The Viterbi Algorithm EECS 869: Error Control Coding
 Fall 2017

1 Background Material

Complete the following tasks. You should submit an e-mail with three .m file attachments (use the e-mail address esp@eecs.ku.edu).

1. Implement a Function to Create Look-up Tables for the Trellis for Convolutional Codes. You may assume that we are limited to rate $1 / n$ feedforward non-systematic codes. You need to create look-up tables that are sorted according to the left-hand edge index, e^{L}; tables are needed for the starting state, $s^{\mathrm{s}}\left(e^{\mathrm{L}}\right)$, the message bit, $\mathbf{m}\left(e^{\mathrm{L}}\right)$, the code bits, $\mathbf{c}\left(e^{\mathrm{L}}\right)$, the ending state, $s^{\mathrm{E}}\left(e^{\mathrm{L}}\right)$, and the right-hand edge index, $e^{\mathrm{R}}\left(e^{\mathrm{L}}\right)$. Additionally, one look-up table is required to be sorted according to the right-hand edge index; this table is the left-hand edge index, $e^{\mathrm{L}}\left(e^{\mathrm{R}}\right)$ (so that the algorithm can trace backwards).

You should implement this as a MATLAB function with the following syntax:
[sS, me, ce, sE, eR, eL_eR] = CreateCcTrellisXXX(G);
where \mathbf{G} is a $(v+1) \times n$ matrix that specifies n encoder functions with a constraint length (memory order) of v. For the $(5,7)$ code, we have a transfer function matrix

$$
\mathbf{G}(D)=\left[\begin{array}{ll}
1+D^{2} & 1+D+D^{2}
\end{array}\right]
$$

and so we specify \mathbf{G} in MATLAB as

$$
\mathbf{G}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

As for the output arguments, each is an $N_{\mathrm{E}} \times 1$ MATLAB vector (except for ce, which is an $N_{\mathrm{E}} \times n$ matrix), where N_{E} is the number of edges in the trellis. Because these elements are in order of increasing lefthand edge index, the specification for e^{L} is implied and does not need to be stated explicitly.
2. Implement the Hard-Decision Viterbi Algorithm for Convolutional Codes. You should implement this as a MATLAB function with the following syntax:

$$
\text { m_hat }=\operatorname{VaCcHdXXX}(r, \operatorname{TERM}, \mathrm{sS}, \mathrm{me}, \mathrm{ce}, \mathrm{eR} \text {, eL_eR); }
$$

where \mathbf{r} is a $1 \times n L$ MATLAB vector containing hard decisions from the BSC (i.e., 0's and l's) and TERM is a Boolean flag (i.e., a 0 or a 1) to indicate if the trellis is terminated. The metric increment for the hard-decision VA is

$$
\gamma_{t}(e)=d_{\mathbf{H}}\left(\mathbf{r}_{t}, \mathbf{c}(e)\right)
$$

where $d_{\mathrm{H}}(\cdot, \cdot)$ denotes Hamming distance. For the (5,7) code, the metric increment is 0,1 , or 2 . The objective of the VA is to minimize this metric. The algorithm you need to implement is shown in Algorithm 3
3. Implement the Soft-Decision Viterbi Algorithm for Convolutional Codes. You should implement this as a MATLAB function with the following syntax:
m_hat $=\operatorname{VaCcSdXXX}(r$, TERM, $s S$, me, ae, eR, eL_eR);

where \mathbf{r} is a $1 \times n L$ MATLAB vector containing soft decisions from the AWGN channel (i.e., noisy + l's and -1 's). The metric increment for the soft-decision VA is

$$
\gamma_{t}(e)=\sum_{i=0}^{n-1} r_{t}^{(i)} a^{(i)}(e)=\mathbf{a}(e) \mathbf{r}_{t}^{T}
$$

where $\mathbf{a}(e)=2 \mathbf{c}(e)-1$ is the antipodal version of $\mathbf{c}(e)$ and $(\cdot)^{T}$ is the transpose operator. Over time, the increments $\mathbf{r}_{t} \mathbf{a}^{T}(e)$ add up and result in the correlation between \mathbf{r} and \mathbf{a}. The objective of the VA is to maximize the correlation, so the appropriate changes must be made to the VA operations. The algorithm you need to implement is shown in Algorithm 5
4. BER Simulation. Verify the correct operation of your VA implementations by running a BER simulation (using the "wrapper file" provided) for the $(5,7)$ code. The expected result is shown above. You should run your simulation over the range of E_{b} / N_{0} values from 0 to 5 dB .
5. Channel Capacity. Plot the $(5,7)$ code performance by adding two data points to your capacity plot, one for hard decision decoding and one for soft decision decoding.

```
Algorithm 1 The Viterbi algorithm (VA) for hard-decision inputs.
    Input: The hard-decision received signal \(\mathbf{r}=\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{T-1}\right\}\).
    Input: A Boolean flag TERM to indicate if the trellis is terminated.
    Output: The estimated symbol sequence \(\hat{\mathbf{m}}=\left\{\hat{\mathbf{m}}_{0}, \hat{\mathbf{m}}_{1}, \ldots, \hat{\mathbf{m}}_{T-1}\right\}\).
    Initialization:
    if TERM \(==\) TRUE then,
        \(A_{-1}(0)=0 ; \quad\) and \(\quad A_{-1}(s)=+\infty\) for \(1 \leq s \leq N_{s}-1 ;\)
    else
        \(A_{-1}(s)=0\) for \(0 \leq s \leq N_{s}-1 ;\)
    end if;
    Main Algorithm:
    The edge metric is \(\gamma_{t}(e)=d_{\mathrm{H}}\left(\mathbf{r}_{t}, \mathbf{c}(e)\right)\) for all \(t \in\{0,1, \ldots, T-1\}\) and \(e \in\left\{0,1, \ldots, N_{\mathrm{E}}-1\right\}\)
    for \(t=0,1, \ldots, T-1\) do // Forward recursion with metric and survivor updates
        for \(s=0,1, \ldots, N_{\mathrm{s}}-1\) do
            \(A_{t}(s)=\min _{e: s^{\mathrm{E}}(e)=s}\left\{A_{t-1}\left(s^{s}(e)\right)+\gamma_{t}(e)\right\} ;\)
            \(T_{t}(s)=\underset{e: s^{\mathrm{E}}(e)=s}{\arg \min }\left\{A_{t-1}\left(s^{\mathrm{s}}(e)\right)+\gamma_{t}(e)\right\} ;\)
        end for
    end for
    if TERM == TRUE then, // Final global survivor at the end of the transmission
        \(\hat{s}_{T-1}^{\mathrm{E}}=0 ;\)
    else
        \(\hat{s}_{T-1}^{\mathrm{E}}=\underset{0 \leq \leq \leq N_{\mathrm{s}}-1}{\arg \min }\left\{A_{T-1}(s)\right\} ;\)
    end if;
    for \(t=T-1, \ldots, 1,0\) do // Traceback operation to identify output sequence
        \(\hat{\mathbf{m}}_{t}=\mathbf{m}\left(T_{t}\left(\hat{\boldsymbol{s}}_{t}^{\mathrm{E}}\right)\right) ;\)
        \(\hat{s}_{t-1}^{\mathrm{E}}=s^{\mathrm{s}}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right) ;\)
    end for
```

```
Algorithm 2 The Viterbi algorithm (VA) for soft-decision inputs.
    Input: The soft-decision received signal \(\mathbf{r}=\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{T-1}\right\}\).
    Input: A Boolean flag TERM to indicate if the trellis is terminated.
    Output: The estimated symbol sequence \(\hat{\mathbf{m}}=\left\{\hat{\mathbf{m}}_{0}, \hat{\mathbf{m}}_{1}, \ldots, \hat{\mathbf{m}}_{T-1}\right\}\).
    Initialization:
    if TERM \(==\) TRUE then,
        \(A_{-1}(0)=0 ;\) and \(A_{-1}(s)=-\infty\) for \(1 \leq s \leq N_{s}-1 ;\)
    else
        \(A_{-1}(s)=0\) for \(0 \leq s \leq N_{s}-1 ;\)
    end if;
    Main Algorithm:
    The edge metric is \(\gamma_{t}(e)=\sum_{i=0}^{n-1} r_{t}^{(i)} a^{(i)}(e)=\mathbf{a}(e) \mathbf{r}_{t}^{T}\) for all \(t \in\{0,1, \ldots, T-1\}\) and \(e \in\left\{0,1, \ldots, N_{\mathrm{E}}-1\right\}\)
    for \(t=0,1, \ldots, T-1\) do // Forward recursion with metric and survivor updates
        for \(s=0,1, \ldots, N_{s}-1\) do
            \(A_{t}(s)=\max _{e: s^{\mathrm{E}}(e)=s}\left\{A_{t-1}\left(s^{\mathrm{s}}(e)\right)+\gamma_{t}(e)\right\} ;\)
            \(T_{t}(s)=\underset{e: s^{\mathrm{E}}(e)=s}{\arg \max }\left\{A_{t-1}\left(s^{s}(e)\right)+\gamma_{t}(e)\right\} ;\)
        end for
    end for
    if TERM == TRUE then, // Final global survivor at the end of the transmission
        \(\hat{s}_{T-1}^{\mathrm{E}}=0 ;\)
    else
        \(\hat{s}_{T-1}^{\mathrm{E}}=\underset{0 \leq s \leq N_{\mathrm{s}}-1}{\arg \max }\left\{A_{T-1}(s)\right\} ;\)
    end if;
    for \(t=T-1, \ldots, 1,0\) do // Traceback operation to identify output sequence
        \(\hat{\mathbf{m}}_{t}=\mathbf{m}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right) ;\)
        \(\hat{s}_{t-1}^{\mathrm{E}}=s^{s}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right) ;\)
    end for
```

```
Algorithm 3 The VA for hard-decision inputs using indexes for the left- and right-hand sides of the trellis.
    Input: The hard-decision received signal \(\mathbf{r}=\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{T-1}\right\}\).
    Input: A Boolean flag TERM to indicate if the trellis is terminated.
    Output: The estimated symbol sequence \(\hat{\mathbf{m}}=\left\{\hat{\mathbf{m}}_{0}, \hat{\mathbf{m}}_{1}, \ldots, \hat{\mathbf{m}}_{T-1}\right\}\).
    Initialization:
    if TERM == TRUE then,
        \(A_{-1}(0)=0 ; \quad\) and \(\quad A_{-1}\left(s^{\mathrm{E}}\right)=+\infty\) for \(1 \leq s^{\mathrm{E}} \leq N_{\mathrm{S}}-1 ;\)
    else
        \(A_{-1}\left(s^{\mathrm{E}}\right)=0\) for \(0 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1 ;\)
    end if;
    Main Algorithm:
    The edge metric is \(\gamma_{t}\left(e^{\mathrm{L}}\right)=d_{\mathrm{H}}\left(\mathbf{r}_{t}, \mathbf{c}\left(e^{\mathrm{L}}\right)\right)\) for all \(t \in\{0,1, \ldots, T-1\}\) and \(e \in\left\{0,1, \ldots, N_{\mathrm{E}}-1\right\}\)
    for \(t=0,1, \ldots, T-1\) do // Forward recursion with metric and survivor updates
        for \(e^{\mathrm{L}}=0,1, \ldots, N_{\mathrm{E}}-1\) do \(\quad / /\) Compute the edge metrics, store them in right-edge order
            \(\left.M_{t}\left(e^{\mathrm{R}}\left(e^{\mathrm{L}}\right)\right)=A_{t-1}\left(s^{\mathrm{s}}\left(e^{\mathrm{L}}\right)\right)+\gamma_{t}\left(e^{\mathrm{L}}\right)\right\} ;\)
        end for
        for \(s^{\mathrm{E}}=0,1, \ldots, N_{\mathrm{S}}-1\) do \(\quad / /\) Determine survivors at the ending states
            \(A_{t}\left(s^{\mathrm{E}}\right)=\min _{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
            \(T_{t}\left(s^{\mathrm{E}}\right)=\underset{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}{\arg \min }\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
        end for
    end for
    if TERM == TRUE then, // Final global survivor at the end of the transmission
        \(\hat{\boldsymbol{s}}_{T-1}^{\mathrm{E}}=0 ;\)
    else
        \(\hat{\boldsymbol{s}}_{T-1}^{\mathrm{E}}=\underset{0 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1}{\arg \min }\left\{A_{T-1}\left(s^{\mathrm{E}}\right)\right\} ;\)
    end if;
    for \(t=T-1, \ldots, 1,0\) do // Traceback operation to identify output sequence
        \(\hat{e}_{t}^{\mathrm{L}}=e^{\mathrm{L}}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right) ;\)
        \(\hat{\mathbf{m}}_{t}=\mathbf{m}\left(\hat{e}_{t}^{\mathrm{L}}\right)\);
        \(\hat{s}_{t-1}^{\mathrm{E}}=s^{\mathrm{s}}\left(\hat{e}_{t}^{\mathrm{L}}\right)\);
    end for
```

```
Algorithm 4 The VA for soft-decision inputs using indexes for the left- and right-hand sides of the trellis.
    Input: The soft-decision received signal \(\mathbf{r}=\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{T-1}\right\}\).
    Input: A Boolean flag TERM to indicate if the trellis is terminated.
    Output: The estimated symbol sequence \(\hat{\mathbf{m}}=\left\{\hat{\mathbf{m}}_{0}, \hat{\mathbf{m}}_{1}, \ldots, \hat{\mathbf{m}}_{T-1}\right\}\).
    Initialization:
    if TERM == TRUE then,
        \(A_{-1}(0)=0 ; \quad\) and \(\quad A_{-1}\left(s^{\mathrm{E}}\right)=-\infty\) for \(1 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1 ;\)
    else
        \(A_{-1}\left(s^{\mathrm{E}}\right)=0\) for \(0 \leq s^{\mathrm{E}} \leq N_{\mathrm{S}}-1 ;\)
    end if;
    Main Algorithm:
    The edge metric is \(\gamma_{t}\left(e^{\mathrm{L}}\right)=\sum_{i=0}^{n-1} r_{t}^{(i)} a^{(i)}\left(e^{\mathrm{L}}\right)=\mathbf{a}\left(e^{\mathrm{L}}\right) \mathbf{r}_{t}^{T}\) for all \(t \in\{0,1, \ldots, T-1\}\) and \(e \in\left\{0,1, \ldots, N_{\mathrm{E}}-1\right\}\)
    for \(t=0,1, \ldots, T-1\) do \(\quad / /\) Forward recursion with metric and survivor updates
        for \(e^{\mathrm{L}}=0,1, \ldots, N_{\mathrm{E}}-1\) do \(\quad / /\) Compute the edge metrics, store them in right-edge order
            \(\left.M_{t}\left(e^{\mathrm{R}}\left(e^{\mathrm{L}}\right)\right)=A_{t-1}\left(s^{\mathrm{s}}\left(e^{\mathrm{L}}\right)\right)+\gamma_{t}\left(e^{\mathrm{L}}\right)\right\} ;\)
        end for
        for \(s^{\mathrm{E}}=0,1, \ldots, N_{\mathrm{S}}-1\) do \(\quad / /\) Determine survivors at the ending states
            \(A_{t}\left(s^{\mathrm{E}}\right)=\max _{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
            \(T_{t}\left(s^{\mathrm{E}}\right)=\underset{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}{\arg \max }\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
        end for
    end for
    if TERM == TRUE then, // Final global survivor at the end of the transmission
        \(\hat{s}_{T-1}^{\mathrm{E}}=0 ;\)
    else
        \(\hat{\boldsymbol{s}}_{T-1}^{\mathrm{E}}=\underset{0 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1}{\arg \max }\left\{A_{T-1}\left(s^{\mathrm{E}}\right)\right\} ;\)
    end if;
    for \(t=T-1, \ldots, 1,0\) do // Traceback operation to identify output sequence
        \(\hat{e}_{t}^{\mathrm{L}}=e^{\mathrm{L}}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right)\);
        \(\hat{\mathbf{m}}_{t}=\mathbf{m}\left(\hat{e}_{t}^{\mathrm{L}}\right)\);
        \(\hat{s}_{t-1}^{\mathrm{E}}=s^{\mathrm{s}}\left(\hat{e}_{t}^{\mathrm{L}}\right) ;\)
    end for
```

```
Algorithm 5 The VA for soft-decision inputs with finite traceback.
    Input: The soft-decision received signal \(\mathbf{r}=\left\{\mathbf{r}_{0}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{T-1}\right\}\).
    Input: An integer \(\delta\) to specify the finite traceback length.
    Input: A Boolean flag TERM to indicate if the trellis is terminated.
    Output: The estimated symbol sequence \(\hat{\mathbf{m}}=\left\{\hat{\mathbf{m}}_{0}, \hat{\mathbf{m}}_{1}, \ldots, \hat{\mathbf{m}}_{T-1}\right\}\).
    Initialization:
    if TERM == TRUE then,
        \(A_{-1}(0)=0 ; \quad\) and \(\quad A_{-1}\left(s^{\mathrm{E}}\right)=-\infty\) for \(1 \leq s^{\mathrm{E}} \leq N_{\mathrm{S}}-1 ;\)
    else
        \(A_{-1}\left(s^{\mathrm{E}}\right)=0\) for \(0 \leq s^{\mathrm{E}} \leq N_{\mathrm{S}}-1 ;\)
    end if;
    Main Algorithm:
    The edge metric is \(\gamma_{t}\left(e^{\mathrm{L}}\right)=\sum_{i=0}^{n-1} r_{t}^{(i)} a^{(i)}\left(e^{\mathrm{L}}\right)=\mathbf{a}\left(e^{\mathrm{L}}\right) \mathbf{r}_{t}^{T}\) for all \(t \in\{0,1, \ldots, T-1\}\) and \(e \in\left\{0,1, \ldots, N_{\mathrm{E}}-1\right\}\)
    for \(t=0,1, \ldots, T-1\) do \(\quad / /\) Forward recursion with metric and survivor updates
        for \(e^{\mathrm{L}}=0,1, \ldots, N_{\mathrm{E}}-1\) do \(\quad / /\) Compute the edge metrics, store them in right-edge order
            \(\left.M_{t}\left(e^{\mathrm{R}}\left(e^{\mathrm{L}}\right)\right)=A_{t-1}\left(s^{\mathrm{s}}\left(e^{\mathrm{L}}\right)\right)+\gamma_{t}\left(e^{\mathrm{L}}\right)\right\} ;\)
        end for
        for \(s^{\mathrm{E}}=0,1, \ldots, N_{\mathrm{S}}-1\) do \(\quad / /\) Determine survivors at the ending states
            \(A_{t}\left(s^{\mathrm{E}}\right)=\max _{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
            \(T_{t}\left(s^{\mathrm{E}}\right)=\underset{2^{k} s^{\mathrm{E}} \leq e^{\mathrm{R}} \leq 2^{k}\left(s^{\mathrm{E}}+1\right)-1}{\arg \max }\left\{M_{t}\left(e^{\mathrm{R}}\right)\right\} ;\)
        end for
        if \(t \geq \delta\) then, \(\quad / /\) Traceback operation to identify the output symbol with delay \(\delta\)
        \(\hat{s}_{t}^{\mathrm{E}}=\underset{\arg \max }{\operatorname{ar}}\left\{A_{t}\left(s^{\mathrm{E}}\right)\right\} ;\)
                \(0 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1\)
                for \(t^{\prime}=t, t-1, \ldots, t-\delta+1\) do
                    \(\hat{s}_{t^{\prime}-1}^{\mathrm{E}}=s^{\mathrm{S}}\left(e^{\mathrm{L}}\left(T_{t^{\prime}}\left(\hat{s}_{t^{\prime}}^{\mathrm{E}}\right)\right)\right) ;\)
        end for
        \(\hat{\mathbf{m}}_{t-\delta}=\mathbf{m}\left(e^{\mathrm{L}}\left(T_{t-\delta}\left(\hat{s}_{t-\delta}^{\mathrm{E}}\right)\right)\right) ;\)
        end if;
    end for
    if TERM == TRUE then, // Final global survivor at the end of the transmission
        \(\hat{s}_{T-1}^{\mathrm{E}}=0 ;\)
    else
        \(\hat{s}_{T-1}^{\mathrm{E}}=\underset{0 \leq s^{\mathrm{E}} \leq N_{\mathrm{s}}-1}{\arg \max }\left\{A_{T-1}\left(s^{\mathrm{E}}\right)\right\} ;\)
    end if;
    for \(t=T-1, T-2, \ldots, T-\delta\) do \(/ /\) Complete the traceback up to the most recent symbol
        \(\hat{e}_{t}^{\mathrm{L}}=e^{\mathrm{L}}\left(T_{t}\left(\hat{s}_{t}^{\mathrm{E}}\right)\right) ;\)
        \(\hat{\mathbf{m}}_{t}=\mathbf{m}\left(\hat{e}_{t}^{\mathrm{L}}\right)\);
        \(\hat{s}_{t-1}^{\mathrm{E}}=s^{\mathrm{S}}\left(\hat{e}_{t}^{\mathrm{L}}\right)\);
    end for
```

