EECS312-HW7:

Designing a 9V power supply based on the circuit below.

A transformer has been used to step down the 120Vrms outlet voltage to 11.8V peak:

 $v_{s}(t) = 11.8 \cdot cos(2\pi 60t)$

The rectifier diode, D_1 , is modeled as a 0.7V CVD and the Zener diode, D_z , has parameters of $r_z=7.2\Omega$ and $V_{Z0} = 8.8V$. The load is modeled using resistance, $R_L=180\Omega$. What is the peak voltage at the output of the rectifier (D1:cathode, Top of the Capacitor) ?

V_P =

The circuit below (<u>left circuit</u>) will be used to find the value for R_{REG} , assuming the input voltage has a constant value of V_P . Replace the Zener diode with a 9V CVD model (9V battery – <u>center circuit</u>) and find the maximum value of R_{REG} that ensures the diode continues to conduct current. Choose an actual value for R_{REG} that is 70% the maximum to include some error margin.

Line Reg =

If we want a maximum ripple at the output, Δv_0 , to be 0.02V, what is the allowable ripple, V_r, at the input of the regulator (based on the Line Reg)?

V_r =

Find the effective resistance, R_c , that would be in parallel with the filter capacitor. Also, find the minimum capacitance to meet the ripple voltage, V_r .

R_c =

C =

Find the duration the rectifier diode is conducting and the maximum current through the diode.

Δt =

I_{DMAX} =

Run a simulation using your circuit simulator to generate plots of $v_s(t)$, $v_c(t)$, $v_o(t)$, and $i_D(t)$. Estimate values for V_r , Δv_o , Δt , and I_{DMAX} from the plots.

EECS312-HW7:

Designing a 9V power supply based on the circuit below.

A transformer has been used to step down the 120Vrms outlet voltage to 11.8V peak:

 $v_{s}(t) = 11.8 \cdot cos(2\pi 60t)$

The rectifier diode, D_1 , is modeled as a 0.7V CVD and the Zener diode, D_z , has parameters of $r_z=7.2\Omega$ and $V_{z0} = 8.8V$. The load is modeled using resistance, $R_L=180\Omega$. What is the peak voltage at the output of the rectifier (D1:cathode, Top of the Capacitor) ?

The circuit below (<u>left circuit</u>) will be used to find the value for R_{REG} , assuming the input voltage has a constant value of V_P . Replace the Zener diode with a 9V CVD model (9V battery – <u>center circuit</u>) and find the maximum value of R_{REG} that ensures the diode continues to conduct current. Choose an actual value for R_{REG} that is 70% the maximum to include some error margin.

Line Reg = $(r_{Z} | | R_{L})/(r_{Z} | | R_{L} + R_{REG}) =$

Line Reg =

If we want a maximum ripple at the output, Δv_0 , to be 0.02V, what is the allowable ripple, V_r, at the input of the regulator (based on the Line Reg)?

V_r = .02/.19 = .105V

.19

Find the effective resistance, R_c , that would be in parallel with the filter capacitor. Also, find the minimum capacitance to meet the ripple voltage, V_r .

 $R_{C} = V_{REG}/I_{REG} = 11.1/((11.1-9)/29.4) = 155\Omega$

R_C = <u>155Ω</u>

 $C = V_P / (f \cdot R_C \cdot V_r) = 11.1 / (60*155*0.105)$

C = <u>11360uF</u>

Find the duration the rectifier diode is conducting and the maximum current through the diode.

∆t =	0.365mSec	
I _{DMAX} =	6.7Amps	