EECS 312 – Electronic Circuits I – Notes Carl Leuschen – Spring 2024

The Diode Small Signal Model

With many circuits, there are two stages of analysis.

- 1. DC or constant source analysis to determine the operating point of the circuit: DC analysis
- 2. Time-varying analysis, which relates to the transmission of information: Transfer Functions

For example, an amplifier is initially analyzed using constant or DC source voltage, V_s . Next, the amplifier is analyzed when an input signal is applied to determine the output signal, or amplifier gain $v_{out}(v_{in})$. The figures to the left and below shows this by separating the circuit into two, one with V_s and the other

with $v_{in}(t)$. The separation of sources (V_s and $v_{in}(t)$) into two circuits is perfectly fine and can be justified using superposition, as long as all the components used in the amplifier are linear. The diode is not a linear device, and as a result, superposition does not work (shown below with syntax explanation).

The small signal model (approximation) is used to linearize the diode for superposition.

Syntax: lowercase_{uppercase} is the total value (sum of large signal and small signal values). uppercase_{uppercase} is the large signal DC value. lowercase_{lowercase} is the small signal time-varying value.

Requirement: The small-signal time-varying sources are much less than nV_T (or $v_d(t)/nV_T$ is small). $v_D = V_D + v_d(t)$ and $|v_d(t)| \ll |nV_T|$

Approximation: Expand the diode exponential equation using a Taylor series at the DC bias point (V_D).

$$i_{D}(v_{D}) = i_{D}(V_{D}) + i_{D}'(V_{D})(v_{D} - V_{D}) + \frac{1}{2}i_{D}''(V_{D})(v_{D} - V_{D})^{2} + \frac{1}{6}i_{D}'''(V_{D})(v_{D} - V_{D})^{3} + \cdots$$
$$i_{D}(v_{D}) = I_{S}e^{\frac{V_{D}}{nV_{T}}} + \frac{I_{S}}{nV_{T}}e^{\frac{V_{D}}{nV_{T}}}v_{d}(t) + \frac{I_{S}}{2(nV_{T})^{2}}e^{\frac{V_{D}}{nV_{T}}}v_{d}^{2}(t) + \frac{I_{S}}{6(nV_{T})^{3}}e^{\frac{V_{D}}{nV_{T}}}v_{d}^{3}(t) + \cdots$$

Since $|v_d(t)|$ is small then $|v_d(t)|^2$ and $|v_d(t)|^3$ and so on are really small and can be ignored. The first term is the diode exponential equation using the large-signal DC source (analyzed using CVD model) and the second term of the expansion is a linear relationship and can be modeled using a resistor, $r_d=nV_T/I_D$.

Model:

$$i_{D} \cong I_{S}e^{\frac{V_{D}}{nV_{T}}} + \frac{v_{d}(t)}{r_{d}}$$

$$v_{s} = v_{s} + v_{$$

