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1 Background Material

1.1 Organization of the Trellis

The Viterbi algorithm (VA) processes the (noisy) output sequence from a state machine and determines the
most likely input sequence. In other words, it “inverts”—or “undoes”—a state machine. Figure 1 shows
an example of a state machine: the so-called (5,7) convolutional encoder (this will serve as our running
example below). The input is a sequence of K information bits m = {mk}K−1

k=0 , where a single bit mk is
shifted in at each time step. The output is a sequence of 2K coded bits c = {ck}K−1

k=0 , where a pair of bits
ck is shifted out at each time step (if we ever need to refer to individual bits within this pair, they are c(1)

k

and c(2)
k ). The noisy channel output is a sequence of 2K values r = {rk}K−1

k=0 , where a pair of values rk is
also produced at each time step (with individual values r(1)

k and r(2)
k ). Common noisy channel models are

the binary symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel.
The (5,7) convolutional encoder in Figure 1 has two binary-valued memory elements (i.e., shift regis-

ters), which are labeled MSB (most-significant bit) and LSB (least-significant bit). The memory elements
can assume four possible states: 00, 01, 10, and 11. In general, the state machine has a total of NS possible
states, where typically NS = 2ν with ν being an integer.

Every state machine has a corresponding trellis diagram. The trellis diagram for our example is shown
in Figure 2. The trellis shows the NS = 4 states and the allowable transitions between the states. Thus
the trellis characterizes the manner in which the state machine behaves over time. The state transitions are
referred to as edges or branches in the trellis diagram. In our example, the input to the state machine, mk

has 2 possible values, so there are 2 edges leaving each state (and two edges merging into each state). In
general, if the input to the state machine is M -ary, then there are a total of NE = M ·NS edges in the trellis
diagram. The trellis is decorated with numerous labels, which we now define:

• The starting state: sS. In general, the starting state takes on values sS ∈ {0, 1, · · · , NS − 1}. It is con-
venient to label the states with an integer (decimal) value, rather than “vector” value such as 10. This
only requires us to come up with a one-to-one mapping (relabeling) between the two representations.
In our example, the standard conversion between binary and decimal representations is the obvious
choice, and this is used in Figure 2.

• The ending state: sE. The ending state takes on values in the same range as the starting state, i.e.,
sE ∈ {0, 1, · · · , NS − 1}. We use the same one-to-one mapping as before when going between the
integer state representation and the vector state representation.

• Edge input and output: m(e) and c(e): In Figure 2, each edge is labeled with values that are separated
by a forward slash, i.e.,m(e)/c(e). The value in front of the forward slash is the information bitm(e)
that causes the state machine to follow the given state transition. The value after the forward slash
is the pair of output bits c(e) produced by the state machine as it follows the given state transition.
The definition of the “output” will change from one type of state machine to the next—not all state
machines output a pair of bits—so the labeling format will vary from case to case. For example,
with trellis coded modulation (TCM) or continuous phase modulation (CPM), the state machine has
different outputs.



Figure 1: (5,7) convolutional encoder.

Figure 2: Trellis diagram for the (5,7) convolutional encoder.

• The left edge index: eL. On the left-hand side of the trellis, each edge is labeled with a unique index
eL ∈ {0, 1, · · · , NE − 1}. Once again, we require some sort of one-to-one mapping between the
integers and the edges. Because each edge is a unique combination of a starting state and an edge
input, it make sense to combine these quantities into one value. The left edge indexes in Figure 2 are
eL = 2 · sS +m(e). Stated in words, the state value is “left-shifted” (multiplied by 2) in order to “shift
in” (add) the edge input in the LSB position.

• The right edge index: eR. On the right-hand side of the trellis, each edge is labeled with another unique
index eR ∈ {0, 1, · · · , NE−1}. For the left edge index, we made use of the starting state and the value
that “appeared” at each state transition, i.e., the edge input. Now, for the right edge index, we will
make use of the ending state and the value that “disappears” at each state transition. In our example,
this is the MSB of the starting state. Thus, in Figure 2, the right edge indexes are eR = 2 · sE+ the
MSB of the edge’s starting state.

Based on all of the above, the trellis diagram can be completely described by the information in Table 1. We
point out that the rows in Table 1 are sorted according to increasing values of eL. Thus, we have augmented
the notation in Table 1 to reflect this ordering. For example, the starting state is sS(eL). An alternate version
of Table 1 can be envisioned where the rows are sorted according to eR.



Table 1: Trellis labels for the (5,7) convolutional encoder.

eL sS(eL) m(eL) c(eL) sE(eL) eR(eL)
0 0 0 00 0 0
1 0 1 11 1 2
2 1 0 01 2 4
3 1 1 10 3 6
4 2 0 11 0 1
5 2 1 00 1 3
6 3 0 10 2 5
7 3 1 01 3 7

1.2 Operation of the Viterbi Algorithm

With a richly described trellis, the operation of the VA can be described in a few succinct steps. Here are a
few preliminary details and definitions:

• State metric: Ak(s). A state metric is assigned to each state s ∈ {0, 1, · · · , NS − 1} at each time
step k ∈ {0, 1, · · · ,K − 1}. Another name for the state metric is the cumulative metric. A major
step within the VA is to update the state metric with a recursive operation (i.e., the new values of the
state metric are a function of the previous values). Typically, it is not necessary to store a long history
of past values of the state metric, the values at the current time step and the previous time step are
usually sufficient, which minimizes memory requirements.

• Metric increment: γk(e). The other part of the recursive state metric update is the metric increment.
This is typically a function of the received data for the current time step (i.e., rk) and the state machine
output for the given edge (i.e., c(e)). The mathematical formulation of the metric increment will vary
from one state machine to the next (e.g., convolutional codes, TCM, CPM) and also from one noisy
channel model to the next (e.g., BSC, AWGN).

• Traceback matrix: T. Unlike the state metric, a longer time history of the traceback matrix must
be maintained. The individual elements of the traceback matrix are Tk(s), which is indexed by both
state and time, i.e., s ∈ {0, 1, · · · , NS − 1} and k ∈ {0, 1, · · · ,K − 1}. The individual traceback
elements identify which of the merging paths at each ending state was declared the survivor. We will
sometimes refer to Tk(s) as the local survivor at state s and time step k, because each state has its
own survivor. (At the end of the VA operation, on the other hand, we will be interested in determining
the global survivor.) From a conceptual point of view, it is most simple to have a traceback matrix
that spans the entire time interval k ∈ {0, 1, · · · ,K − 1}. However, this becomes infeasible when K
becomes arbitrarily large. Thus, for practical purposes, it is often desirable to have a finite traceback
length KT, which is typically limited to a few tens of time steps.

Based on all of the above, the recursive state metric update is

Ak(s) = min
e:sE(e)=s

{
Ak−1(sS(e)) + γk(e)

}
(1)

where e : sE(e) = s is stated in words as “all edges such that the ending state of the edge is equal to s.” This
update is performed for all k ∈ {0, 1, · · · ,K − 1} and for all s ∈ {0, 1, · · · , NS − 1}. Conceptually, this



can be thought of as two nested “for” loops: the outer loop goes over the time steps k and the inner loop
goes over the states s. If the initial state of the encoder is known to be S−1, then the initial values of the
state metrics are

A−1(s) =

{
0, s = S−1

+∞, otherwise.
(2)

In other words, the known initial state is given an infinite “head start” over the rest of the states. If the initial
state of the encoder is not known, then the state metrics are all initialized to zero.

The elements of the traceback matrix are given by

Tk(s) = arg min
e:sE(e)=s

{
Ak−1(sS(e)) + γk(e)

}
(3)

The traceback value is saved at the same point within the VA that the state metric is updated: the latter stores
the minimum value of the merging metric while the former stores the identity of the edge with the minimum
merging metric.

After Ak(s) and Tk(s) have been computed for all k and s, the final global survivor is identified as

ŜK−1 = arg min
s
{AK−1(s)} (4)

where the hat above ŜK−1 serves as a reminder that this is a quantity that is estimated at the receiver and
may differ from the value at the transmitter SK−1 with some non-zero probability. In the case where SK−1

is known to the receiver (i.e., the state machine was fed with termination symbols to force it into a pre-
determined state), we use ŜK−1 = SK−1 instead of computing (4).

Using ŜK−1 as a starting point, the final step within the VA is to recursively trace back along the global
surviving path via the operation

Ŝk−1 = sS(Tk(Ŝk)) (5)

for k = K − 1, · · · , 1, 0 and output whatever quantities are of interest at the receiver. Typically, this at least
includes the estimated information sequence m̂ = {m(Tk(Ŝk))}K−1

k=0 .

1.3 Implementation Notes

Here are some final comments on the VA:

• A variety of different implementation architectures can be envisioned that differ in their use of the
left edge index, right edge index, etc. These different implementations will ultimately be motivated
by the targeted programming environment/platform. For example, MATLAB has a host of “vector-
ized” operations and functions that make it possible to implement the VA with a single (non-nested)
“forward” loop to compute Ak(s) and Tk(s), followed by a single (non-nested) traceback loop. On
the other hand, a C/C++ implementation will require the above-mentioned two nested loops, plus an
additional inner loop to step through the edges required by the min{·}/arg min{·} operations in (1)
and (3).

• We have formulated (1) and (3) with min{·} and arg min{·}. This is typically the case where the
metric increments are used to compute some sort of distance metric and the best metric corresponds
to the minimum distance. However, if the metric increments are used to compute, say, correlation,
where the best metric corresponds to the maximum correlation, then max{·}/arg max{·} should be
used in place of min{·}/arg min{·}; also the state initialization in (2) should be negated.



2 Project

Complete the following tasks. You should submit an e-mail with three .m file attachments (use the
e-mail address esp@eecs.ku.edu).

1. Implement a Function to Organize the Trellis for Convolutional Codes. You may assume that we
are limited to rate 1/n feedforward non-systematic codes. You should implement this as a MATLAB
function (without consulting any prior implementations by myself) with the following syntax:

[sS, me, ce, sE, eR] = CreateCcTrellisXXX(G);

where G is a (ν + 1)× n matrix that specifies n encoder functions with a constraint length (memory
order) of ν. In our running example, we have a transfer function matrix

G(D) =
[
1 +D2 1 +D +D2

]
and so we specify G in MATLAB as

G =

1 1
0 1
1 1

 .
As for the output arguments, each is an NE × 1 MATLAB vector (you might implement ce as a
NE×n matrix). The elements within these output arguments are assumed to be in order of increasing
left edge index. Thus, the specification for eL is implied and does not need to output explicitly.

2. Implement the Hard-Decision Viterbi Algorithm for Convolutional Codes. You should imple-
ment this as a MATLAB function (without consulting any prior implementations by myself) with the
following syntax:

m_hat = VaCcHdXXX(r, sS, me, ce, sE, eR);

where r is a 1 × nK MATLAB vector containing hard decisions from the BSC (0’s and 1’s). The
metric increment for the hard-decision VA is

γk(e) = dH

(
rk, c(e)

)
where dH(·, ·) denotes Hamming distance. In our running example, the metric increment is 0, 1, or 2.
The objective of the VA is to minimize this metric.

3. Implement the Soft-Decision Viterbi Algorithm for Convolutional Codes. You should implement
this as a MATLAB function (without consulting any prior implementations by myself) with the fol-
lowing syntax:

m_hat = VaCcSdXXX(r, sS, me, ce, sE, eR);

where r is a 1 × nK MATLAB vector containing soft decisions from the AWGN channel (noisy
+1’s and −1’s). The metric increment for the soft-decision VA is

γk(e) =
n−1∑
i=0

r
(i)
k a(i)(e) = 〈rk,a(e)〉

where a(e) is the antipodal version of c(e) and 〈·, ·〉 is the inner (dot) product between two vectors.
Over time, the inner product increments amount to computing the correlation between r and a. The
objective of the VA is to maximize the correlation, so the appropriate changes must be made to the VA
operations.
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