- 1. For the following logic functions:
 - a. Design the PUN and PDN.
 - b. Identify the input combinations that the PUN will be conducting and for each combination determine the PUN resistance, r_{PUN} , in terms of r_{SDP} of a single PMOS component.
 - c. Identify the input combinations that the PDN will be conducting and for each combination determine the PDN resistance, r_{PDN} , in terms of r_{DSN} of a single NMOS component.
 - d. Using $k_n = k_p = 4mA/V^2$, $V_{tn} = |V_{tp}| = 0.8V$, and $V_{DD} = 3V$, determine r_{DSN} and r_{SDP} .
 - e. For an output capacitance of C=50pF, determine the maximum value of T_{PLH} and T_{PHL} .
 - f. Determine the necessary sizes for all the transistors in terms of the the $(W/L)_{INV}$ that meets timing (n, and p).

$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{D} \cdot \overline{B}$$
$$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{D} + \overline{B}$$

2. A one-bit full adder with carry in/out has three inputs and two outputs.

Inputs:

- A: First coefficient.
- B: Second coefficient.
- C_{IN} : Carry input from previous stage.

Outputs

S: Sum.

COUT: Carry output.

- a. Determine the logic functions for S and C_0 in terms of A, B, and C_1 . Remember, for CMOS design you can only use ANDs, ORs, and NOTs in your logic functions.
- b. Implement each logic function in CMOS.
- c. Determine how many PMOS and NMOS transistors are required.
- d. Using $k_n = k_p = 20 \text{ mA/V}^2$, $V_{tn} = |V_{tp}| = 0.8 \text{ V}$, and $V_{DD} = 2.5 \text{ V}$, determine r_{DSN} , r_{SDP} .
- e. For an output capacitance of C=40pF, determine the maximum propagation delay for carry output, C_{OUT} , based on the maximum PUN or PDN resistance.
- f. What would the maximum net delay be for an 8-bit adder and resulting maximum clock rate?

note: If you need to use an inverter to a satisfy the function syntax for the PUN or PDN, just use the inverter symbol in part b and assume (1 PMOS and 1 NMOS) per inverter in part c.