $\mu_y = a\mu_x$ and variance $\sigma^2_y = a^2\sigma^2_x$.

3. Let X be a random variable with mean μ_x and variance σ^2_x. Suppose we want to obtain a version of X that has zero mean and unit variance. In other words, we want to obtain the random variable $Z = h(X)$ such that Z has zero mean and unit variance. Based on the results from the first two problems, show the exact relationship between X and Z.

4. Let W and X be random variables with respective means μ_w and μ_x and variances σ^2_w and σ^2_x. Show that the random variable $Y = W + X$ has mean $\mu_y = \mu_w + \mu_x$.

5. Let W and X be independent random variables with zero mean and respective variances σ^2_w and σ^2_x. Show that the random variable $Y = W + X$ has variance $\sigma^2_y = \sigma^2_w + \sigma^2_x$. It is reasonable to ask: What if W and X have non-zero means? Does σ^2_y change? Based on the result of Problem 1, argue that σ^2_y does not change when we add a non-zero mean to W and X.

6. Let $\{X_i\}$ be a set of n independent random variables, each with an individual mean μ and variance σ^2. Based on all of the above, show that the sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

has mean $\mu_{\bar{X}} = \mu$ and variance $\sigma^2_{\bar{X}} = \sigma^2/n$.
