
Serial Concatenated Convolutional Codes with Iterative Decoding
EECS 869: Error Control Coding

Fall 2017

Complete the following tasks. You should base your implementation on the template .m �les that have
been distributed via e-mail.�e .m�les with the word Template in their name contain “TODOs” for you.
�ese �les should be renamed with your �rst name in place of the word Template, the TODOs should be
completed, and the .m�les should be sent back tome via e-mail (use the e-mail address esp@eecs.ku.edu).

1. Specify the Trellis Tables for theDi�erential Encoder. In this project, we will be using the di�erential
encoder (DE) shown in Figure 1. �is encoder will serve as the “inner code” of a serial concatenated
convolutional code (SCCC).�e SCCC encoder is shown in Figure 2 (the symbol Π denotes an inter-
leaver). �e “outer code” for the SCCC system is the now-familiar (5,7) convolutional code (CC). We
already have a trellis table for the outer code from a previous project. We need this trellis information
for the inner code as well. In the �le RunBerSimulationScccTemplate.m, you will �nd a “TODO” for
specifying the trellis of the DE.

2. Implement the SCCCDecoder using the Log-Based SISOAlgorithm. A block diagram of the SCCC
decoder is shown in Figure 3. In the e-mail distribution, you already have implementations of the ma-
jor blocks in this system. You also have a template function for the decoder. Your task then is to “wire”
it all together properly.�e data vectors that are passed back and forth between the SISO modules are
in the form of log likelihood ratios (LLRs). In the case of the log-based SISO (Algorithm 7), the LLRs
are computed in their exact form, so the scale factors K1 and K2 should be set to unity.�e so� input
λ(u; I) for both the inner and outer SISOs should be initialized to zero before the �rst iteration (for
later iterations, λ(u; I) for the inner SISO will be non-zero). You do not need to run a BER simulation;
however, the template simulation �le is set up to do so. You just need to verify that the SCCC decoder
works properly.�e log-based SISO should be implemented as aMATLAB function with the following
syntax:

[L_uO, L_cO] = SisoLogXXX(L_uI, L_cI, TERM, sS, ue, ce, sE, eR);

3. Implement the SCCCDecoder using the Max–Log SISO Algorithm. Repeat the previous task using
the modi�ed “max–log” SISO (Algorithm 8) instead of the original SISO. In this case, the LLRs are
computed only approximately, and the algorithm tends to “overestimate” these LLRs. �us, there is a
noticeable performance improvement if the LLRs are scaled down via K1 and K2.�ere is no analytical
method for determining K1 and K2; however, values of 0.75 o�er good performance and they also allow
for a simple hardware implementation that uses shi�ing and adding instead of dedicated multipliers.
Once again, you do not need to run a BER simulation, but you can verify that the BER performance
of the max–log SISO is worse than the original SISO.�e max–log SISO should be implemented as a
MATLAB function with the following syntax:

[L_uO, L_cO] = SisoMaxLogXXX(L_uI, L_cI, TERM, sS, ue, ce, sE, eR);

Figure 1: Di�erential encoder.

Figure 2: Serial concatenated convolutional encoder.

Figure 3: Serial concatenated convolutional decoder.

Algorithm 7�e Log-Based SISO Algorithm.
1: Input: �e a priori LLRs for u = {u0, u1, . . . , uT−1}, λ(u; I) = {λi(u; I)}k0T−1i=0 , k0T LLRs in total.
2: Input: �e a priori LLRs for c = {c0, c1, . . . , cT−1}, λ(c; I) = {λi(c; I)}n0T−1i=0 , n0T LLRs in total.
3: Input: A Boolean �ag TERM to indicate if the trellis is terminated.
4: Outputs: �e a posteriori LLRs λ(u; O) and λ(c; O).
5: Initialization:
6: if TERM == TRUE then,
7: A−1(0) = 0; and A−1(s) = −∞ for 1 ≤ s ≤ Ns − 1;
8: BT−1(0) = 0; and BT−1(s) = −∞ for 1 ≤ s ≤ Ns − 1;
9: else
10: A−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
11: BT−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
12: end if ;
13: Main Algorithm:
14: �e edge metric is γt(e) ≜ pt(U(e); I) + pt(C(e); I) = 1

2 [λt(u; I)a(u(e))
T + λt(c; I)a(c(e))T]

= 1
2 [∑

k0−1
j=0 λk0 t+ j(u; I)a(u(j)(e)) +∑

n0−1
j=0 λn0 t+ j(c; I)a(c(j)(e))] for all t ∈ {0, 1, . . . , T − 1} and e ∈ {0, 1, . . . ,Ne − 1}

15: for t = 0, 1, . . . , T − 2 do // Forward recursion
16: for s = 0, 1, . . . ,Ns − 1 do
17: At(s) = ∑+̂

e∶se(e)=s
At−1(ss(e)) + γt(e);

18: end for
19: end for
20: for t = T − 2, . . . , 1, 0 do // Backward recursion
21: for s = 0, 1, . . . ,Ns − 1 do
22: Bt(s) = ∑+̂

e∶ss(e)=s
Bt+1(se(e)) + γt+1(e);

23: end for
24: end for
25: for t = 0, 1, . . . , T − 1 do // Completion Step
26: for j = 0, 1, . . . , k0 − 1 do
27: λk0 t+ j(u; O) = ∑+̂

e∶u(j)(e)=1
At−1(ss(e)) + γt(e) + Bt(se(e)) − ∑+̂

e∶u(j)(e)=0
At−1(ss(e)) + γt(e) + Bt(se(e));

28: end for
29: for j = 0, 1, . . . , n0 − 1 do
30: λn0 t+ j(c; O) = ∑+̂

e∶c(j)(e)=1
At−1(ss(e)) + γt(e) + Bt(se(e)) − ∑+̂

e∶c(j)(e)=0
At−1(ss(e)) + γt(e) + Bt(se(e));

31: end for
32: end for
33: �e “extrinsic” version of an output LLR (if desired) is obtained by normalizing the output LLR by the respective input
LLR, i.e. λ(u; O) − λ(u; I).

Algorithm 8�e “Max–Log” SISO Algorithm.�e terms “LLR” and “pdf ” are used below; however, precise scaling of these
inputs (i.e. knowledge and use of the factor Lc) is not necessary for this algorithm to work properly.
1: Input: �e a priori LLRs for u = {u0, u1, . . . , uT−1}, λ(u; I) = {λi(u; I)}k0T−1i=0 , k0T LLRs in total.
2: Input: �e a priori LLRs for c = {c0, c1, . . . , cT−1}, λ(c; I) = {λi(c; I)}n0T−1i=0 , n0T LLRs in total.
3: Input: A Boolean �ag TERM to indicate if the trellis is terminated.
4: Outputs: �e a posteriori LLRs λ(u; O) and λ(c; O).
5: Initialization:
6: if TERM == TRUE then,
7: A−1(0) = 0; and A−1(s) = −∞ for 1 ≤ s ≤ Ns − 1;
8: BT−1(0) = 0; and BT−1(s) = −∞ for 1 ≤ s ≤ Ns − 1;
9: else
10: A−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
11: BT−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
12: end if ;
13: Main Algorithm:
14: �e edge metric is γt(e) ≜ pt(U(e); I) + pt(C(e); I) = 1

2 [λt(u; I)a(u(e))
T + λt(c; I)a(c(e))T]

= 1
2 [∑

k0−1
j=0 λk0 t+ j(u; I)a(u(j)(e)) +∑

n0−1
j=0 λn0 t+ j(c; I)a(c(j)(e))] for all t ∈ {0, 1, . . . , T − 1} and e ∈ {0, 1, . . . ,Ne − 1}

15: for t = 0, 1, . . . , T − 2 do // Forward recursion
16: for s = 0, 1, . . . ,Ns − 1 do
17: At(s) = max

e∶se(e)=s
{At−1(ss(e)) + γt(e)};

18: end for
19: end for
20: for t = T − 2, . . . , 1, 0 do // Backward recursion
21: for s = 0, 1, . . . ,Ns − 1 do
22: Bt(s) = max

e∶ss(e)=s
{Bt+1(se(e)) + γt+1(e)};

23: end for
24: end for
25: for t = 0, 1, . . . , T − 1 do // Completion Step
26: for j = 0, 1, . . . , k0 − 1 do
27: λk0 t+ j(u; O) = max

e∶u(j)(e)=1
{At−1(ss(e)) + γt(e) + Bt(se(e))} − max

e∶u(j)(e)=0
{At−1(ss(e)) + γt(e) + Bt(se(e))};

28: end for
29: for j = 0, 1, . . . , n0 − 1 do
30: λn0 t+ j(c; O) = max

e∶c(j)(e)=1
{At−1(ss(e)) + γt(e) + Bt(se(e))} − max

e∶c(j)(e)=0
{At−1(ss(e)) + γt(e) + Bt(se(e))};

31: end for
32: end for
33: �e “extrinsic” version of an output LLR (if desired) is obtained by normalizing the output LLR by the respective input
LLR, i.e. λ(u; O) − λ(u; I).

