The Viterbi Algorithm
EECS 869: Error Control Coding
Fall 2013

1 Background Material

Complete the following tasks. You should submit an e-mail with three .m file attachments (use the e-mail
address esp@eecs.ku.edu).

1. Implement a Function to Create Look-up Tables for the Trellis for Convolutional Codes. You may
assume that we are limited to rate 1/n feedforward non-systematic codes. You need to create look-up
tables that are sorted according to the right-hand edge index, e®; tables are needed for the left-hand
edge index, e", the starting state, s°, the message bit, m(e), the code bits, c¢(e), and the ending state, s*.
You should implement this as a MATLAB functionwith the following syntax:

[eL, sS, me, ce, sE] = CreateCcTrellisXXX(G);

where G is a (v + 1) x n matrix that specifies n encoder functions with a constraint length (memory
order) of v. For the (5,7) code, we have a transfer function matrix

G(D) =[1+D* 1+D+D?]

and so we specify G in MATLAB as

As for the output arguments, each is an Ny x 1 MATLAB vector (you should implement ce asa Ng x n
matrix), where N x 1 is the number of edges in the trellis. Because these elements are in order of
increasing right-hand edge index, the specifiction for e® is implied and does not need to be stated
explicitly.

2. Implement the Hard-Decision Viterbi Algorithm for Convolutional Codes. You should implement
this as a MATLAB function with the following syntax:
m_hat = VaCcHdXXX(r, TERM, sS, me, ce);

where ris a1l x nL MATLAB vector containing hard decisions from the BSC (0’s and I's) and TERM
is a Boolean flag (i.e., a 0 or a 1) to indicate if the trellis is terminated. The metric increment for the
hard-decision VA is

ye(e) = dH(rt)C(e))

where dy(+,-) denotes Hamming distance. For the (5,7) code, the metric increment is 0, 1, or 2. The
objective of the VA is to minimize this metric. The algorithm you need to implement is shown in
Algorithm 2]

3. Implement the Soft-Decision Viterbi Algorithm for Convolutional Codes. You should implement
this as a MATLAB function with the following syntax:
m_hat = VaCcSdXXX(r, TERM, sS, me, ae);

BER Plot for the (5,7) CC with Hard/Soft Decision Decoding
107 T T T T T T T T T

P, (BER)

10 = ,Pb BPSK (theoretical) N
| o P, HD (simulation) \@
Pb SD (simulation)
10*5 I I I L L L L L L
0 1 2 3 4 5 6 7 8 9 10

E,/N, [dB]

where r is a 1 x nL. MATLAB vector containing soft decisions from the AWGN channel (noisy +1’s
and -1’s). The metric increment for the soft-decision VA is

n-1 .
ye(e) = S rVaD(e) = a(e)r]
i=0

where a(e) is the antipodal version of c(e) and (-)T is the transpose operator. Over time, the incre-
ments r;a’ (e) add up and result in the correlation between r and a. The objective of the VA is to
maximize the correlation, so the appropriate changes must be made to the VA operations. The algo-
rithm you need to implement is shown in Algorithm

4. BER Simulation. Verify the correct operation of your VA implementations by running a BER simu-
lation (using the “wrapper file” provided) for the (5,7) code. The expected result is shown above. You
should run your simulation over the range of E;, /N values from 0 to 5 dB.

Algorithm 1 The Viterbi algorithm (VA) for hard-decision inputs.

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31

1: Input: The received signal r = {ro, 1y, -, r;_1}.

2: Input: A Boolean flag TERM to indicate if the trellis is terminated.

3. Input: Trellis look-up tables indexed by the generic edge index e: s°(e), m(e), and c(e).
4: Output: The estimated symbol sequence t = {1, fyy, -+, iy }.

5:
6
7
8
9

Initialization:
. if TERM == TRUE then,
A_4(0) =0;
A_j(s) =+ocofor1<s < Ny—1;
: else
A(s)=0for0<s< Ng—1L;
end if;
Main Algorithm:

/] Forward recursion with metric and survivor updates
fort=0,1,---,L —1do
fors=0,1,---,Ns —1do
Ay(s)= min {A,(s(e)) +yi(e) s
e:st(e)=s

Ti(s) = arg(n;in {Aia(s°(e)) +yi(e) s
where y;(e) = du(r;, c(e));
end for
end for
// Final global survivor at the end of the transmission
if TERM == TRUE then,

o
$1.1=05
else
o .)
§j_y=argmin{A;_i(s)};
OSSSNS*I
end if;

/] Traceback operation to identify output sequence
fort=L-1,---,1,0do

= m(T(57));

$io = * (T2 (37))s
end for

Algorithm 2 The Viterbi algorithm (VA) for hard-decision inputs using indexes on the right-hand side of the
trellis.
1: Input: The received signal r = {r¢, 1y, -, r;_1}.

Input: A Boolean flag TERM to indicate if the trellis is terminated.
Input: Trellis look-up tables indexed by the right-hand edge index e®: s°(e®), m(e®), and c(e®).
Output: The estimated symbol sequence t = {rg, hy, ---, 1 }.
Initialization:
if TERM == TRUE then,

A1(0) = 0;

A_i(s) =+ocofor1<s < Ng—1;
else

A_i(s)=0for0<s<Ng—1;
: end if;
Main Algorithm:
: // Forward recursion with metric and survivor updates
fort=0,1,--,L-1do

fors=0,1,---,Ns—1do

As(s) = min {Aia(s* (") +ye(e))5

2ks<er<2k (s+1)-1

17: Ty(s)= argmin {A,4(s°(e")) +ye(e") }s
2ks<er<2k (s+1)-1

18: where y;(e*) = dy(re, c(e?));

19: end for

20: end for

21: // Final global survivor at the end of the transmission

22: if TERM == TRUE then,

R N AR A~

L - S
AN LI A T

E
23: Si1 = 0;
24: else
L .)
25: §i_y=argmin{A;_(s)};
0<s<Ng—1
26: end if;

27: // Traceback operation to identify output sequence
28: fort=L-1,---,1,0do

29: Ii’lt = m(Tt(§f)),

03, =S (TG

31: end for

Algorithm 3 The Viterbi algorithm (VA) for soft-decision inputs using indexes on the right-hand side of the
trellis.
1: Input: The received signal r = {ro, 1y, -, r;_1}.

2: Input: A Boolean flag TERM to indicate if the trellis is terminated.
3: Input: Trellis look-up tables indexed by the right-hand edge index e*: s*(e®), m(e®), and a(e®).
4: Output: The estimated symbol sequence t = {1, fyy, -+, iy }.
5. Initialization:
6: if TERM == TRUE then,
7: A_l(O) =0;
8: A_i(s)=-ocoforl<s< Ng—1;
9: else
10: A_(s)=0for0<s<Ng—1;
11: end if;
12: Main Algorithm:
13: // Forward recursion with metric and survivor updates
14: fort=0,1,--,L-1do
15: fors=0,1,---,Ns —1do
S/ R R\ \.
“ A) = e A E) e
17: Ty(s)= argmax {A.(s°(e")) +ye(e™)}s
2ks<er<2k (s+1)-1
n-1
18: where y(e*) = > rgl)a(i)(eR) =a(eMrl;
19: end for 0
20: end for

21: // Final global survivor at the end of the transmission
22: if TERM == TRUE then,

E Q.
23: Si_1 = 0;
24: else
AE — .
25: §7_ =argmax{A;_(s)};
0<s<Ns—1
26: end if;

27: // Traceback operation to identify output sequence
28: fort=L-1,---,1,0do

29: m; = m(T($}));

0 8= ST

31: end for

	Background Material

