Turbo Codes: Parallel Concatenated Convolutional Codes (PCCCs) with
Iterative Decoding
EECS 869: Error Control Coding
Fall 2017

In this project, we will be using the CCSDS turbo encoder shown in Figure[l} which consists of two identical
constituent encoders fed by the same information block (albeit in permuted order). We will be using the rate-
1/3 configuration. We have seen this constituent encoder earlier in the semester and have already drawn its
trellis diagram and listed its look-up tables; for your convenience, the trellis diagram is shown in Figure
and the rate-1/3 trellis look-up tables are shown in Table[l} The trellis is already specified for you in the file

RunPcccSimulationTemplate.m.

Complete the following tasks. You should submit an e-mail with three .m file attachments (use the e-mail

address esp@eecs.ku.edu).

1. De-multiplex the single received data stream into the a priori LLRs that will be fed to the SISOs. As
we have discussed in class, it is important yet non-obvious how properly handle the inputs and outputs
of SISO a and SISO b. Figure[2| helps establish some of the notation we used during our discussion of
this issue. Figure 3[shows one possible correct configuration for a turbo decoder. Notice in particular
that SISO b receives only one a priori data stream via its “c” input port. Accordingly, it uses a look-
up table for c;(e) that has one less column than ¢, (e), which is also how Table [l| is presented. You
may use some other correct turbo decoder configuration if you like. Either way, there is a TODO in

RunPcccSimulationTemplate.m for you to prepare A, (c;I) and A5(c; 1) for their respective SISOs.

2. Implement the Turbo (PCCC) Decoder using the log-based SISO algorithm. Implement the turbo
(PCCC) decoder in Figure 3} or some other correct version, using the log-based SISO algorithm. In the
e-mail distribution, you have a template decoder PcccSisoLogDecoderTemplate.m. You have already
implemented the log-based SISO algorithm in a previous project. Therefore, your task is simply to “wire
together” the appropriate modules. You do not need to run a full BER simulation; however, the template

simulation file is set up to do so. You should verify that your full PCCC decoder works properly.

3. Implement the Turbo (PCCC) Decoder using the max-log SISO algorithm. This is a straightforward
extension of the previous task. You should add scale factors Kj and K; to help improve the performance.

Place your implementation in a separate file called PcccSisoMaxLogDecoderXXX.m.

out 0a —@O—O—0O—

INPUT
N ORMATION l——' ENCODER a
L ina 0, \34 r>4 Go
INFORMATION +
BLOCK
BUFFER | _) El El El El

‘\4\ "\54\ "\‘/r\;
G1 »D r »D .krouﬂa— - —
G2 \9@ »P——out 2a

O

G3 A)M%_ out 3a

ENCODER b N
u e
o §<°—>O‘ D GO .
A o : E ©
inb Tk E
T =
<
‘\"n .\1\ "\1_
G1 > > » out 1b — —O—O—
- “\’r\ ” '\T\;
G2 D »{D—— Not used
%] A}%M—out s
@ = exclusive OR = take every symbol = take every other symbol ->|I|—> = single bit delay

Figure 1: CCSDS turbo encoder. We will be using the rate-1/3 configuration in this project.

sy stemadtic (o)

Y, &

1=

C (o)
P‘?"r";\[J <

(\O+ -{-r‘o\v\sml."'l‘-‘&
J

~ozzr» e mr- o

Figure 3: Correct implementation of the turbo decoder with the notation used in the midterm.

o
| &

o
o

.Z
NNNSY

—_

%

(s
RiaS
B

()

4
X
v
A
i

—_
oo

'M
A

10 10
23 ‘ ‘ 22

11 22 “ 23 11
24 ‘ 5

12 \ 12
25 24

13 13
27 27
28 9

14 14
29 28
30 30

15 @ 15
31 31

Figure 4: Trellis diagram for the CCSDS constituent convolutional code. Each starting state is labeled with s° €
{0,1,...,15} and each ending state is labeled with s* € {0,1,...,15}. On the left side of the trellis, there are two edges
leaving each starting state; these are labeled with e* € {0,1,...,31}. On the right side of the trellis, there are two edges
entering each ending state; these are labeled with e* € {0,1,...,31}. Therefore, a given edge has four labels associated
with it: e, %, s¥, and e®. These labels are listed in table form on the following page, along with the edge information
bit, u(e), and the edge code symbols, c(e) [the latter vary with the code rate, R, and with Encoder A vs. Encoder B].
The trellis table is sorted (indexed) according to the left edge index, e". In the specification of the trellis algorithms,
there are mathematical expressions such as {e : s°(e) = s}, which means “the set of edges such that the starting state of
the edge is equal to a desired state s Because of the labeling scheme above, such a statement translates to “the two e*
values grouped with a given s°” Or similarly, the statement {e : s*(e) = s} means “the set of edges such that the ending
state of the edge is equal to a desired state s This translates to “the two e® values grouped with a given s*” Finally, the
statement {e : u(e) = 0}, which means “the set of edges such that the edge information bit is zero,” translates to “every
other edge, starting with edge zero” whether the trellis is viewed from the left or right edge labels.

e' | s%(e") s®(e') e®(e") | u(e") | cale’) cx(eh)
0 0 0 0 0 0 0 0
1 0 1 3 1 1 1 1
2 1 2 4 0 0 1 1
3 1 3 7 1 1 0 0
4 2 4 8 0 0 0 0
5 2 5 11 1 1 1 1
6 3 6 12 0 0 1 1
7 3 7 15 1 1 0 0
8 4 9 18 0 0 0 0
9 4 8 17 1 1 1 1
10 5 11 22 0 0 1 1
11 5 10 21 1 1 0 0
12 6 13 26 0 0 0 0
13 6 12 25 1 1 1 1
14 7 15 30 0 0 1 1
15 7 14 29 1 1 0 0
16 8 1 2 0 0 0 0
17 8 0 1 1 1 1 1
18 9 3 6 0 0 1 1
19 9 2 5 1 1 0 0
20 10 5 10 0 0 0 0
21 10 4 9 1 1 1 1
22 11 7 14 0 0 1 1
23 1 6 13 1 1 0 0
24 12 8 16 0 0 0 0
25 12 9 19 1 1 1 1
26 13 10 20 0 0 1 1
27 13 11 23 1 1 0 0
28 14 12 24 0 0 0 0
29 14 13 27 1 1 1 1
30 15 14 28 0 0 1 1
31 15 15 31 1 1 0 0

Table 1: Trellis table for the CCSDS constituent convolutional code in the rate-1/3 configuration. The code symbols,
c(e), are listed as binary vectors but in the algorithm implementation they may used in decimal form, C(e), using the
standard conversion between binary and decimal. The first column of c4 (e) matches u(e) because Encoder A contains
the systematic output; although Encoder B receives u(e) as its input (in permuted order), it does not have u(e) as one
of its outputs and thus cg(e) has one less column. Antipodal symbols, a(u(e)) and a(c(e)), are not listed in the table
because they can be derived when needed via the relation a(x) = 2x — 1.

