
�eViterbi Algorithm
EECS 869: Error Control Coding

Fall 2013

1 Background Material

Complete the following tasks. You should submit an e-mail with three .m�le attachments (use the e-mail
address esp@eecs.ku.edu).

1. Implement a Function to Create Look-up Tables for the Trellis for Convolutional Codes. You may
assume that we are limited to rate 1/n feedforward non-systematic codes. You need to create look-up
tables that are sorted according to the right-hand edge index, er; tables are needed for the le�-hand
edge index, el, the starting state, ss, the message bit,m(e), the code bits, c(e), and the ending state, se.
You should implement this as a MATLAB functionwith the following syntax:

[eL, sS, me, ce, sE] = CreateCcTrellisXXX(G);

where G is a (ν + 1) × n matrix that speci�es n encoder functions with a constraint length (memory
order) of ν. For the (5,7) code, we have a transfer function matrix

G(D) = [1 + D2 1 + D + D2]

and so we specify G in MATLAB as
G =

⎡⎢⎢⎢⎢⎢⎣

1 1
0 1
1 1

⎤⎥⎥⎥⎥⎥⎦
.

As for the output arguments, each is an Ne × 1 MATLAB vector (you should implement ce as a Ne × n
matrix), where Ne × 1 is the number of edges in the trellis. Because these elements are in order of
increasing right-hand edge index, the speci�ction for er is implied and does not need to be stated
explicitly.

2. Implement the Hard-Decision Viterbi Algorithm for Convolutional Codes. You should implement
this as a MATLAB function with the following syntax:

m_hat = VaCcHdXXX(r, TERM, sS, me, ce);

where r is a 1 × nL MATLAB vector containing hard decisions from the BSC (0’s and 1’s) and TERM
is a Boolean �ag (i.e., a 0 or a 1) to indicate if the trellis is terminated. �e metric increment for the
hard-decision VA is

γt(e) = dh(rt , c(e))

where dh(⋅, ⋅) denotes Hamming distance. For the (5,7) code, the metric increment is 0, 1, or 2. �e
objective of the VA is to minimize this metric. �e algorithm you need to implement is shown in
Algorithm 2.

3. Implement the So�-Decision Viterbi Algorithm for Convolutional Codes. You should implement
this as a MATLAB function with the following syntax:

m_hat = VaCcSdXXX(r, TERM, sS, me, ae);



0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
b
 (

B
E

R
)

BER Plot for the (5,7) CC with Hard/Soft Decision Decoding

 

 

P
b
 BPSK (theoretical)

P
b
 HD (simulation)

P
b
 SD (simulation)

where r is a 1 × nL MATLAB vector containing so� decisions from the AWGN channel (noisy +1’s
and −1’s). �e metric increment for the so�-decision VA is

γt(e) =
n−1
∑
i=0

r(i)t a(i)(e) = a(e)rTt

where a(e) is the antipodal version of c(e) and (⋅)T is the transpose operator. Over time, the incre-
ments rtaT(e) add up and result in the correlation between r and a. �e objective of the VA is to
maximize the correlation, so the appropriate changes must be made to the VA operations. �e algo-
rithm you need to implement is shown in Algorithm 3.

4. BER Simulation. Verify the correct operation of your VA implementations by running a BER simu-
lation (using the “wrapper �le” provided) for the (5,7) code. �e expected result is shown above. You
should run your simulation over the range of Eb/N0 values from 0 to 5 dB.



Algorithm 1�e Viterbi algorithm (VA) for hard-decision inputs.
1: Input: �e received signal r = {r0, r1,⋯, rL−1}.
2: Input: A Boolean �ag TERM to indicate if the trellis is terminated.
3: Input: Trellis look-up tables indexed by the generic edge index e: ss(e),m(e), and c(e).
4: Output: �e estimated symbol sequence m̂ = {m̂0, m̂1,⋯, m̂L−1}.
5: Initialization:
6: if TERM == TRUE then,
7: A−1(0) = 0;
8: A−1(s) = +∞ for 1 ≤ s ≤ Ns − 1;
9: else
10: A−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
11: end if ;
12: Main Algorithm:
13: // Forward recursion with metric and survivor updates
14: for t = 0, 1,⋯, L − 1 do
15: for s = 0, 1,⋯,Ns − 1 do
16: At(s) = min

e∶se(e)=s
{At−1(ss(e)) + γt(e)};

17: Tt(s) = argmin
e∶se(e)=s

{At−1(ss(e)) + γt(e)};

18: where γt(e) = dh(rt , c(e));
19: end for
20: end for
21: // Final global survivor at the end of the transmission
22: if TERM == TRUE then,
23: ŝeL−1 = 0;
24: else
25: ŝeL−1 = argmin

0≤s≤Ns−1
{AL−1(s)};

26: end if ;
27: // Traceback operation to identify output sequence
28: for t = L − 1,⋯, 1, 0 do
29: m̂t =m(Tt(ŝet ));
30: ŝet−1 = ss(Tt(ŝet ));
31: end for



Algorithm 2�eViterbi algorithm (VA) for hard-decision inputs using indexes on the right-hand side of the
trellis.
1: Input: �e received signal r = {r0, r1,⋯, rL−1}.
2: Input: A Boolean �ag TERM to indicate if the trellis is terminated.
3: Input: Trellis look-up tables indexed by the right-hand edge index er: ss(er),m(er), and c(er).
4: Output: �e estimated symbol sequence m̂ = {m̂0, m̂1,⋯, m̂L−1}.
5: Initialization:
6: if TERM == TRUE then,
7: A−1(0) = 0;
8: A−1(s) = +∞ for 1 ≤ s ≤ Ns − 1;
9: else
10: A−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
11: end if ;
12: Main Algorithm:
13: // Forward recursion with metric and survivor updates
14: for t = 0, 1,⋯, L − 1 do
15: for s = 0, 1,⋯,Ns − 1 do
16: At(s) = min

2k s≤er≤2k(s+1)−1
{At−1(ss(er)) + γt(er)};

17: Tt(s) = argmin
2k s≤er≤2k(s+1)−1

{At−1(ss(er)) + γt(er)};

18: where γt(er) = dh(rt , c(er));
19: end for
20: end for
21: // Final global survivor at the end of the transmission
22: if TERM == TRUE then,
23: ŝeL−1 = 0;
24: else
25: ŝeL−1 = argmin

0≤s≤Ns−1
{AL−1(s)};

26: end if ;
27: // Traceback operation to identify output sequence
28: for t = L − 1,⋯, 1, 0 do
29: m̂t =m(Tt(ŝet ));
30: ŝet−1 = ss(Tt(ŝet ));
31: end for



Algorithm 3�e Viterbi algorithm (VA) for so�-decision inputs using indexes on the right-hand side of the
trellis.
1: Input: �e received signal r = {r0, r1,⋯, rL−1}.
2: Input: A Boolean �ag TERM to indicate if the trellis is terminated.
3: Input: Trellis look-up tables indexed by the right-hand edge index er: ss(er),m(er), and a(er).
4: Output: �e estimated symbol sequence m̂ = {m̂0, m̂1,⋯, m̂L−1}.
5: Initialization:
6: if TERM == TRUE then,
7: A−1(0) = 0;
8: A−1(s) = −∞ for 1 ≤ s ≤ Ns − 1;
9: else
10: A−1(s) = 0 for 0 ≤ s ≤ Ns − 1;
11: end if ;
12: Main Algorithm:
13: // Forward recursion with metric and survivor updates
14: for t = 0, 1,⋯, L − 1 do
15: for s = 0, 1,⋯,Ns − 1 do
16: At(s) = max

2k s≤er≤2k(s+1)−1
{At−1(ss(er)) + γt(er)};

17: Tt(s) = argmax
2k s≤er≤2k(s+1)−1

{At−1(ss(er)) + γt(er)};

18: where γt(er) =
n−1
∑
i=0

r(i)t a(i)(er) = a(er)rTt ;

19: end for
20: end for
21: // Final global survivor at the end of the transmission
22: if TERM == TRUE then,
23: ŝeL−1 = 0;
24: else
25: ŝeL−1 = argmax

0≤s≤Ns−1
{AL−1(s)};

26: end if ;
27: // Traceback operation to identify output sequence
28: for t = L − 1,⋯, 1, 0 do
29: m̂t =m(Tt(ŝet ));
30: ŝet−1 = ss(Tt(ŝet ));
31: end for


	Background Material

