Serially Concatenated Convolutional Codes with Iterative Decoding
EECS 869: Error Control Coding
Fall 2009

Complete the following tasks. You should base your implementation on the template .m files that have
been distributed via e-mail. The .m files with the word Temp1late in their name contain “TODQOs” for
you. These files should be renamed with your first name in place of the word Template, the TODOs
should be completed, and the .m files should be sent back to me via e-mail (use the e-mail address
esp@eecs.ku.edu).

1. Specify the Trellis Table for the Differential Encoder. In this project, we will be using the dif-
ferential encoder (DE) shown in Figure [I] This encoder will serve as the “inner code” of a serially
concatenated convolutional code (SCCC). The SCCC encoder is shown in Figure [2] (the symbol II de-
notes an interleaver). The “outer code” for the SCCC system is the now-familiar (5,7) convolutional
code (CC). We already have a trellis table for the outer code from a previous project. We need this
information for the inner code as well. In the file RunBerSimulationScccTemplate.m, you will
find a “TODO” for specifying the trellis of the DE.

2. Implement the SCCC Decoder using the Original SISO Algorithm. A block diagram of the SCCC
decoder is shown in Figure [3] In the e-mail distribution, you already have implementations of the
major blocks in this system. You also have a template function for the decoder. Your task then is
to “wire” it all together properly. The data vectors that are passed back and forth between the SISO
modules are in the form of log likelihood ratios (LLRs). In the case of the original SISO algorithm,
the LLRs are computed in their exact form, so the scale factors /Ky and K5 should be set to unity.
The soft input P (u; ) for both the inner and outer SISOs should be initialized to zero before the first
iteration (for later iterations, P(u; I') for the inner SISO will be non-zero). You do not need to run a
BER simulation; however, the template simulation file is set up to do so. You just need to verify that
the SCCC decoder works properly.

3. Implement the SCCC Decoder using the Max-Log SISO Algorithm. Repeat the previous task
using the modified “max-log” SISO instead of the original SISO. In this case, the LLRs are computed
only approximately, and the algorithm tends to “overestimate” these LLRs. Thus, there is a noticeable
performance improvement if the LLRs are scaled down via K; and K. There is no analytical method
for determining K; and K5; however, values of (.75 offer good performance and they also allow for a
simple hardware implementation that uses shifting and adding instead of dedicated multipliers. Once
again, you do not need to run a BER simulation, but you can verify that the BER performance of the
max-log SISO is worse than the original SISO.

4. Implement the SCCC Decoder using the SOVA. Repeat the previous task using the soft output
Viterbi algorithm (SOVA) instead of the SISO algorithm. You should be able to verify that the SOVA
and the max-log SISO have essentially the same performance. The only difference between their
performance is due to a finite traceback length within the SOVA. This will be most noticeable at high
BER.



bLK - OK
\fD‘ o

=

Figure 1: Differential encoder.

At

]

ouvder Nne - -
code cndde AWGN

Figure 2: Serially concatenated convolutional encoder.

wwer SISO

Figure 3: Serially concatenated convolutional decoder.



