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Abstract
One of the most challenging aspects of the surface-surface intersection problem is the proper
disposition of degenerate configurations. The topology of the intersection as well as the basic
geometric representation of the curve itself is often at stake. By Bezout's Theorem, two quadric
surfaces always intersect in a degree four curve in complex projective space. This degree four curve
- is degenerate if it splits into two (possibly degenerate) conic sections. In theory the presence of
such degeneracies can be detected using classical algebraic geometry. Unfortunately it has proven to
be extremely difficult in practice to make computer implementations of such methods reliable
numerically. Here we use classical algebraic methods to characterize precisely those situations in
which two natural quadric surfaces (spheres, right circular cylinders, and right circular cones)
intersect in planar curves. We then re-interpret the resulting algebraic conditions geometrically so
that robust geometric schemes can be used in the actual computer implementation, This paper
presents the background algebraic analysis and shows how to interpret the resulting conditions
geometrically. It is likely to be of interest primarily to theoreticians as none of this work is
implemented in computer code. A companion paper [8] discusses how the results of this paper can
be used to derive geometric algorithms for detecting the presence of and computing the descriptions
for these conic sections. Readers who are looking only for robust and efficient algorithms, but who
do not wish to examine the derivations and proofs of correctness and completeness need only study
the companion paper [8].

1.0 Introduction

The surface-surface intersection problem in geometric modeling continues to be a challenging one for
system developers. Especially problematic are those situations in which the curve of intersection
between two surfaces is in some fashion degenerate. This may occur when the two surfaces are
tangent -- either along a curve or at a finite number of points -- or, as we shall see, in a variety of other
situations, not all of which are entirely intuitive. Such problems are challenging even when the domain
of surfaces is restricted to the quadrics; witness the considerable research attention this subject
continues to draw [2,7,11], even though most of the basic results have been known in computer-based
implementations for quite some time [3,6,12]. '

The importance of detecting the presence of conic sections in quadric surface intersections is well
established [2,7,9,12]. Often cited advantages include: more efficient and precise data base
representations, more reliable tests for common curves in the boundary evaluation algorithm of solid
modeling, and more accurate analytical operations such as intersections and arc length and tangent
direction computations. Another benefit has recently been discovered in the construction of blending
surfaces. In general, a blend surface between two arbitrary quadric surfaces will have degree four.
Warren [14,15] has shown that quadric surfaces which intersect in planar curves can be blended with
surfaces of degree three.

The majority of the published results dealing with quadric surface intersections are based either on the
methods of classical algebraic geometry [2,6,12] or on case-by-case geometric analysis [7,1 1].
Algebraic methods are valuable for insuring completeness and generality. That is, one can prove
rigorously that all possible geometric configurations have been properly taken into account. It has,
unfortunately, proven to be quite difficult to make algorithms based solely on algebraic geometry
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sufficiently reliable numerically for production use in solid modeling systems. Geometric methods, on
the other hand, have proven to be faster and more reliable numerically, but they are based on a case-
by-case analysis in which it is much more difficult, if not impossible, to prove that all cases are
handled properly.

Our approach is to tap the best of both worlds by limiting the scope of surfaces covered to those most
commonly used (namely the natural quadrics [5]), applying algebraic geometry to characterize with
certainty all situations under which a pair of natural quadrics have planar intersections, and finally
reinterpreting the algebraic conditions in geometrically invariant terms so that robust geometric
algorithms can be implemented to detect and calculate the resulting planar intersections. This paper
presents the results of the algebraic analysis and shows how to reinterpret them in geometric terms. A
companion paper [8] outlines precisely how the various planar intersections can be computed.

We proceed in the following fashion. In Section 2 we survey previous work in the field and we
provide most of the theory necessary for understanding our own approach. In Section 3 we give a
brief overview of our method. Section 4 is the bulk of this paper. Here we provide a case-by-case
analysis of the degenerate intersections of all possible pairs of natural quadric surfaces. This analysis is
necessarily quite long and detailed. However the final results are easy to state. These are summarized
briefly in Section 5 along with some concluding observations.

2.0 Background Theory and Discussion

A general quadric in arbitrary position is represented algebraically as:

Ax® + By* + Cz* +2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy + 2Jz+ K =0 )

This equation can be written in matrix form:

pOp" =0
where
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The 4x4 symmetric matrix O completely characterizes a given quadric; therefore we will refer to
particular quadrics in terms of their corresponding matrices. For simplicity of expression, however,
we will say "given a quadric Q ...." rather than the precise but more awkward "given a quadric whose
4x4 symmetric matrix is Q....". Note that the equation of a quadric surface, and therefore the matrix Q,
is unique only up to constant multiples.

The natural quadrics are the sphere, the right circular cylinder, and the right circular cone. The general
quadric surface is either a cylinder or cone lying over a conic section, or it is an ellipsoid, paraboloid,
or hyperboloid. However a quadric may be degenerate and actually consist of one or two lower degree
or lower dimensional shapes. The possibilities are:

* asingle plane: if G, H, J, and K are the only non-zero terms in (1)
* apair of identical, parallel, or intersecting planes: if (1) can be factored into two terms, each
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of which is linear in x, y, and z
» asingle line: if, for example, A and B are the only non-zero elements of Q
* asingle point: if, for example, A, B, and C are the only non-zero elements of O

In this paper, when we speak of "planar surfaces" we mean any of these possibilities except the single
point. We shall see why the single point is excluded in the proof of Theorem 1 later in this section.

Given two quadrics Q1 and O, we can describe parametrically a family of quadrics (called the pencil of
Q; and () as:

(A, 2,) = 4,0 + 2,0,

where A1 and A, are arbitrary real numbers, at least one of which is non-zero. The pencil is
fundamental in the study of quadric intersections because any pair of quadrics in the same pencil have
the same intersection curve. If we discover that the pencil of two quadrics contains a planar surface,
for example, then the intersection of the given quadrics must be planar. This notion is formalized
below and forms the basis of the algebraic analysis strategy used in this paper. Since we shall be
studying intersections between non-degenerate natural quadrics, in this paper Oy and Q, will represent
only spheres, right circular cylinders, and right circular cones. Furthermore, since our approach will
be to seek planar surfaces in the pencil, we shall never be interested in A;=0 or A,=0. Therefore,
recalling that constant multiples of quadrics represent the same surface, we can divide by Ay, set A =
-Ao/A1, and use a simpler single-parameter representation of the pencil:

Q(/l) =0, —20,.

In order to establish the conditions under which a pair of quadric surfaces intersect degenerately, we
need the following two theorems. Similar statements of and proofs for these theorems are given in
[12]. We include them here for completeness.

Theorem 1: The intersection of two quadric surfaces is a planar curve (or a pair of planar
curves) if and only if there is a planar surface in the pencil of the two quadric surfaces.

Proof: The pencil of two quadrics Q; and Q5 is given parametrically by Q(A) = Q1 - AQs.
Clearly the intersection of @ and Q, lies on every quadric surface in the pencil. Thus if there
is a planar surface (or a pair of planar surfaces) in the pencil, the intersection curve must be a
planar curve (or a pair of planar curves).

That there is always a planar surface in the pencil when the intersection is a planar curve (or a
pair of planar curves) is not so clear. Let the intersection curve contain a conic C, and let P be
the plane containing C. We first show that the pencil must contain a surface which contains
P. Let Po=(x0,Y0,20) be a point on P which is not on C and consider A =
Q1(x0,¥0,20)/Q2(x0,¥0,20). Then Q(Ag) = Q1 - AoQ2 contains both C and Py since
O(\o)(x0,¥0,20)=0.1 Thus the quadric surface Q(Ap) and the plane P intersect in a conic
section plus one additional point. But this is impossible unless Q(Ap) actually contains P
since a quadric surface and a plane always intersect in exactly one conic section with no
additional points. Thus we have constructed a quadric surface in the pencil of @; and Q>
which contains a plane. But the only quadric surfaces which contain a plane are the plane

TIf Q2(x0,y0,20)=0, then just choose Q(Ag)=0Q2.
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itself or a pair of parallel or intersecting planes. QED. 2

Theorem 2: A quadric surface represents a planar surface if and only if the rank of the 4x4
symmetric matrix which represents the surface is less than or equal to 2.

Proof: The proof follows directly from the general classification scheme for quadric surfaces
presented in [6] (Table I, page 556). We observe there that all the singular planar cases (as

summarized above) have rank 1 or 2.3 QED.

The proof of Theorem 1 can easily be extended to the case where the conic section is just two points
and the planar surface is a straight line. The proof fails, however, when the quadrics intersect in a
single point, because it is not possible to conclude that there is a single point surface in the pencil. In
fact, this is not always the case. For example, a unit sphere at the origin and the double plane (z-1)2=0
are tangent at the point (0,0,1), but there is no single point surface in their pencil. It is therefore unclear
whether the methods described in this paper can be used to detect all cases of single point tangencies
between quadric surfaces. Two point tangencies are detected, however. We will see this clearly later.

Whether it is of value to detect all the situations under which two quadrics intersect in one or two
isolated tangent points depends on the application. In solid modeling, such situations may indicate the
presence of nonmanifold topologies on the boundary of the solid, and may therefore be of some
interest. Whether the frequency with which this type of situation arises justifies the work necessary to
detect all such cases is unclear. Since, however, detecting two-point tangencies will come for free with
the analysis to be described here, we include these situations in our analysis. We choose not to attempt
a characterization of all one-point tangencies, although establishing at least a partial such
characterization seems plausible by systematically establishing the conditions on pairs of quadric
surfaces which would force the pencil to contain a single-point surface. We note also that the natural
quadric intersection algorithms described in [7] detect two-point tangencies without explicitly checking
the expressions derived in sections 4.3, 4.5, and 4.6. They also detect all single point tangencies
known to us, but there is, of course, no guarantee that they detect all such possible situations. (We
shall amplify on some of these remarks in [8].)

2.1  Previous Work

The first reported technique for detecting conic sections in a computer-based implementation of quadric
surface intersections was described by Levin [6]. This method was later extended by Sarraga [12]. As
we do in the analysis described here, Sarraga searches the pencil looking for a planar surface. There
are, however, fundamental differences in the two approaches. Given a pair of quadrics Q1 and 0?2,
Sarraga forms a numerical representation of their pencil Q(A) and computes the numerical value of A
which minimizes the rank of Q(A). If the resulting rank is less than or equal to two, then he
manipulates Q(A) using another numerical method described by Dresden [1] to compute the equations
of the planes containing the conic sections. Once he has these planes, he intersects them with one of
the two original quadrics to find the resulting conic intersection curves. The tests and other
computations required to carry out this analysis are well-defined mathematically, but require
numerically sensitive calculations. In summary, Sarraga applies purely computer-based numerical
methods to each pair of quadrics in the data base using sensitive numerical tests to detect planar
intersections. Our method is based on a symbolic analysis of the six possible combinations of natural
quadric surfaces, done once and for all and by hand. The results of this symbolic analysis are a simple

2The approach used in this proof is a standard technique in algebraic geometry (in fact, essentially the same argument is
used in [9]), but we do not know of a good original reference for it.

3We note also that the single point case (imaginary cone) has rank 3. This is why the single point case is not included in
this theorem.
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set of robust geometric tests which are implemented on a computer to detect planar intersections
between a given pair of natural quadrics [8].

Piegl [11] presents an approach based on a geometric construction for computing quadric surface
intersection curves. He is given a pair of natural quadrics, each represented as a trimmed tensor
product rational B-spline surface. He first numerically extracts from the B-spline description the
geometric data describing the quadric (e.g., the center point and radius if it is a sphere), and he then
analyzes this data geometrically to determine the type of intersection. To detect conics, he relies on a
theorem of projective geometry which states that the intersection of two quadrics is planar if there exist
four non-coplanar points common to the two quadrics such that the surfaces are tangent at two of
them. In his paper he describes how to use this theorem to detect planar cylinder-cone intersections.
The conditions he derives are considerably more complex than those derived here. Moreover, he gives
no completeness argument. In fact, the theorem on which he bases his analysis is sufficient, but not
necessary. It is unclear whether his algorithms are guaranteed to detect all planar intersections
involving natural quadrics. It is also unclear whether two tangent point intersections are detected as
they are in the method described here.

Farouki, Neff, and O'Connor [2] address the problem of automatically determining all degenerate
intersections involving quadric surfaces of all types. The presence of degenerate intersection branches
(whether they be lines, conics, cubics, or nodal or cuspidal quartics) is signalled by the vanishing of
various polynomial expressions involving the quadric coefficients. When such a situation is detected, a
multivariate polynomial factorization algorithm is invoked to isolate the various reducible components
of the intersection. Again, the primary advantage of our method lies in its simplicity and in its ability to
employ purely geometric reasoning without the need for multivariate factorization. The disadvantage is
a lack of generality: the method of Farouki, Neff, and O'Connor works for arbitrary quadrics while
ours must be tailored to individual pairs of quadric surface types.

Ocken, et. al. [9] use algebraic representations to parameterize intersections between general pairs of
quadric surfaces. Their analysis is considerably more complex than ours, but this is, at least in part,
because they are treating the general case rather than just the natural quadrics. More significantly, their
analysis is numerical and must be performed at execution time for each pair of surfaces in the model.
Furthermore, while some mention is made of configurations in which the intersection is planar, there is
no comprehensive treatment of these situations. Thus there are configurations in which the intersection
would degenerate into, say, a pair of ellipses, but for which their algorithm would parameterize the
result as if it were a general degree four space curve. In contrast, our analysis is symbolic and
performed only once, by hand rather than by computer, in order to characterize in a general fashion all
configurations in which the intersection is planar. Our implementation [8] is purely geometric and is
driven by the characterizations derived in this paper. There is some similarity, however, between their
approach and ours. Both analyses begin by considering quadrics defined in canonical position, but
generate results which are independent of position and orientation. The generality of Ocken, et. al. is
achieved by studying invariants such as the eigenvalues of surfaces; our generality derives from the
invariance of vector expressions under affine transformations.

O'Connor [10] determines parameterizations for the curve of intersection between an arbitrary pair of
natural quadric surfaces using various geometric constructions and projections. As with Ocken, et. al.
[9], there is no systematic attempt to detect degeneracies in order to represent the result explicitly as
one or two (possibly degenerate) conic sections. An intersection which splits into a pair of ellipses
would be parameterized as a general quartic space curve using O'Connors approach. However,
O'Connor is able to use geometric constructions and projections to simplify a critical aspect of the
intersection operation. The majority of the earlier approaches to the quadric surface intersection
problem require solving a fourth degree equation in order to partition the parameter space of one of the
quadric surfaces. O'Connor's approach, like that described in [7], requires solving only a quadratic
equation. In fact, we rely on this aspect of the methods described in [7] for our treatment of isolated
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tangent points in [8].

Finally, Shene and Johnstone [13] describe a geometric approach for detecting planar intersections
between pairs of natural quadric surfaces whose theoretical justification is established with purely
geometric reasoning. They begin by demonstrating that two axial natural quadrics can have a conic
intersection component only if their axes are coplanar. Given two such axial natural quadrics, they
form two pairs of lines by cutting each quadric with the plane containing the axes. There are then a
maximum of four points at which these two line pairs may intersect. Diagonals are the lines not
contained on either quadric which connect pairs of these points. Portions of these diagonals which are
in the interior of both quadrics are termed "potential segments". Shene and Johnstone define the
"height" of a natural quadric above an arbitrary point in the interior of a potential segment as the
distance from the point to the quadric along a line perpendicular to the axial plane. They then
demonstrate that the intersection of the two quadrics contains a conic if and only if the heights to both
surfaces from such a point are the same. Their algorithm mirrors this logic. If the axes of two quadrics
are found to lie in the same plane, then the diagonals are computed, and potential segments are
identified. For each potential segment, a point in the interior is generated and used in the height test. If
the test is satisfied, the one or two points bounding the potential segment and an additional point are
used to compute the parameters of the conic.

This method is markedly different from ours. Theirs is a procedural approach for the detection of conic
components while ours is driven from an exhaustive (but surprisingly short) list of specific relative
geometric configurations. The primary advantage of their method is that their procedural detection
leads to a common geometric algorithm for axial quadrics. On the other hand, testing our conditions is
more straightforward and computationally efficient than computing diagonals, identifying potential
segments, and performing height tests. Once a conic component has been detected, they use the
diagonal intersection points (which are the vertices of the conic) and an additional point on the conic to
compute the parameters, presumably by forcing them to satisfy equations describing distance
relationships. Our implementation is described in [8] where we either derive simple explicit formulas
for the conic parameters or show how to construct geometric descriptions for the planes containing the
conic sections.

3.0 Overview of the Method

We treat only the natural quadrics (i.e., sphere, right circular cylinder, and right circular cone) in this
paper. For simplicity of expression, we shall use the term "cylinder" for "right circular cylinder" and
"cone" for "right circular cone". While the analysis is certainly applicable to the other quadrics as well,
the details get increasingly complex. Fully half of this paper is devoted to analyzing the intersection
between two cones.

For each of the six possible combinations of pairs of natural quadric surfaces (sphere-sphere, sphere-
cylinder, sphere-cone, cylinder-cylinder, cylinder-cone, and cone-cone), we seek to establish all
possible sets of necessary and sufficient conditions so that their pencil contains a planar surface. The
approach to this analysis is derived from Theorem 2. Then, because of Theorem 1, we will know that
conic sections arise in these and only these cases. In theory, we could proceed as follows.

For each of the six combinations of pairs of natural quadric surface types:
(a) Derive the equation of a quadric of each type in general position.
(b) Write the resulting general equation of a quadric in their pencil. . .
(c) Determine conditions on the original two surfaces so that there is a planar surface in their
pencil. These conditions are precisely those that force all 3x3 subdeterminants of the
pencil matrix to be zero, thereby forcing this matrix to have rank less than or equal to 2.

For each pair of surface types, step (c) will result in sets of algebraic constraints which will give rise to

1/22/93 Page 6



TR-93-1: Detecting and Calculating Conic Sections ..., Part I: Theoretical Analysis

planar intersections. These algebraic conditions can then be reinterpreted in terms of geometric
invariants involving the two original quadrics. The value of this approach is that the geometric
constraints have obvious physical interpretations, and they can therefore be detected with greater
numerical reliability than can pure formal algebraic conditions.

Unfortunately the equations of a cylinder and a cone in general position are far too complex for this
analysis. It was for this reason that the notions of canonical and relative canonical position were
introduced in [3]. Briefly the idea is as follows. Without loss of generality, we can write the surface
equations with respect to a coordinate system in which the surfaces have positions and orientations
which are as simple as possible. This can be imagined as a two-step process. First we rigidly
transform the two surfaces into a coordinate system in which one is described with the simplest
equation possible. The other winds up in some general position and orientation with respect to this
coordinate system. Next we rotate about an axis of this system which will not further alter the equation
of the first quadric, but which will place the second in the simplest possible orientation with respect to
the coordinate system. This has the effect of introducing as many zeros as possible into the surface
matrices, thereby simplifying the algebra.

Table 1
Canonical and Relative Canonical Position for the Natural Quadric Surfaces
SURFACE | CANONICAL POSITION RELATIVE CANONICAL POSITION
sphere Center at origin (Arbitrary Position4; Center=(l1,0,m))
+y2+72-72=0 (x-l)2 + (y-0)2 + (z-)2 - r2 =0
cylinder Axis is z-axis ' Axis=(0,s,c); Point on Axis=(}l,0,w)
x24+y2-r2=0 x2 + c2y2 + 5272 - 2scyz - 2ux - 2(vc? -

scm)y - 2(ws2 - scV)z + P2 + ¢c2v? +
5202 - 2scow -r2 =0

cone Vertex at origin; Axis is z-axis Axis=(0,s,c); Vertex=(lL,0,0)

x2+y2-E%22=0 x2 + (1-s2F2)y2 + (1-¢2F2)72 - 25cF2yz -
2Ux - 2(0(1-52F2) - scwF2)y - 2(w(1-
NOTE: o is the cone half angle; E=tano; | ¢2F2) - sc0F2)z + u2 +v2 + w2 - F2(sv
and F=seco. +cw)2 =0 '

Table I describes the canonical and relative canonical position for each of the three natural quadrics.

(See [3] for derivations®.) The axis vector used in the relative canonical position for cylinders and
cones is assumed to be a unit vector; that is, s2+c2=1. For each of the six quadric surface type pairs,
we put the most complex in canonical position, and the other in relative canonical position. (We order
the quadrics from simple to complex as: sphere, cylinder, cone.) The actual strategy followed in this
paper to establish the conditions for degenerate quadric surface intersections is then:

For each of the six combinations of natural quadric surface types: . N
(a) Derive the matrices of the two quadrics, the more complex in canonical position, and the

4The sphere is sufficiently simple that we will always consider it in arbitrary position.

SThe equations shown here are actually slightly more complete than those developed in [3] as only the upper left 3x3
portion of the matrix Q was actually derived and used there.
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other in relative canonical position.

(b) Write the resulting general matrix for a quadric in their pencil.

(c) Determine conditions on the original two surfaces so that there is a planar surface in their
pencil. These conditions are precisely those that force all 3x3 subdeterminants of the
pencil matrix to be zero, thereby forcing this matrix to have rank less than or equal to 2.

One more device to simplify the algebra will occasionally be available to us when dealing with a
cylinder in relative canonical position. If we know that s (the y-component of the axis vector) is non-
zero, then we know that the axis line will intersect the y=0 plane. Since the base point of the cylinder

(1,v,m) is arbitrary, we can, without loss of generality, choose i and ® so that v=0. We will exploit
this additional simplification whenever possible.

The analysis begins by forcing the upper left 3x3 subdeterminant to be zero. This leads to an equation
in A and therefore to a separate subcase for each distinct solution A . We shall see that A=1 is always a
root. That this is true in general is proved in [3].

To denote the various 3x3 subdeterminants of Q(A), we use cofactor notation. For example, the upper
left 3x3 subdeterminant is denoted as Cofactor Q44. The dependence on A is not shown in order to
simplify the notation.

Finally we emphasize that we use canonical and relative canonical position only to perform the formal
algebraic analysis. On the basis of this analysis, we shall deduce geometric constraints independent of
any coordinate system which must be satisfied by a pair of natural quadrics in order for them to
intersect degenerately. It is these geometric invariants (distances between points, angles between axes,
etc.) which are then tested in the computer-based implementation. No'transformations of any sort are
required in the actual implementation. While the algebraic analysis is at times difficult, the final results
(i.e., the geometric invariants to be tested in the computer implementation) are surprisingly simple.

4.0 Pairwise AnalySis of Surface Intersections

In this section we derive necessary and sufficient conditions for degenerate intersections to arise
between the six possible combinations of pairs of natural quadric surfaces. We proceed in order from
the simplest to theé most complicated cases. The flavor of our analysis can be obtained from reading the
simpler cases. The most complicated case is cone-cone which takes up about half of the paper. A
summary of all our results follows in Section 5.

4.1 Sphere-Sphere Intersections

That sphere-sphere intersections always result in planar curves can be established without resort to
canonical and relative canonical position. Consider two spheres in arbitrary position:

O : X+ Y+ —2pux—-20y—2wz+ W+ v} +0f 1> =0
0, : X%+ + 22 =20, X~ 20,y = 20,2+ U5 + Uy + 05 — 17 =0

QI—QZ:2(,u2——ul)x+2(vz—vl)y+2(a)2—a)l)z+uf+vf+a)12-—u§-—v§—a)§+r22—r12=0

Since Q; - Q5 is linear in x, y, and z, it is a plane. Therefore Theorem 1 tells us the intersection of two
spheres is always planar. The intersection is a single tangent point if the distance between the centers is
Ir-r9l or (r1+12), a circle if the distance between the centers is between these limits, and empty
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otherwise.

4.2  Sphere-Cylinder Intersections

Consider the cylinder in canonical position and the sphere in arbitrary position:

100 0
010 0
oyt = 000 O
0 00 -7
1 0 0 -U
0 1 0 -
9= 0 0 1 —0

-u - -0 P+v*+o’-r’

The pencil of these surfaces is then:

-2 0 0 -

0 1-4 0 )

Q(A') = Qsph — AQ(:_}'I = O 0 1 Sy

-4 v -0 pP+r+e’-rr+Ar
We begin by forcing Cofactor Q44 to be zero:
-4 0 0
CofactorQ,, =detl 0 1-1 0=(1-1)*=0.

0 0 1

Thus we conclude that A=1 is the only possibility, and we need to consider:

0 0 0 -
e 0 0 0 —D
o) = 0 0 1 -0

U v -0 P+ +e’-rl+r!

Forcing Cofactor Q13 and Cofactor Oy, to be zero gives us:

0 0 -

CofactorQ,; =det{ 0 1 - =-1>=0
v -0 PP+’ -1l +r?

8

and
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0 O —-U

CofactorQ,, =det| 0 1 - =—u’>=0.

-1~ P+ +o’-r’+r?

Collecting these conditions, we conclude that L and v must both be zero in order for the intersection to
be planar. Geometrically this means that the center of the sphere must lie on the z-axis, that is, on the
axis of the cylinder. Since Rank(Q(1))=2 when p=v=0, we conclude from Theorems 1 and 2 that the
intersection is planar if and only if the center of the sphere lies on the axis of the cylinder. In this case
there are three possibilities: two circles in parallel planes (if 7s>7¢), a single tangent circle of intersection
(if rg=r), or no real intersection at all (if s<r.). Note that there is also no real intersection if the
distance between the sphere center and the cylinder axis is greater than (ro+r;) or less than Ir-7l.

4.3  Sphere-Cone Intersections

Consider the cone in canonical position and the sphere in arbitrary position:

10 0 O

01 0 O

Ovon = 0 0 —-E® 0

00 0 O

1 0 O -U

0O 1 0 -V
%=l 0 0 1 -

-0 v -0 P+ +o’-r?

The pencil of these surfaces is then:

1-2 0 0 -U

0 1-4 0 )

Q(A’) = Qsph - A’Qcan - 0 0 1+ MZ -0
- v -0 pP+or+e’-r

We begin by forcing Cofactor Quq to be zero:

-1 0 0
CofactorQ,, =det| 0 1-1 0 |=(1—-A)(1+AE*)=0.
0 0 1+AF

Thus there are two possibilities: A=1 and A=-1/E2.
Case 1: A=1

Using A=1 we have:
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0 O 0 -u
o) = 0 0 0 -}
10 0 1+E? -

- -v -0 pP+r+e’-r

The analysis is now similar to the sphere-cylinder case. Forcing Cofactor Q11 and Cofactor Qg; to be
Zero gives us:

0 0 -0
CofactorQ,, =det| 0 1+ E? -0 =-v*(1+E*)=0
-0 —0 P+ -1t
and
0 0 -U
CofactorQ,, =det{ 0 1+E> -0 =-u*(1+E%)=0.

-1 o pHrr+e’-r?

Collecting these conditions, we conclude that L and v must both be zero in order for the intersection to
be planar. Geometrically this means that the center of the sphere must lie on the axis of the cone. The
possibilities are a single tangent circle, two circles in parallel planes on the same half of the cone, a
circle plus another single point of intersection at the vertex, two circles in parallel planes on opposite
halves of the cone, or no intersection at all [8].

Case 2: A=-1/E2
'Using A=-1/E2 we have:

(E*+1)/E? 0 0 —u

) = 0 (E*+1)/E* 0 -0

Q( UE) 0 0 0 -
I -V -0 P+t +o’-r?

Forcing Cofactor Q13 to be zero gives us:

2 2 .
(E*+1)/E*> O v {5 +1)0?
CofactorQ,, = det 0 0 -0 == " 0
| - -0 p+v*+ e’ -r?

This implies that w=0, that is, that the sphere center must lie in the z=0 plane of the cone's canonical
coordinate system. In coordinate system independent terms, this means that the sphere center must lie
in the plane determined by the cone vertex and the cone axis vector. To complete the set of constraints
corresponding to case 2, we force Cofactor Q33 to be zero (recall we now know ®=0):
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(E>+1)/E*> 0 —p
CofactorQy, =detl 0 (E®+1)/E? -0
- -V w+v*-r?

(E> +1)| (E*+1)
E? E?
o (B +1) (i +0* = 1?) = EX(p? +07)

~ (B2 + 1% = p” + 0

(1?+0* =) - (1> +0*)|=0

The quantity y (u2+v2) is simply the distance, d, between the sphere center and the cone vertex (since

=0). Taking square roots and recalling that E=tanol, we find that this constraint can be rewritten in
terms of geometric invariants as:

r=dcosc.

As illustrated in Figure 1, these two constraints force the sphere to have precisely two real points of
- tangency with the cone.

4.4  Cylinder-Cylinder Intersections

The first cylinder in canonical position is described by:

1 00 O
0 = 010 O
1o o0 0
0 00 -
The second in relative canonical position is then:
1 0 0 )
0 ¢’ —sc scw — vc”
Q= 0 —sc 5 scv— s>

-1 sco—vc® sco—as® pE+c*’ + 50’ - 2scvw -1

Thus the pencil is
-2 0 0 —u
1 y 0 -2 —s¢ sc@ —vc?
0(4)=0, - 20, = 0 —sc 5* scv - ws®

—u sco-vet scv—as®  pE+ PV + 5P - 2scvm — 1y + A

As usual, we begin by forcing Cofactor Qa4 to be zero:

1/22/93 Page 12



TR-93-1: Detecting and Calculating Conic Sections ..., Part I: Theoretical Analysis

1-A 0 0
CofactorQ,, =detf 0 ¢*—24 -s¢|=—(1—-A)As* =0.
0 -sc s

There are three possibilities: A=0, A=1, and s=0. We will consider s=0 before A=1 so that we can
assume s#0 when treating A=1. This will simplify the analysis.

Case 1: A=0
Since Q(0)=0; and Q, is a cylinder, this possibility does not lead to a planar surface.
Case 2: s=0

When 5=0, c=1 since the unit axis vector of Q5 is (0,s,c). Therefore this constraint tells us that the axes
of the two cylinders must be parallel. When this is the case, the intersection is either one tangent line if
the distance between the axes is (r1+r7) or Ir1-r3l; two parallel lines if the distance between the axes is

between these two limits; or empty otherwise.
Case 3: A=1, s=0

Recall that O is in relative canonical position, and therefore its axis is (0,s,c). Since s#0, we can set
V=0 as noted in Section 3.0. Assuming v=0 and using A=1, we find:

0 0 0 —u
o) = 0 —s* -—sc scw
)= 0 -sc s° —as*

- sco -os® p+sto’-rl+r’
Forcing Cofactor Q14 to be zero gives us:

0 —s* -sc
CofactorQ, =detf 0 —sc  s* |=ps*(s*+c*)= us> =0.
-l sco  —ws®
This tells us that u=0 since s#0 by assumption. The base point of cylinder Q, is therefore (0,0,w).

Since this point is on the z-axis, this constraint tells us that the cylinder axes intersect. To complete this
set of constraints, we next force Cofactor Q1 to be zero:

CofactorQ,, = detl~sc  s” —as =0.

scoo -t SP0’+ 1R -1

If we multiply the second row by o, add it to the third row, and then expand by cofactors of the
bottom row, we obtain: ,
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—s2 —sc  scw

CofactorQy, =dett-sc s> —ws” |=—(r —17)s*(s> + *) =—(r> — 7 )s* = 0.
0 0 -7
Again since s#0 by assumption, this tells us that the radii of the cylinders must be the same. In

summary, then, the result of case 3 is the well-known fact that two cylinders will intersect in planar
curves (namely, two ellipses) if they have the same radius and if their axes intersect.

4.5  Cylinder-Cone Intersections

Consider the cone in canonical position and the cylinder in relative canonical position:

10 0 0
o1 0 o
Oon = 0 0 —E 0
00 0 O
1 0 0 -l
|0 c —sC scw—vc?
oyt = 0 —sc 5 scv — ws*

-l sco-vc* scv—ast P+’ + 5P - 2scvw —r?

The pencil of these surfaces is then:

1-2 0 0 —H
‘ 0 cz-2 —S$C . scw —vc?
= - A =
Q(A) Q,_-y] ann 0 —sC S2 + A,EZ scv — ws®

~i sco—vc® scv—ws® p’+c*? +5’w® - 2scvw —r?
We begin by forcing Cofactor Qa4 to be zero:

1-A 0 0
CofactorQ,, =detl 0 c¢*=1  —sc |=A(1- Z,)(—)LEZ +c?E” - 5%)=0.
0 -sc s+ AE?

Thus there are three possibilities: A=0, A=1, and A=(c2E2-s2)/E2.
Case 1: A=0

Since Q(0)=Q,y;, this possibility does not lead to a planar surface.
Case 2: A=1

Using A=1 we write:
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0 0 0 —U

0 —5? —sc scow —vc?
Q(l) = 2 2 2

0 —sc s“+E SCD — s

—i sco—-vc® scv—as®  p*+ct? + sfw’ - 2scvo —r?
Forcing Cofactor Q14 to be zero:

0 —s? —sc
CofactorQ,, = det| 0 —sc "+ E? |=—ps*(E> + 5"+ ¢*) = —ps*(E* +1)=0.
~IL scw—vc*  scv—ws®
We therefore have two subcases to consider: s=0 and p=0.

Case 2a: A=1, s=0 (hence c=1)

Since s=0 and c=1, the cylinder axis is (0,0,1). Geometrically this means that the cylinder and cone
axes must be parallel. Moreover, Q(1) simplifies to:

0 0 O -
o) 0 0 0 —
10 o0 E? 0

-4 -v 0 pr+v*-r?
Forcing Cofactor Q13 and Qzé to be zero then completes the analysis of this subcase:

0 O -V
CofactorQ,, =det| 0 E? 0 =-v’E*=0
-0 0 pr+v*-r?

0 O ~U
CofactorQ,, =det| 0 E” 0 =—u*E?=0.
-1 0 pr+vi-r

We conclude that u=v=0. The base point on the cylinder is therefore (0,0,w), i.e., a point on the z-
axis. Thus Case 2a tells us that the intersection of a cylinder and a cone is planar when their axes
coincide. The resulting curve is always two circles in parallel planes, one on each half of the cone.

Case 2b: A=1, p=0, s#0

Since s#0, we can again set V=0 without loss of generality. The cylinder base point is then (0,0,w),
i.e., a point on the z-axis. This means that the two axes intersect in a point at distance ® from the cone
vertex. These observations allow us to simplify Q(1) as follows:
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0 0 0 0
0 —s* —sc scw
1) =
o 0 —-s¢c s+E* -ws’

0 sco -ws* sw’*-r?

Now forcing Cofactor 011 to be zero gives us:

CofactorQ,, =detl-sc s*+E*> -ws® |=0.
sco  —ws®  sfw’-r?

We multiply the second row by m, add it to the third row, and then expand by cofactors of the third
TOW to get:

CofactorQ,, = _szzsz(Sz + 02) + rzsz(s2 +E*+ cz) =0.
Since E=tan o, s#0, and (s2+c¢2)=1, we conclude:
r=@sino.

From this analysis of case 2b, we deduce that the intersection will consist of planar curves if (i) the
axes intersect, and (ii) r=wsino, where  is the distance from the cone vertex to the point at which the
axes intersect. Note that these constraints are independent of the angle between the axes. The three
possible cases are illustrated in Figure 2: (a) two intersecting ellipses, (b) an ellipse and a ruling shared
tangentially (when the angle between the axes is the same as the cone half-angle), and (c) two ellipses
on opposite halves of the cone. Notice that wsino. is the distance between the point where the axes
intersect and the surface of the cone. Of course, r is also the distance between the point where the axes
intersect and the surface of the cylinder. Our constraint requires these two distances to be equal. We
shall expand on this observation in Section 5.

Case 3: A=(c2E2-s2)/E2

We can assume that s20 since s=0 implies that ¢=1 which in turn implies that A=1, and we have
already analyzed this possibility in case 2a. Since s#0, we can set v=0, use the given value of A, and
the pencil matrix becomes:

1-A 0 0 —I
of 2= CPE? —§* _ 0 s*/E* -sc scw
- E? 0 -sc CE? —ws®

Forcing Cofactor O34 to be zero gives us:

-2 0 0
CofactorQ,, =detl 0 s*/E* —sc|=(1-2A)as*(c’—s*/E*)=(1-A)as’A=0.

- scw -5
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Since we have already studied and/or ruled out A=0, A=1, and s=0, we need only pursue w=0. This
allows us to simplify the pencil matrix to:

1-1 0 0 )
Q(A_CZEZ—SZ]_ 0 S%/E* -—sc 0

Forcing Cofactor (033 to be zero gives us:

1-A 0 -U
CofactorQu=detf 0 s*/E* 0 |=s"/E*[(1-A)u* —r")-p*]=0.
- 0 uz - rZ

Since by assumption, s#0, we know the quantity in brackets must vanish. Substituting the current

value of A, doing some algebraic manipulation, and invoking some trigonometric identities, we arrive
at:

r? sin® o
.._2._—_-_-1_

7] sin®@

where o is the cone half-angle, and 0 is the angle between the axis vectors. In order to apply this test
without the need for transformations, we need an invariant characterization of p. But that is
straightforward. Recall our cylinder has base point (1t,0,0) and axis vector (0,s,¢), with s#0. Thus it
is clear that the cylinder and cone axes are skew with the cylinder base point as the point of closest
approach. Hence | is simply the distance between the two axes. This configuration results in the
cylinder and the cone just touching in two distinct points of tangency as shown in Figure 3.

4.6  Cone-Cone Intersections

The first cone in canonical position is described by:

10 0 O
0= 01 0 O
7lo 0 -E? 0
00 0 O
The second in relative canonical position is then:
1 0 0 -l
0 1-s°F} —scF} scwFy —v(1—-s"F})
%=y —scF? 1—-c*F? scoFy — o(1-c*Fy})

~u scaF? —v(1-s’F}) scvF} —a(1-c’F) 1 +v*+0 —Ei(sv+ cow)’
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Thus the pencil is
Q(ﬁ,) =0, - A‘Ql
1-1 0 0 | —u
1o 1-1—s"F} ~scF} scaFy —v(1-s°F})
0 —scFy} 1+ AE? —*F} scvF} —o(1-c*F})

—p scoFy —v(1-5"F}) scuF} —o(1-c*F}) 1’ +0”+0”~F (sv+ co)

As usual, we begin by forcing Cofactor Q44 to be zero:

1-4 0 0 _
CofactorQ,, =det| 0 1—-A—s"F; —scF;} =0
0 —scF}  (1+2E})-c*F}
= (1- A)[E222 —[(E? + BZ) — s*(B? + B3 + E2EZ +1)A+ E2} =0. @)

There are therefore two possibilities: A=1 and A is a root of the polynomial in the braces.
Case 1: A=1

Using A=1 we have:

0 0 0 -l
. 0 ~s>F} —scF} scoFy} —v(1-sF})
om=| o —scFy F?—-c*F} scvFy — o1 - c*F})

—u scoF} —v(1-5"F}) scvF} —o(l-c’F}) p*+v"+0? - (sv+co)
Forcing Cofactor Q14 to be zero gives us:

0 ~s*F} —scFy
CofactorQ,, =det| 0 —scFy} E'-c’F; = Us’F’F} =0.
i scoFy —v(1-s°F)) scuFy —o(l-’F})

We therefore have two subcases to consider: s=0 and u=0.

Case la: A=1, s=0 (hence c=1)

Since s=0 and c=1, the axis vector of the second cone is (0,0,1); i.e., it is parallel to the axis vector of
the first cone. Moreover Q(1) simplifies further to:
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0 0 0 —u
) 0 O 0 )

-1 v -o1-F) p’+v’+0’-Fo
Forcing Cofactor Q17 and Cofactor O to be zero then gives us:

0 0 -
CofactorQ, =det|0  F'—F ~o(1-F2)  |=v}(F2-F?)=0
—0 —o(1-F) @ +0*+0’ - Fo’

0 0 -
CofactorQ,, =detl0  FE?*-F? ——a)(l - FZZ) - #2(}7'22 - Ff) =0.
—u —o(l-F}) p’+v"+0”-Fo’

This leads to two subcases for case 1a: F1=F; or p1=0=0. Both of these conditions may, of course,
hold simultaneously, in which case we get a single circle of intersection as noted in the discussion of
Case la(i). Additionally we may have =0, in which case the two cones are identical.

Case la(i): A=1, s=0 (hence c=1), F1=F,

Since F1=F, the cone half-angles are the same; since s=0 the cones also have parallel axes. These
constraints tell us that the two cones are translates of each other. Notice that when F1=F5, all the
entries of Q(1) are zero except those in the last row and last column. Therefore Q(1) is a single plane.
These cones will intersect in a single real hyperbola, a single real ellipse (or circle), or a single real
ruling shared tangentially, depending on the relative position of the vertices [8]; see Figure 4.

Case la(ii): A=1, s=0 (hence c=1), u=v=0, F#F,

Since p=0=0 and the cones have parallel axes, we conclude that the cones have the same axis. Notice
that when pu=0=0, all the entries of Q(1) are zero except those in the lower right 2x2 submatrix. This
clearly makes the rank of Q(1)<2 and therefore Q(1) is a planar surface. (It is actually a pair of parallel
planes of constant z.) If @0, the cones intersect in a pair of circles; otherwise they intersect in a single
real point, namely their common vertex.

Case 1b: A=1, u=0, s=0

Since u=0, the axis of the second cone lies entirely in the x=0 plane. (Its vertex is (0,0,0), and its
unit axis vector is (0,s,¢).) Since we also have s#0, we know the axes of the two cones intersect.
Because [=0, all elements in the first row and first column of Q(1) are zero. This means that the only
3x3 subdeterminant we need to examine is Cofactor Q1.

~"F} —scF;} scoFy —v(1-s"F;)
Cofactor@,, = det —scFy F’~c’F) scVF? — (L~ ¢*F2) |=0
scoF? —v(1-5°F) scvFf —o(l-c’F) v’ +0* - E(sv+co)’
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We multiply the first row by v, the second row by ®, and add the results to the third row. Then we
multiply the first column by v, the second column by , and add the results to the third column.
Finally we expand by cofactors of the last row to obtain:

CofactorQ,, = ~v]sco(l - F)F} +vF —ve’F} |+ o(1- ) s"F}o(1- F?) - vscF}| +
SFE[v* +0*(1- F?)|=0.
Gathering the coefficients of v2, v®, and @2, replacing 2 by (1-52), and using F2=E2+1, we obtain:
[°E2(E3 +1)+(E} - ED)|o? + 25¢E} (B} + 1w — s*E2(Ef +1)w* = 0. 3)

This is a rather complex relationship to understand geometrically, yet certain conclusions can be drawn
immediately. For example, if =0, then we know the equation can only be satisfied if w=0 since s+0.
This says that if the axes intersect at a vertex, the result is planar if and only if the vertices coincide.

Fortunately we need not try to understand this relationship completely as it stands since it can be
simplified dramatically. Recall that in this case, we know the cone axes intersect in a distinct point. We
shall denote this point as 1. We begin our simplification of (3) by considering it to be a homogeneous
quadratic equation in :

Cv?* + Bvo+ Aw* =0.

Our analysis then proceeds in four steps:
(1) Compute the discriminant of this equation.
(2) Apply the quadratic formula to solve for ® in terms of v.
(3) Derive equivalent expressions for v and @ in terms of d; and da, the distances between /
and the respective cone vertices using geometry and trigonometry.
@) Substitute the expressions for v and o derived in step (3) into the formula relating v and
o derived in step (2).
To begin, we compute:

B = 45°c°E (B2 +1) = 45*(1- 5°)E{Fy = 45°E} Fy — 4s*E['F}

~4AC  =4sE}(E;+ 1)2 +4s°EX(E; +1)(E; - E}) = 45*E{F, + 45°E'F}}(E] - E})

B> —4AC = AS"E}FY{EF} + (E] - B} )| = AS B} F}[E}(F} — 1)+ E}| = 45 Bl F}[EV E} + E}]
= 4s*E’EZF?F2.

Remarkably the quantity (B2-4AC) is a perfect square! This allows us to proceed in a very
straightforward way to step (2). Using the quadratic formula, we express ® in terms of v:
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o —2s5cE} (E; +1)+ 25E, E,FF, ,
- ~25”EZ(EZ +1)
= -c.-i—-———EZE .
s SEF,
Since
E tano
—= =sine
F  seca
we get

(cosOi sinazlsin(xl)
W = - V.
sin@

Before proceeding on to step (3), observe that we can always choose the coordinate axes so that the
vertex Vo=(0,0,m) lies in the first quadrant of the yz-plane; that is, we can assume that v and  are .
non-negative. Now we have two cases to consider with respect to the location of the axis intersection
point I: it can lie either above or below the y-axis. (See Figure 5.) From Figure 5a, we see that if I lies
on the positive z-axis, we can derive the following relationships for v and :

vV =d,sinf

o =d, +d,cosf.

From Figure 5b, we find that the following relationships hold when 7 lies on the negative z-axis:

vV =d,sinf
o =—d, +d,cos6.

We can now substitute these expressions into the equation obtained in step (2) which expresses ® in
terms of v:

cos@=xsina, /sine,
sin@

*d, +d2c056=(

ootd, = (i sin ¢ )dz.

sine,

)dz sin@

Since d; and d, are distances, they must both be positive. Furthermore, since the cone half-angles o
and oy are acute, their sines are positive. Therefore we need only consider the positive portion of the £
signs, and we arrive finally at the simple equation:

d;sina, = d,sine,.

This constraint has obvious geometric significance and can be tested easily and reliably in a computer-
based implementation. Note the resemblance between this constraint and that developed for the
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cylinder-cone case (Section 4.5, Case 2b). The expression dsin o represents the distance to the surface
of the cone from a point on the axis a distance d from the vertex. Thus we see that if the axes of the
cones intersect at a point equidistant from both surfaces, then the intersection is planar. Various pairs
of possibly degenerate conics may arise. Some examples are illustrated in Figure 6(a-c).

Case 2: A=<root of polynomial in braces in Equation (2)>#1

We are not so lucky with the polynomial in braces in (2) as we were with (3). That is, the discriminant
of (2) is apparently not a perfect square. Rather than solve directly for A and carry complicated square
roots around in subsequent equations, we finesse the problem by deriving constraints based on other
considerations. To wit:

. Since 011=(1-A)#0 and Q,;=031=0, we seek conditions which force the second and third
rows of Q(A) to be dependent because the rank of Q(A) must be no greater than 2. This
will generate two constraints, namely the vanishing of a pair of 2x2 determinants.

. Next we force all remaining 3x3 determinants to vanish. This will yield four additional
constraints: Cofactor Oyy=Cofactor Q;3=Cofactor Q3,=Cofactor Q33=0.

We begin by deriving constraints which force the second and third rows to be dependent. That is, we
require:

1-A—s*F} —scF} scoFy —v(1-5"F})
rank ) s 9ia ) ooy | S1
—scF, 14+ AE —c*F; SCUF, —a)(l—c FZ)

We simplify this matrix by multiplying the first column by v, the second column by ®, and adding the
result to the third column:

1-A—5"F} —ScFy -Av
rank ) s a1 . |SL
~sck, 1+ AE" —=c’F, AEw

Now any pair of 2x2 determinants must vanish. We choose to consider columns 1 and 3 and columns
2 and 3. First columns 1 and 3:

|- A-s°F2 —Av

det
—-scE}  AE’w

= A(1- A—$"F})E}w — scF}v| = 0.

As we have noted several times before, we can ignore A=0 since that does not lead to a planar surface.
This equation therefore leads us to consider the following cases:

. =0 with one of the following:

. s=0
. c=0
) 1V =O
. - (1-5*F})E}w—scF}v @

Elw

Considering next the 2x2 determinant formed by the second and third columns:
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— 2 —
de schy Av|_ /1[(1 +AE} - F o — scEfFZZm] =0.

1 =
1+ AE> - *E2 AE’w

Since we ignore the root A=0, this equation leads us to consider the following cases:

.. =(0 with one of the following:
o =0
[ C:O ‘
° (D_.—..O

. ae (c®F} —1jv+ scElFjo

Elv ©)

We need both of these 2x2 determinants to vanish, so essentially we must consider the intersection of
these constraints. We will first briefly show that s=0 leads to no new cases. Then we examine:

. =0

[} ’D:Q):O

. e (1-s°F})Elo - scF}v _ (c®F} —1)v+ scE}F}o
Elw EM '

Case 2a: A#1, s=0 (hence c=1)

The axis of the second cone is (0,s,¢)=(0,0,1); thus case 2a deals with two cones whose axes are
parallel. The pencil is therefore:

1-2 0 0 -U
0 1-2 0 -V
o)= 0 0 1+AE*-F? EXo
- -V Elw e +v* +0® - Flo?

Now Cofactor Q44=0 implies that 1+ /lEf - FZ2 = 0. Furthermore forcing Cofactor 0;; = Cofactor Q33
=0, we come to the following conclusions:
1-4 0 -V
CofactorQ,, =detf 0 0 Elw =(1-21)E;0* =0.
-0 Elo p’+v’+0’-Fo?
so=0.
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1-A 0 -l
CofactorQ,, =det| 0 1-4 -v
— -0 P+
= (1-AY (0 +0?) = (1= A)(1* + %) ==A(L- A)(p? +v*) = 0.
S u=v=0.

Therefore the cone vertices, and hence too the cone axes since they are parallel, must coincide. But we
have already considered this configuration in case 1a(ii).

Case 2b: A#1, c¢=0 (hence s=1)

The axis of the second cone is (0,s,¢)=(0,1,0); thus case 2b deals with two cones whose axes are
perpendicular. The pencil is therefore:

1-2 0 0 -
0 -E>-1 0 - E
o(A)=| . g 2 ’
0 0 AE+1 ~w
-u El ~0 PP+’ + e’ -FEW?

Forcing Cofactor Q44 to be zero gives us:

1-24 0 0 .
CofactorQ,, =det| 0 —E>—-1 0 |=—(1-A)EZ+ 1)( AE? + 1)‘
0 0 AE? +1

Since A#1 by assumption, we have two subcases to consider:

1
. A=

E}
. ,’Lz_E;

Case 2b(i): /’L=——~I%2—¢-—E22, (A#1), c=0 (hence s=1)

1

In this case, the pencil becomes:

F?/E} 0 0 ~u
0 -EX+1/E 0 EXv
Q ___1_2_ = 2 / 1 2 (6)
E| 0 0 0 -0
-1 Elv 0 P +0v*+0° - F

Forcing various cofactors to be zero gives us:
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E*/E} 0 -1 "
CofactorQ,, =det| 0 0 - = —(—lz—]wz =0.
4 o PPV +e? - FR? E,
S o=0.
F’/E} 0 —-u
CofactorQ,, =det| 0  —E}+1/E>  EX |= —-J-z-[(l + -1-2-]15; 2 - [—-}-2- - Ezz}uz} =0.
.y E% p? — E2? 1 E| E,

(B2 +1)E3* = (1- EPE; ).

#. 0 = ta[1— tan’ o, tan” @, cOS 0, COL O, L.

Since the axes are perpendicular and ®=0, the axis line of the second cone lies in the plane determined
by the vertex and axis of the first cone. The geometric significance of L and v can therefore be
interpreted as follows: L is the distance from the vertex of the first cone to the axis line of the second;
v is the distance from the vertex of the first cone to the plane determined by the vertex and axis of the
second cone; and V(2+v2) is the distance between the two vertices.

When the conditions of this case are satisfied, the resulting intersection is a two point tangency. This
follows from the fact that the surface in Equation (6) is a straight line and hence it intersects each cone

in at most two points. Levin [6] shows that when the rank of both Q and Cofactor Q44 is two (as it is in
(6)), the surface is a line (a pair of intersecting imaginary planes) if the quantity

Tz = Q11Q22 + Q11Q33 + Q22Q33 - szz - Qz>23 - Q123 20.

Substituting values from (6):

2 2
T, = 1—715 —E§+——1-2- +0+0-0-0-0= F—12 —E22+-—1—,;
E E2) E E;

This quantity is positive if and only if the final parenthesized term is positive. Our constraint on v

above tells us that the quantity EZE> must be less than 1 in order for the intersection to be real. From
this it follows that the final parenthesized term is positive; hence the surface deﬁned.in (6) is a line.
Figure 7 illustrates two cones satisfying the relationships of this case and shows their two points of
tangency.

Case 2b(ii): Az—Ef#—%, (A#1), ¢=0 (hence s=1)
1

In this case we consider constraints imposed by forcing the following cofactors to be zero:
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-4 0 -2
CofactorQ,, =det| 0 0 Elv =—(1-1)E;v
-u Elv p+0*+o®-ER?
S v=0.
, 1-2A 0 -
CofactorQp =det| 0 2E}+1 - |=(1-A)|(AE} +1)(1* + 0*) - 0] - p*(AE? +1)=0.
- —w PP+’
ol = (I—EIZEZZ) 2
E'R

2.0 = 1,[1—tan® @, tan® @, COL @Y, COS Ly L.

This turns out to be the same as the case just analyzed with the roles of the cones reversed. That is, the
geometric significance of [l and w is: W is the distance from the vertex of the second cone to the axis
line of the first; ® is the distance from the vertex of the second cone to the plane determined by the
vertex and axis of the first cone; and \/(},L2+(02) is the distance between the two vertices. An argument
analogous to that above also leads to the conclusion that the surface in the pencil which results from
using the current value of A is a line, and the resulting intersection is a two-point tangency.

Case 2b(iii): /1=-—E22=—$, (A=1), c=0 (hence s=1)

1

From cases 2b(i) and 2b(ii), we know that v=0=0. Therefore, Q(A) degenerates to the following
equation: :

(1+E) x> —2pux+p> =0
= (x—u)’ + EXx? = 0.

The only real solutions to this equation require x=l and x=0, from which we conclude that p=0.This
tells us that the vertices must coincide, but we have already treated this possibility in case 1b.

Case 2¢: A1, v=0=0

Under the assumption that V=w=0, the pencil becomes:

1-2 0 0 -

0 1-A-5F} —scF;} 0

oM)=| ~ScF?  1+AE:—c*E? 0
~p 0 0 I

Forcing Cofactor O3 to vanish:
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1-A4 0 -
CofactorQy,=detf 0  —scF} 0 |=AscF2u’.
-+ 0
This leads to three possibilities, all of which have been analyzed by now:
. s=0 parallel axes (case 2a)

. c=0 perpendicular axes (case 2b)
. u=0 coincident vertices (case 1b)

(1-"F})Elw —scF}v _ (c*F} —1)v+scEXFlo

Case 2d: A= 5 5
Efw Efv

We shall derive a pair of constraints for this case. The first arises from equating the two indicated
values of A. This will force the second and third rows (and the second and third columns) of Q(A) to
be linearly dependent, thereby guaranteeing the rank of Q(A) will be no greater than 3. We, of course,
require it to be no greater than 2, and we shall establish the necessary conditions for that after deriving
the first constraint.

Equating the two values for A gives us the first constraint:
ScFjv* +[ B} (c* +5"E2) - F? Jow + scE*Fo” = 0. )

In order to establish the second constraint, we first perform some elementary row and column
operations on Q(A) in order to simplify the algebra. Since in this case the second and third rows are
linearly dependent, we can multiply the second by v, the third by o, and add the result to the fourth
row without changing any of the 3x3 subdeterminants of Q(A). Similarly, since the second and third
columns are linearly dependent, we can multiply the second by ", the third by ®, and add the result to
the fourth column. These operations leave us with the following matrix: ‘

1-4 0 0 -U
0 1-A-sF? —scF; —AV
o) = Sz ’ S26’ ’ 202 2 8)
0 —scF, 1+ AE —c°F; AE @
~u ~Av AE’® p? - + AE'w*

We then force Cofactor O3 to vanish. Multiplying the first row of this 3x3 subdeterminant by p and
adding it to the third row, and then multiplying the first column by [ and adding it to the third column
does not alter the determinant, and we get:

-2 0 -Al
CofactorQ,, =det| 0  —scF; AElw =0.
A - AEe -yt -v?)

Since A#0, we can remove the common factor of A from the third column and then expand the
determinant to find:
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(1- /'L)[schz(v2 — Elo®)+ }LEfva)] + scFu* =0.
Substituting for A from (4) and manipulating, we find:
SFY(SEL@ + cv)[scF (v* - Bl0”) + (1- s°F} ) Efve — scFPv*| + scE2FAu’e = 0.

Since we have already considered s=0, we can divide out the common factor sF;. Doing so and
simplifying the term in brackets we obtain:

Elo(sEjw + cv)[(l -s"F - schza)] +cE* 0 = 0.
Now we can divide through by EZ@. Doing so and expanding we find:
(1-s"E})cv® + [(1 — s"F})sE} — sczez]va) — s’cEXFl@* +cu® = 0.
Now we get lucky. Regrouping the terms in this equation, we obtain:
—-—s{scl“’zzv2 + [(c2 + 5 EL)F} - Ef]va) + scElezza)z} +(cv” +cp?) = 0.

But the term in braces is nearly the same as our first constraint (7)! The only difference is that we have
a —E? here instead of the —F in (7). Since F? = E” +1, we can subtract vo from the term inside the

braces (hence adding svw to the equation) and balance this by subtracting svw from the final
parenthesized term. This makes the term in the braces identical to constraint (7); hence it is zero. The
second constraint therefore simplifies to:

cu’ +cv® —svw = 0. ©)

In order to use the pair of constraints expressed in (7) and (9), we need to describe |, v, and ® in
terms of geometric invariants. (Note that s=sinf and c¢=cos0, where 6=angle between the axes; that is,
s and ¢ already have geometrically invariant characterizations.) Let V; and a; be the vertex and unit

axis vector, respectively, of the first cone, but in general position. Define V3 and aj similarly for the
second cone. Recall that the vertex of the second cone in relative canonical position is (l,0,0) and its
axis is (0,s,c). We now reinterpret WL, v, and ® in terms of the V; and a; in arbitrary position. Consider
the planes: P, defined by V; and n=a;xas; Py, defined by V; and ajxn; and P, defined by V and a;.
The geometric interpretations of |, v, and ® are then given by:

. i =distance between V3 and Py
. v =distance between V4 and Py,
. o =distance between V; and Py,

Understanding this pair of constraints in invariant terms is of somewhat limited value since the
constraints are rather complex. As we will now demonstrate, however, the need to check for these
constraints in a real implementation is questionable at best. We pursue two subcases: (i) L=0 which
implies that the axes intersect, and (i) p=0 which implies the axes are skew.
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Case 2d(i): A#1, u=0 (axes intersect)

We shall demonstrate that it is impossible for this subcase to occur. Recall the expression for Q(A) in
(8). In order for this matrix to have rank less than or equal to 2, it is necessary for Cofactor Q11 to
have rank less than or equal to 1. This means that all of its 2x2 subdeterminants must vanish. We

followed this line of reasoning earlier to arrive at a pair of expressions for A (i.e., equations (4) and (5)
which we repeat here):

1-s*F2)E2w — scFXv
. A= ( 2) 21 2 (10)
Ew
c*F} —1)v+scEF} o
. A=( 2 )2 2 (11)
Efv
We now consider one additional 2x2 subdeterminant to arrive at a third expression for A.
CofactorQ,, = det sl Ao | /'Ls'cF‘°‘(1)2 ~E, 20)2) +PE*00 =0
23 = = > . : =
-Av  AElw® - Av*
2 2,22 __ 442
s (B 0 12)

Elvw

We now have three expressions for A which must be satisfied simultaneously. Equating (10) and (12)
and solving for ® in terms of v, we get:

_{1-5F})

0= 5.
scF,

Equating (11) and (12) and solving for o in terms of v, we get:

0= S v
(=B

These two expressions for o must be satisfied simultaneously; hence we equate them and manipulate
to discover:

(1-2B2)1- *F) = 2C°F;
~1=(s"+c*)E = F} =sec’

sl=cosa,
s0,=0.

Since we require our cones to have positive half-angle, we conclude that this case cannot occur.
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Case 2d(ii): A=#1, s#0, c#0, u=0 (axes are skew)

We shall demonstrate that this subcase always leads to a two point tangency intersection. The need to
check explicitly for this case depends upon the requirements of a particular implementation. In our
approach, for example, we detect the degeneracy and compute the two points of tangency, but without
explicitly checking the constraint equations (7) and (9) derived above [8].

The proof that this case always leads to a two-point tangency (or an intersection with no real

components at all) proceeds by demonstrating that for the value of A being considered in case 2d, Q(A)
is always a straight line. To show this, we need the following theorem.

Theorem 3: Let Q be a quadric surface, and let O, be the upper 3x3 submatrix of Q (i.e., det
0, = Cofactor O44). Then O represents a straight line if and only if both of the following
conditions hold:

1. Rank Q<2

2. The two non-zero eigenvalues of O, have the same sign.

Proof: The proof follows immediately from the classification scheme for quadric surfaces
given by Levin ([6], page 556).QED.

If the rank of Q is no greater than 2, then the rank of Q, is also no greater than 2, and it must have a
zero eigenvalue. Since O, is a symmetric 3x3 matrix, it has three real eigenvalues. We have already

established conditions here in case 2d so that the rank Q is no greater than 2. We therefore need only
show that the second condition of Theorem 3 holds in case 2d(ii). We do so by explicitly computing
the eigenvalues of Q,.

-2 0 0
detl0, — yl| = det| 0 1-A-s*Fl - ~scF}
0 —-scF} 14+ AEl-C*Fl -y
=(1-1-2)

1—- 24— s’F; —scF}

{xz _[(1—— A —SZFZZ)+ (1 +AE? — czez)]x + det| —scE? 14+ AE? - (2

}

Note that the determinant in the final expression is just the interior 2x2 subdeterminant of Q in (8)..
Since we know that the second and third rows of this matrix are linearly dependent, this determinant
must be zero. The three eigenvalues of O, are therefore:

n=1-1
X =(1-A—$’F})+(1+ AE} - *F}) = (1-A)1- E?) + (E} - E})
2:=0

As expected, one of them is zero. We need to show that the other two have the same sign._ We
substitute the value of A from (10) into the expressions for j; and % and simplify to obtain:

E’wy, = s’E’F}o + scF}v (13)
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Elay, =—E|(c* + s*E2)R? - F*|w + (1~ E?)scFv (14)

Note that we can assume without loss of generality that ®=0 and s>0. If o happens to be negative, we
simply negate a;. This forces o to be nonnegative without affecting the surface or the intersection.
Similarly, if s happens to be negative, we negate a;. With these observations, we can complete our
treatment of this case by considering two subcases: (a) cv<0, and (b) cv=0.

Case 2d(ii.a): cv<0

Consider the constraint of Equation (9). Since ¢ and v have opposite signs, the coefficients of p?, v2,
and o all have the same sign. Since u? and v? are nonnegative, and we have arranged for >0, the

only solution is p=v=w=0. This means the vertices coincide, but we have already handled this
possibility in case 1b.

Case 2d(ii.b): cv=0

Consider the constraint of Equation (7). Since cv=0, ¢ and v have the same sign. Therefore if the
coefficient of the vw term is nonnegative, then all the terms in (7) would have the same sign. This
would mean that the only solution would be V=0=0. Substituting this result into (9) would give us
that u=0, and we would be back at the coincident vertex case. Therefore, the only way to arrive at a
new case is for the coefficient of the v term to be negative. That is, we require:

F}(c”+5°E})-F? <0 (15)
By rearranging the left-hand side of this inequality we observe:
F(c*+s°E})- F? =(E} -1)s°F} + (E} - E})

Now it is clear that if E5>F12>1, then the right-hand side of this equation is positive, and hence the
previous inequality is rot satisfied. We can reverse the roles of the two quadrics by putting the second
in canonical position and the first in relative canonical position. We then arrive at the symmetric result,
namely that E1=2E>2>1 will fail to produce a new case. It therefore follows that at least one of the E;
must be less than 1. Without loss of generality, we assume Ej<1.

In summary, then, for case 2d(ii.b) to yield a previously unexamined configuration, we must have the
following three conditions: -

° cv=0
o Eq<1
o F}(c*+s’E})-F?<0

From Equation (13), the first bullet above, and the fact that s and ® are nonnegative, it is clear that the
sign of ) is positive. From Equation (14), all three of the conditions just noted, and the fact that s and
W are nonnegatlve, it is clear that the sign of Y is positive. Therefore by Theorem 3, the surface
defined in (8) is a straight line, and case 2d can yield only a pair of tangent points or no real
intersection at all.

Figure 8 illustrates two cones satisfying constraints (7) and (9) and also satisfying the three additional
conditions listed here. Their two points of tangency are also shown.
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5.0 Summary

We have presented an algebraic analysis, the collected results of which enumerate all possible cases in-
which a pair of natural quadrics have planar intersections. These results are intended to be a
prescription for the design of a purely geometric computer-based implementation. Although our
algebraic analysis is long and difficult, our final geometric constraints are short and simple. Thus
having done this analysis here once and for all, it is easy to implement tests for the resulting geometric
conditions.

Table II summarizes all the configurations in which pairs of natural quadrics intersect in planar curves.
Situations giving rise to two point tangencies are summarized in Table ITI. The conditions are stated in
terms of geometric constraints between pairs of natural quadrics described by their geometric
parameters in general position and orientation. No coordinate system transformations of any sort are
required to apply these tests or to compute the resulting planar curves. The specific details of the
calculation of the resulting planar curves are presented in a companion paper [8].

We could extend the analysis presented here in two directions. First, we could attempt a systematic
analysis of conditions giving rise to one point tangencies. In our opinion, it is not worth the added
effort to do so. Not only are such conditions of questionable value in modeling, but also we know
only a sufficient condition yielding one point tangencies, namely that the pencil contain a single point
surface. We were forced to consider two point tangencies since the line has rank 2 when represented as
a quadric surface, but the single point has rank 3 and therefore was not included as a byproduct of our
analysis.

Second, we could attempt a systematic analysis of other quadric surfaces such as ellipsoids,
paraboloids, and hyperboloids. Such a general extension would likely be extremely difficult and
probably is not practical. Note how difficult the cone-cone case was to analyze. Still it might be worth
the effort in order to verify some of the conjectures advanced below or to support select quadrics such
as the ellipsoid which do occasionally arise in solid modeling applications.

To close, we wish to draw particular attention to the following configurations leading to planar
intersections:

e Cylinder-Cylinder
intersecting axes; equal radii

. Cylinder-Cone
intersecting axes; r=dsino. where d is the distance from the cone vertex to the point at
which the axes intersect

. Cone-Cone
intersecting axes; dqsinaly=d;sin0, where d; is the distance from vertex i to the point at
which the axes intersect

We can summarize these three results in a single statement:
Let O; and Q5 be two natural quadrics (cylinders and cones) whose axes intersect. The
intersection is planar independent of the angle 0 between the axis lines if and only if the
distances from the point of intersection of the axes to each of the surfaces are the same.

We also draw attention to the following results for the natural quadrics. Planar curves of intersection
can occur only if the axes are parallel, coincident, or intersecting. They never arise when the axes are

1/22/93 Page 32



TR-93-1: Detecting and Calculating Conic Sections ..., Part I: Theoretical Analysis

skew. On the other hand, two point tangencies arise only if the axes are skew. Furthermore, planar
curves arise only in conjunction with A=1. Two point tangencies are all byproducts of the other two
values of A.

We would like to know how these statements generalize to other quadrics of revolution, to other axial
quadrics which are not quadrics of revolution, and to other surfaces of revolution which are not
quadric surfaces. The results of an initial attempt to generalize these observations to other quadrics of
revolution -- paraboloids, ellipsoids, and hyperboloids -- are presented in [4].

1/22/93 Page 33



TR-93-1: Detecting and Calculating Conic Sections ..., Part I: Theoretical Analysis

Table II
Summary of Conditions Giving Rise to Planar Intersection Curves Between Pairs of
Natural Quadric Surfaces
Section | Surface Pair Case | Geometric Conditions Results Figure
4.1 |'sphere/sphere All empty; one tangent point; or
one circle
4.2 | sphere/cylinder Center of sphere on axis of | empty; one tangent circle; or
cylinder two circles
4.3 | sphere/cone 1 | Center of sphere on axis of |empty; one tangent circle;
cone one circle + vertex; or two
circles
4.4 |cylinder/cylinder | 2 | Parallel axes empty; one tangent line; or
two lines
3 | Intersecting axes & equal two ellipses
radii
4.5 | cylinder/cone 2a | Coincident axes two circles
2b | Axesintersectinapointat | two ellipses (same or 2
distance d=r/sino. from the | opposite halves of the cone);
vertex of the cone or one ellipse & tangent line
4.6 |cone/cone la(i) | Parallel axes, same cone ellipse; shared tangential 4
angle ruling; or hyperbola
la(ii) | Coincident axes ‘| two circles or single vertex
1b | Axes intersect at point / various combinations of 6
such that dysinoiy=dpsinoy | pairs of conics or a tangent
where d; is the distance from | line plus a conic
vertex i to . (This includes . . L
the case where the vertices | (1-4 lines or a single point if
coincide; i.e., dy=d,=0.) the vertices coincide)
Table 111
Summary of Conditions Giving Rise to Two Point Tangencies Between Pairs of
Natural Quadric Surfaces
Section | Surface Pair Case | Geometric Conditions Figure
4.3 | sphere/cone 2 | Center of sphere in plane (V,a) at distance d=r/coso. from 1
vertex
4.5 | cylindet/cone 3 Skew axes; distance between axes: d = rsin6 3
+/sin? 6 —sin® &
4.6 | cone/cone 2b(i) | Perpendicular axes; V3 in plane of (Vy,ay); distance, U, 7
from V7 to axis line (V3,a7) and distance, v, from V; to
plane (V,a) are related as:
v=+/1-tan® @, tan’ t, cos & cot L,
2b(i1) | Same as 2b(i) with roles of the cones reversed 7
2d(i1) | Skew axes with constraints (7) and (9) 8
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