The purely real-valued time signal x has the following characteristics in its Fourier transform. The Fourier transform of x is **continuous**, purely **imaginary valued**, and **non-periodic**. Answer the following question about the time signal x.

A. Is x a discrete-time signal, a continuous-time signal, or not enough information is provided?

Since Fourier Transform of x is non-periodic, then x is continuous.

B. Is x periodic, non-periodic, or not enough information is provided?

Since Fourier Transform of x is continuous, x is non-periodic.

C. Is x an even, odd, neither, or not enough information is provided?

Since x is real valued and its Fourier transform is purely imaginary then x is odd.

D. Is x an energy signal, a power signal, neither, or not enough information is provided?

An example of x as a power signal that is continuous, odd, non-periodic

$x = \sin(2\pi t^3)$

An example of x as an energy signal that is continuous, odd, non-periodic

$x = \text{rect}(t)*t$

both of these work for the description, so **Not Enough Information.**