
Turbo Codes: Parallel Concatenated Convolutional Codes (PCCCs) with
Iterative Decoding

EECS 869: Error Control Coding
Fall 2017

In this project, we will be using the CCSDS turbo encoder shown in Figure 1, which consists of two identical
constituent encoders fed by the same information block (albeit in permuted order). We will be using the rate-
1/3 con�guration. We have seen this constituent encoder earlier in the semester and have already drawn its
trellis diagram and listed its look-up tables; for your convenience, the trellis diagram is shown in Figure 4
and the rate-1/3 trellis look-up tables are shown in Table 1. �e trellis is already speci�ed for you in the �le
RunPcccSimulationTemplate.m.

Complete the following tasks. You should submit an e-mail with three .m�le attachments (use the e-mail
address esp@eecs.ku.edu).

1. De-multiplex the single received data stream into the a priori LLRs that will be fed to the SISOs. As
we have discussed in class, it is important yet non-obvious how properly handle the inputs and outputs
of SISO a and SISO b. Figure 2 helps establish some of the notation we used during our discussion of
this issue. Figure 3 shows one possible correct con�guration for a turbo decoder. Notice in particular
that SISO b receives only one a priori data stream via its “c” input port. Accordingly, it uses a look-
up table for cb(e) that has one less column than ca(e), which is also how Table 1 is presented. You
may use some other correct turbo decoder con�guration if you like. Either way, there is a TODO in
RunPcccSimulationTemplate.m for you to prepare λa(c; I) and λb(c; I) for their respective SISOs.

2. Implement the Turbo (PCCC) Decoder using the log-based SISO algorithm. Implement the turbo
(PCCC) decoder in Figure 3, or some other correct version, using the log-based SISO algorithm. In the
e-mail distribution, you have a template decoder PcccSisoLogDecoderTemplate.m. You have already
implemented the log-based SISO algorithm in a previous project.�erefore, your task is simply to “wire
together” the appropriatemodules. You do not need to run a full BER simulation; however, the template
simulation �le is set up to do so. You should verify that your full PCCC decoder works properly.

3. Implement theTurbo (PCCC)Decoder using themax–log SISOalgorithm.�is is a straightforward
extension of the previous task. You should add scale factorsK1 andK2 to help improve the performance.
Place your implementation in a separate �le called PcccSisoMaxLogDecoderXXX.m.



bandwidth is not constrained. Turbo encoders are sufficiently simple that they can be implemented
readily in hardware or software on a spacecraft [3].

With these attributes, and the confidence instilled by a few years of research with the codes, JPL worked
with the Consultative Committee for Space Data Systems (CCSDS), an international standards body, to
add them to the standards in May of 1999. These are described in [4], so we merely summarize the key
parameters here. The standardized turbo encoder, shown in Fig. 1, consists of two 16-state convolutional
encoders, connected with an algorithmically described interleaver. The constituent convolutional encoders
are terminated independently at the end of each block. Code rates close to 1/2, 1/3, 1/4, and 1/6
are achieved by appropriate puncturing of the output symbols.3 Block lengths of 1784 through 8920
information bits are specified, to match those of the (255, 223) Reed–Solomon code with interleaving
depths of 1 through 5. Attached synchronization markers (ASMs) are appended to each encoded block
for synchronization recovery.

out 0a

RA
TE

 1
/3

RA
TE

 1
/4

RA
TE

 1
/2

G0

G0

o

o

D D D D

G1

G2

G3

G1

G2

G3

D D D D

ENCODER a

ENCODER b

INPUT
INFORMATION
BLOCK

in a

in b

INFORMATION
BLOCK

BUFFER

out 1a

out 3a

out 2a

RA
TE

 1
/6

out 1b

out 3b

Not used

= exclusive OR = take every symbol = take every other symbol D = single bit delay

Fig. 1.  CCSDS turbo encoder (reproduced from [4]).

3 The CCSDS turbo codes use four termination bits to return the constituent convolutional encoders to their zero states,
reducing the true rate to N/(N + 4) times the nominal rate, where N is the block length.

2

Figure 1: CCSDS turbo encoder. We will be using the rate-1/3 con�guration in this project.

Figure 2: Turbo encoder with the notation used in the midterm.

Figure 3: Correct implementation of the turbo decoder with the notation used in the midterm.



  0  0

  1  1

  2  2

  3  3

  4  4

  5  5

  6  6

  7  7

  8  8

  9  9

1010

1111

1212

1313

1414

1515

0

1

2

3

4

5

6

7

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

8

9

10

11

12

13

14

15

  0

  1

  2

  3

  4

  5

  6

  7

  8

  9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

  0

  1

  2

  3

  4

  5

  6

  7

  8

  9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 4: Trellis diagram for the CCSDS constituent convolutional code. Each starting state is labeled with ss ∈

{0, 1, . . . , 15} and each ending state is labeled with se ∈ {0, 1, . . . , 15}. On the le� side of the trellis, there are two edges
leaving each starting state; these are labeled with el ∈ {0, 1, . . . , 31}. On the right side of the trellis, there are two edges
entering each ending state; these are labeled with er ∈ {0, 1, . . . , 31}. �erefore, a given edge has four labels associated
with it: el, ss, se, and er. �ese labels are listed in table form on the following page, along with the edge information
bit, u(e), and the edge code symbols, c(e) [the latter vary with the code rate, R, and with Encoder A vs. Encoder B].
�e trellis table is sorted (indexed) according to the le� edge index, el. In the speci�cation of the trellis algorithms,
there are mathematical expressions such as {e ∶ ss(e) = s}, which means “the set of edges such that the starting state of
the edge is equal to a desired state s.” Because of the labeling scheme above, such a statement translates to “the two el
values grouped with a given ss.” Or similarly, the statement {e ∶ se(e) = s}means “the set of edges such that the ending
state of the edge is equal to a desired state s.” �is translates to “the two er values grouped with a given se.” Finally, the
statement {e ∶ u(e) = 0}, which means “the set of edges such that the edge information bit is zero,” translates to “every
other edge, starting with edge zero” whether the trellis is viewed from the le� or right edge labels.



el ss(el) se(el) er(el) u(el) ca(el) cb(el)
0 0 0 0 0 0 0 0
1 0 1 3 1 1 1 1
2 1 2 4 0 0 1 1
3 1 3 7 1 1 0 0
4 2 4 8 0 0 0 0
5 2 5 11 1 1 1 1
6 3 6 12 0 0 1 1
7 3 7 15 1 1 0 0
8 4 9 18 0 0 0 0
9 4 8 17 1 1 1 1
10 5 11 22 0 0 1 1
11 5 10 21 1 1 0 0
12 6 13 26 0 0 0 0
13 6 12 25 1 1 1 1
14 7 15 30 0 0 1 1
15 7 14 29 1 1 0 0
16 8 1 2 0 0 0 0
17 8 0 1 1 1 1 1
18 9 3 6 0 0 1 1
19 9 2 5 1 1 0 0
20 10 5 10 0 0 0 0
21 10 4 9 1 1 1 1
22 11 7 14 0 0 1 1
23 11 6 13 1 1 0 0
24 12 8 16 0 0 0 0
25 12 9 19 1 1 1 1
26 13 10 20 0 0 1 1
27 13 11 23 1 1 0 0
28 14 12 24 0 0 0 0
29 14 13 27 1 1 1 1
30 15 14 28 0 0 1 1
31 15 15 31 1 1 0 0

Table 1: Trellis table for the CCSDS constituent convolutional code in the rate-1/3 con�guration. �e code symbols,
c(e), are listed as binary vectors but in the algorithm implementation they may used in decimal form, C(e), using the
standard conversion between binary and decimal. �e �rst column of cA(e)matches u(e) because Encoder A contains
the systematic output; although Encoder B receives u(e) as its input (in permuted order), it does not have u(e) as one
of its outputs and thus cB(e) has one less column. Antipodal symbols, a(u(e)) and a(c(e)), are not listed in the table
because they can be derived when needed via the relation a(x) = 2x − 1.


