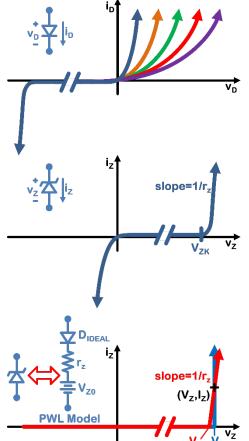
EECS 312 – Electronic Circuits I – Notes Carl Leuschen – Spring 2024

Zener Diodes and Voltage Regulators

A voltage regulator constructed using the \sim 0.7V forward bias voltage drop across a diode is designed using the following equations:

number of diodes:	$N = V_R / 0.7$
line regulation:	$\Delta v_r / \Delta v_s = N \times r_d / (N \times r_d + R_s)$


The problem is that for larger regulated voltages many diodes must be used resulting in poor line regulation. The currentvoltage characteristic is shown in the plot for N = 1 to 5. As N increases the slope decreases resulting in a larger resistance.

The plot also shows the breakdown region for a single diode, which exhibits a large turn on voltage and steep fairly constant slope. A Zener diode is exactly the same as a normal junction diode except:

- 1. The voltage and current orientations are reversed.
- 2. The diode symbol has edges on the line.
- 3. The datasheet specifies additional information for the breakdown region.

The Zener diode can be modeled using the CVD model or with the addition of a small resistor. The resistor accounts for the constant slope of the i-v curve in breakdown. The resulting current voltage characteristic for the PWL model becomes:

$$i_z=0$$
 for $v_z < V_{Z0}$
 $i_z=(v_z-V_{Z0})/r_z$ for $v_z > V_{Z0}$

Care should be taken with Zener diodes that v_z does not become negative to go into the FB region.

Device -	V _Z (V) @ I _Z (Note 1)			Test Current	Max. Zener Impedance			Leakage Current		Non-Repetitive Peak Reverse
	Min.	Тур.	Max.	I _Z (mA)	Zz@Iz (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μΑ)	V _R (V)	Current I _{ZSM} (mA) (Note 2)
1N4728A	3.135	3.3	3.465	76	10	400	1	100	1	1380
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1	1260
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1	1190
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1	1070
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1	970
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1	890
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2	810
1N4735A	5.89	6.2	6.51	41	2	700	1	10	3	730
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4	660
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5	605
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6	550
1N4739A	8.645	9.1	9.555	28	5	700	0.5	10	7	500
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6	454
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4	414
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1	380

Electrical Characteristics Ta = 25°C unless otherwise noted

The table (https://www.onsemi.com/pub/Collateral/1N4736AT-D.PDF) shows values for Zener diodes. The 12V device (1N4742A) has $r_z = 9\Omega$, and a test current, $I_z(V_z=12V) = 21$ mA. Based on these values, we can find $V_{z0} = 12 - 9 \times .021 = 11.81V$. As a comparison, a 12V regulator based on N×FB diodes (n=2) would require 12/0.7 = 17 diodes. If $V_S = 14V$ and $R_S = 200\Omega$, the regulator would have total diode resistance of 80 Ω and a line regulation of 0.28. The Zener diode approach would require one diode and have a line regulation of 0.04.