Decoder for Binary BCH Codes
EECS 869: Error Control Coding
Fall 2009

Complete the following tasks. You should submit an e-mail with one .m file attachment (use esp @eecs.ku.edu).

1. Implement Berlekamp’s Algorithm for Decoding Binary BCH Codes. Attached to the end of this
write-up, you will find a few pages copied from Wicker’s book that contain the specification for this
algorithm. You should implement this as a MATLAB function with a similar syntax to the previous
project:

c_hat = BchDecoderBerlekampXXX (r,t);

where r and ¢ are 1 x n MATLAB vectors containing ones and zeros and t is the error correcting
strength of the code. I expect you to submit your own original MATLAB code. You should submit
your function via e-mail (use esp@eecs.ku.edu), and don’t forget to replace XXX with your first name.

Here are some tips and tricks from my own implementation:
e We will assume the codeword length is n = 2™ — 1 and the decoder operates over GF'(2™).

e At the very beginning of your MATLAB function, you can “type cast” r as a Galois field object with
the command r_gf = gf (r, m). Once you do that, all of the MATLAB operations you perform on
r_gf will automatically be performed over GF(2™). (By the way, r_gf is just a name, you don’t
have to have the _gf£, this is just my style.)

e To get the primitive element «, you can just ask for the Galois field element corresponding to the
polynomial o + 0, which has a binary representation of 10 and an integer representation of 2, hence
alph = gf (2,m) (Ilike to avoid using the MATLAB name alpha because there is a built-in func-
tion with that name).

e You will find Moon’s Table 5.1 (p. 199) helpful in understanding Galois fields. Each element in the
field has a unique integer assigned to it, in the range 0, 1, - - - , 2™ —1 [Moon calls this the “Vector Rep-
resentation (integer)”’]. MATLAB uses this integer representation, and thus the integer 2 corresponds
with a. In addition to the integer representation, you will also find the “Logarithm” representation
helpful. You can see the logarithms of each of the elements in Moon’s table, which are integers in
the range 0,1,--- ,2" — 2 and the notable case that 0 has an undefined logarithm. Lucky for us,
MATLAB has “overridden” a lot of its built-in functions to work properly with Galois field elements.
For example, if you have alph = gf (2,m), and then you make the call 1og (alph), it will return
1 because you gave it o' (MATLAB was smart enough to know that you gave it a Galois field el-
ement, so it used the appropriate definition of the logarithm). To see the full list of “overridden”
functions, type help gfhelp. Of course you already expect that + (addition), ~ (multiplication), and
" (exponentiation), have all been “overridden.”

e Asindicated on p. 247 of Moon’s book, to compute the syndromes, you simply evaluate S; = r(a)
forj =1,2,---,2t. Based on the definitions above, you have everything you need, and everything is
defined in GF'(2™) with the supporting functions.

o [f the syndromes are all zero then there are no errors, you’re done.



Wicker asks you to form the polynomial S(z), which he defines for you. His algorithm uses this
polynomial plus 1, i.e., 1 + S(z).

Follow Wicker’s algorithm, its pretty straightforward. In Step 2, you have to multiply two polynomi-
als, do you remember how to multiply polynomials in MATLAB? Hopefully the function you need is
on the list of “overridden” functions! In Step 3, adding the two polynomials looks pretty simple, but
its harder than it needs to be because they are MATLAB vectors with (possibly) different lengths, so
you’ll need to take a few extra steps there.

In my implementation, after the loop was done executing, the MATLAB vector holding the final
polynomial A(z) sometimes had extra high-order terms that were zero. Thus, it made it seem like the
polynomial had a higher degree than was truly the case. I just looked for zero-valued terms at the end
of the vector and deleted them. This solved the problem.

At the end of the algorithm, you have to find the roots of A(z) (Gee, if only there was a function
called roots that was “overridden” to work with Galois fields). If there aren’t any roots, or if there
are more than ¢ roots, then you have an uncorrectable error pattern (i.e., decoder failure). Otherwise,
the logarithm of the roots (an integer in the range 0, 1, - - - , 2™ — 2) indicates the location of the errors
in the received vector. Correct the errors and you are done.
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9.1.2 Berlekamp’s Algorithm for Binary BCH Codes

Berlekamp’s algorithm is much more difficult to understand .than Peterson’s ap-
proach, but results in a substantially more efficient implementation. The complexity
of Peterson’s technique increases with the square of the number of errors corrected,
providing an efficient implementation for binary BCH decoders tl}at correct up to
6 or 7 errors. The complexity of Berlekamp’s algorithm increases linearly, allow.mg
for construction of efficient decoders that correct dozens of errors. In this section
Berlekamp’s decoding algorithm for binary BCH codes is presented without proof.
The reader who is interested in the full treatment is referred to Berlekamp [Berl].

We begin by defining an infinite-degree syndrome polynomial
SE) =81x +$x2 + -+ + S x¥ + Spee X2 4 o (9-14)

Clearly we do not know all of the coefficients of S(x), but fortunately the first
2t coefficients are entirely sufficient. S (x) is made into an infinite-degree polynomial
so that it can be treated as a generating function. Define a third polynomial as
follows.

Qx) £ [1 + S@)]A()
=1 +Six+ 8532+ )1+ Ayx + Agx? + -+ ) (9-15)
=1+ (Sl + Al)x + (Sz + A1S1 + Az)xz + (S3 + Alsz + Ale + A3)x3 +oeee
=1+ Qx+ W32+ -

Q(x) is called the error magnitude polynomial and is useful in nonbinary
decoding. For now we will simply note that if the syndrome and error locator
polynomials are to satisfy|Eq then the odd-indexed coefficients of Q(x) must
be zero. Given that we know only the first 2t coefficients of S (x), the decoding
problem then becomes one of finding a polynomial A(x) of degree less than or equal
to ¢ that satisfies :

[1+SEAE) =0+ Dx?+ Qux* + --- + Q5 x*) modx**' (9-16)

Berlekamp’s algorithm proceeds iteratively by breaking Eq. (9-16) down into
a series of smaller problems of the form

[1+S@AS(x) =1+ Qx?+ Qux* + -+ + D x%*) mod x**1 (9-17)

where k runs from 1 to ¢. A solution A9(x) = 1 s first assumed and tested to see
if it works for the case k = 1. If it does work, we proceed to k = 2; otherwise, a
correction factor is computed and added to A©, creating a new solution A®(x). The
genius of the algorithm lies in the computation of the correction factor. It is designed
so that the new solution will work not only for the current case, but for all previous,
values of k as well. Once the algorithm concludes, the polynomial A®)(x) is a solution
for all ¢ of the expressions in Eq. (9-7).

Berlekamp’s algorithm for decoding binary BCH codes [Ber1]

1. Set the initial conditions: k = 0, AO%) =170 =1,
2. Let A® be the coefficient of x%**1 in the product A®(x)[1 + S(x)].
3. Compute
APD(x) = ABI(x) + Ay . T@(x)]
4. Compute
¥T®(x)  if A® = orif deg [A®(x)] > k

TO*2(x) = { reag,
A(Zkg__) if A®) £ 0 and deg[AP(x)] < k



5..Setk =k + 1. If k <t, then go to 2.

6. Determine the roots of A(x) = A®)(x). If the roots are distinct and lie in the
_ right field, then correct the corresponding locations in the received word and
" STOP.

7. Declare a decoding failure and STOP.
Example 9-3—Double-Error Correction Using Berlekamp’s Algorithm

In Example 9-1 we considered a nan'ow-sense double error—correctmg code of length
31 with generator polynomial = 1 + x* + x° + x® + x® + x° + x". Let’s repeat the
example, but this time use Berlekamp’s algorithm. The binary vector and associated
polynomial

r = (0010000110011000000000000000000)

!
r(x) =x*+x" +x® + 2" + x¥?
provide the following syndrome polynomial.
Sx) =a’x + ax* + fx° + o
Applying Berlekamp’s algorithm, we obtain the following sequence of solutions to Eq.

(9-17).
k A(Z")(x) T(Zk)(x) A®D
0 1 1 o
1 1+ o’x a*x o
2 1+dx+a®x* — —

A¥(x) =1 + a’x + o x?is, of course, the same error locator polynomial obtained in
Example 9-1. B

Example 9-4—Triple-Error Correction Using Berlekamp’s Algorithm

As in Example 9-2, we let the code C be the triple-error-correcting narrow-sense binary
BCH code with length 31. The generator polynomial

gE)=1+x+2+2+x"+x"+ 28+ + 20+ x5

has six consecutive roots {c, o2, o, o*, o, of , where « is primitive in GF(32). Let the

received polynomial be
r(x) =1+ x° + x' + x4

With a bit of effort the syndrome polynomial is seen to be
SE)=x+x*+o®x®+x* + @25 + o716

Berlekamp’s algorithm then proceeds as follows.

k A(z")(x) T(z")(x) A@D
0 1 1 1

1 1+4x x o’

2 1+4+x+dx o®x + o®x o®
3 1+x+a‘6x2+ax — —_—

The error locator polynomial is then
Ax)=1+2x+ o2 + o""2*
=1+ a®x)(1 + o®x)(1 + «Px)

indicating errors at the positions corresponding to o, o', and o'®. The corrected
received word is then

) =1+x"+x" + 2%+ 2 + 1 + 2 = (x* + x + Dg(x) |



