
Decoder for Binary BCH Codes
EECS 869: Error Control Coding

Fall 2009

Complete the following tasks. You should submit an e-mail with one .m file attachment (use esp@eecs.ku.edu).

1. Implement Berlekamp’s Algorithm for Decoding Binary BCH Codes. Attached to the end of this
write-up, you will find a few pages copied from Wicker’s book that contain the specification for this
algorithm. You should implement this as a MATLAB function with a similar syntax to the previous
project:

c_hat = BchDecoderBerlekampXXX(r,t);

where r and ĉ are 1 × n MATLAB vectors containing ones and zeros and t is the error correcting
strength of the code. I expect you to submit your own original MATLAB code. You should submit
your function via e-mail (use esp@eecs.ku.edu), and don’t forget to replace XXX with your first name.

Here are some tips and tricks from my own implementation:

• We will assume the codeword length is n = 2m − 1 and the decoder operates over GF (2m).

• At the very beginning of your MATLAB function, you can “type cast” r as a Galois field object with
the command r_gf = gf(r,m). Once you do that, all of the MATLAB operations you perform on
r_gf will automatically be performed over GF (2m). (By the way, r_gf is just a name, you don’t
have to have the _gf, this is just my style.)

• To get the primitive element α, you can just ask for the Galois field element corresponding to the
polynomial α + 0, which has a binary representation of 10 and an integer representation of 2, hence
alph = gf(2,m) (I like to avoid using the MATLAB name alpha because there is a built-in func-
tion with that name).

• You will find Moon’s Table 5.1 (p. 199) helpful in understanding Galois fields. Each element in the
field has a unique integer assigned to it, in the range 0, 1, · · · , 2m−1 [Moon calls this the “Vector Rep-
resentation (integer)”]. MATLAB uses this integer representation, and thus the integer 2 corresponds
with α. In addition to the integer representation, you will also find the “Logarithm” representation
helpful. You can see the logarithms of each of the elements in Moon’s table, which are integers in
the range 0, 1, · · · , 2m − 2 and the notable case that 0 has an undefined logarithm. Lucky for us,
MATLAB has “overridden” a lot of its built-in functions to work properly with Galois field elements.
For example, if you have alph = gf(2,m), and then you make the call log(alph), it will return
1 because you gave it α1 (MATLAB was smart enough to know that you gave it a Galois field el-
ement, so it used the appropriate definition of the logarithm). To see the full list of “overridden”
functions, type help gfhelp. Of course you already expect that + (addition), * (multiplication), and
ˆ (exponentiation), have all been “overridden.”

• As indicated on p. 247 of Moon’s book, to compute the syndromes, you simply evaluate Sj = r(αj)
for j = 1, 2, · · · , 2t. Based on the definitions above, you have everything you need, and everything is
defined in GF (2m) with the supporting functions.

• If the syndromes are all zero then there are no errors, you’re done.



• Wicker asks you to form the polynomial S(x), which he defines for you. His algorithm uses this
polynomial plus 1, i.e., 1 + S(x).

• Follow Wicker’s algorithm, its pretty straightforward. In Step 2, you have to multiply two polynomi-
als, do you remember how to multiply polynomials in MATLAB? Hopefully the function you need is
on the list of “overridden” functions! In Step 3, adding the two polynomials looks pretty simple, but
its harder than it needs to be because they are MATLAB vectors with (possibly) different lengths, so
you’ll need to take a few extra steps there.

• In my implementation, after the loop was done executing, the MATLAB vector holding the final
polynomial Λ(x) sometimes had extra high-order terms that were zero. Thus, it made it seem like the
polynomial had a higher degree than was truly the case. I just looked for zero-valued terms at the end
of the vector and deleted them. This solved the problem.

• At the end of the algorithm, you have to find the roots of Λ(x) (Gee, if only there was a function
called roots that was “overridden” to work with Galois fields). If there aren’t any roots, or if there
are more than t roots, then you have an uncorrectable error pattern (i.e., decoder failure). Otherwise,
the logarithm of the roots (an integer in the range 0, 1, · · · , 2m−2) indicates the location of the errors
in the received vector. Correct the errors and you are done.






