Discrete Time Convolution Lab 4

Look at these two signals

$$x[n] = 1, \qquad 0 \le n \le 4$$

$$h[n] = 1, \qquad -2 \le n \le 2$$

m	x[m]	h[m]
-6	0	0
-5	0	0
-4	0	0
-3	0	0
-2	0	1
-1	0	1
0	1	1
1	1	1
2	1	1
3	1	0
4	1	0
5	0	0
6	0	0

Suppose we wanted their discrete time convolution:

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

This infinite sum says that a single value of y, call it y[n] may be found by performing the sum of all the multiplications of x[m] and h[n-m] at every value of m.

Direct Approach using Convolution Sum

Example:

$$y[0] = \sum_{m=-\infty}^{\infty} x[m]h[0-m]$$

$$\Rightarrow y[0] = \dots + x[-2]h[0 - (-2)] + x[-1]h[0 - (-1)] + x[0]h[0 - (0)] + x[1]h[0 - (1)] + x[2]h[0 - (2)] + x[3]h[0 - (3)] + x[4]h[0 - (4)] + \dots$$

$$\Rightarrow y[0] = \dots + x[-2]h[2] + x[-1]h[1] + x[0]h[0] + x[1]h[-1] + x[2]h[-2] + x[3]h[-3] + x[4]h[-4] + \dots$$

$$\Rightarrow y[0] = \dots + (0)(1) + (0)(1) + (1)(1) + (1)(1) + (1)(0) + (1)(0) + \dots$$

$$\therefore y[0] = 3$$

m	x[m]	h[m]
-6	0	0
-5	0	0
-4	0	0
-3	0	0
-2	0	1
-1	0	1
0	1	1
1	1	1
2	1	1
3	1	0
4	1	0
5	0	0
6	0	0

Table Method

Table Method

m	x[m]	h[m]	h[0-m]	x[m]h[-m]	
-6	0	0	h[-(-6)]=h[6]=0	0	
-5	0	0	h[5]=0	0	
-4	0	0	0	0	
-3	0	0	0	0	
-2	0	<u>1</u>	<u>1</u>	0	
-1	0	<u>1</u>	<u>1</u>	9	
0	<u>1</u>	<u>1</u>	<u>1</u>	_ 1	
1	<u>1</u>	<u>1</u>	<u>1</u>	1	
2	<u>1</u>	<u>1</u>	<u>1</u>	1	
3	<u>1</u>	0	0	0	
4	<u>1</u>	0	0	0	
5	0	0	0	0	
6	0	0	h[-6]=0	0	

The sum of the last column is equivalent to the convolution sum at y[0]!

$$\therefore y[0] = 3$$

Consulting a larger table gives more values of y[n]

m	x[m]	h[0-m]	h[-1-m]	h[-2-m]	h[-3-m]
-6	0	h[-(-6)]=h[6]=0	h[-1-(-6)]=h[5]=0	0	0
-5	0	h[5]=0	0	0	<u>1</u>
-4	0	0	0	<u>1</u>	<u>1</u>
-3	0	0	<u>1</u>	<u>1</u>	<u>1</u>
-2	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
-1	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0
1	<u>1</u>	<u>1</u>	<u>1</u>	0	0
2	<u>1</u>	<u>1</u>	0	0	0
3	<u>1</u>	0	0	0	0
4	<u>1</u>	0	0	0	0
5	0	0	0	0	0
6	0	h[-6]=0	0	0	0

Notice what happens as decrease n, h[n-m] shifts up in the table (moving forward in time).

$$\therefore y[-3] = 0$$

$$\therefore y[-2] = 1$$

$$\therefore y[-1] = 2$$

$$\therefore y[0] = 3$$

y[n] for n > 0

m	x[m]	h[1-m]	h[2-m]	h[3-m]	h[4-m]	h[5-m]	h[6-m]	h[7-m]
-6	0	0	0	0	0	0	0	0
-5	0	0	0	0	0	0	0	0
-4	0	0	0	0	0	0	0	0
-3	0	0	0	0	0	0	0	0
-2	0	0	0	0	0	0	0	0
-1	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0
1	1	1	1	1	0	0	0	0
2	1	1	1	1	1	0	0	0
3	1	1	1	1	1	1	0	0
4	1	0	1	1	1	1	1	0
5	0	0	0	1	1	1	1	1
6	0	0	0	0	1	1	1	1

$$\therefore y[1] = 4$$

$$\therefore y[2] = 5$$

$$\therefore y[3] = 4$$

$$\therefore y[4] = 3$$

$$\therefore y[5] = 2$$

$$\therefore y[6] = 1$$

$$\therefore y[7] = 0$$

Alternative Analytical Approach

(sometimes called the Echo method)

If x[n] or h[n] is pretty short we can represent x[n] or h[n] with a linear combination of discrete impulses:

$$x[n] = 1, \qquad 0 \le n \le 4$$
$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$$

$$h[n] = 1, \qquad -2 \le n \le 2$$

$$h[n] = \delta[n+2] + \delta[n+1] + \delta[n] + \delta[n+1] + \delta[n-2]$$

$$y[n] = x[n] * h[n]$$

But
$$h[n] = \delta[n+2] + \delta[n+1] + \delta[n] + \delta[n+1] + \delta[n-2]$$

$$\Rightarrow y[n] = x[n] * \{\delta[n+2] + \delta[n+1] + \delta[n] + \delta[n+1] + \delta[n-2]\}$$

Using the distributive property,

$$\Rightarrow y[n] = x[n] * \delta[n+2] + x[n] * \delta[n+1] + x[n] * \delta[n] + x[n] * \delta[n+1] + x[n] * \delta[n-2]$$
Using the sampling property,

$$\Rightarrow y[n] = x[n+2] + x[n+1] + x[n] + x[n-1] + x[n-2]$$

So the output is just a linear combintation of shifted input signals!

$$\Rightarrow y[n] = x[n+2] + x[n+1] + x[n] + x[n-1] + x[n-2]$$

$$But x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]$$

$$\Rightarrow y[n] = \{\delta[n+2] + \delta[n+1] + \delta[n] + \delta[n-1] + \delta[n-2]\}$$

$$+\{\delta[n+1] + \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]\}$$

$$+\{\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]\}$$

$$+\{\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]\}$$

$$+\{\delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5] + \delta[n-6]\}$$

So many terms! ...But there are many "copies" of several terms.

Combining like terms:

$$y[n] = \delta[n+2] + 2\delta[n+1] + 3\delta[n] + 4\delta[n-1] + 5\delta[n-2]$$
$$+4\delta[n-3] + 3\delta[n-4] + 2\delta[n-5] + \delta[n-6]$$

Note that this is the same result as the table method. Also $3\delta[n]$ is an alternative description for y[0] = 3 found using the convolution sum.

THE RESULT

 $\therefore y[n] = \delta[n+2] + 2\delta[n+1] + 3\delta[n] + 4\delta[n-1] + 5\delta[n-2] + 4\delta[n-3] + 3\delta[n-4] + 2\delta[n-5] + \delta[n-6]$

Using MATLAB

conv()

Code

```
n=-2:1:6; %How did I know this?
y=[1 2 3 4 5 4 3 2 1];
stem(n,y)
title('y[n]=x[n]*h[n]')
ylabel('x[n]*h[n]')
xlabel('n')
```

Q: How do I tell MATLAB where to plot the convolution?

A: If the time of the first element of x is n_{x0} and the time of the first element of h is n_{h0} then the time of the first element of y is $n_{x0} + n_{h0}$. Likewise the time of the last element of y is $n_{x1} + n_{h1}$ where n_{x1} corresponds to the time of the last element of x and x and x corresponds to the time of the last element of x.

$$n_{x0} + n_{h0} \le n < n_{x1} + n_{h1}$$

Time reversed signal moves over $n_{x0} + n_{h0} = 6$ places before product is nonzero!

This is a true statement even if n_{x0} or n_{h0} , or both, are negative!

So for our problem,

$$x[n] = 1,$$
 $0 \le n \le 4$ $n_{x0} + n_{h0} \le n < n_{x1} + n_{h1}$ \rightarrow $(0) + (-2) \le n < (4) + (2)$ $-2 \le n < 6$

Sources

Hsu, H. (2011). Schaum's Outline of Signals and Systems (2nd ed.). New York, NY: McGraw-Hill.

Roberts, M.J. (2012). Signals and Systems: Analysis Using Transform Methods and MATLAB® (2nd ed.). New York, NY: McGraw-Hill.