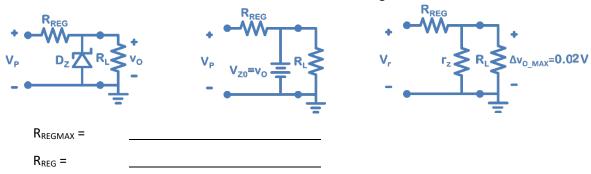

EECS312-HW7:

Designing a 9V power supply based on the circuit below.

Due 03/03/25



A transformer has been used to step down the 120Vrms outlet voltage to 11.8V peak:

$$v_s(t) = 11.8 \cdot cos(2\pi 60t)$$

The rectifier diode, D_1 , is modeled as a 0.7V CVD and the Zener diode, D_Z , has parameters of r_z =7.2 Ω and V_{Z0} = 8.8V. The load is modeled using resistance, R_L =180 Ω . What is the peak voltage at the output of the rectifier (D1:cathode, Top of the Capacitor) ?

The circuit below (<u>left circuit</u>) will be used to find the value for R_{REG} , assuming the input voltage has a constant value of V_P . Replace the Zener diode with a 9V CVD model (9V battery – <u>center circuit</u>) and find the maximum value of R_{REG} that ensures the diode continues to conduct current. Choose an actual value for R_{REG} that is 70% the maximum to include some error margin.

Find the line regulation $(\Delta v_0/V_r - \underline{right\ circuit})$ using R_{REG} , r_z , and R_L .

Line Reg =

If we want a maximum ripple at the output, Δv_0 , to be 0.02V, what is the allowable ripple, V_r , at the input of the regulator (based on the Line Reg)?

V_r = _____

Find the effective resistance, R_c , that would be in parallel with the filter capacitor. Also, find the minimum capacitance to meet the ripple voltage, V_r .

R_C = ______

Find the duration the rectifier diode is conducting and the maximum current through the diode.

 $\Delta t =$ $I_{DMAX} =$

Run a simulation using your circuit simulator to generate plots of $v_s(t)$, $v_c(t)$, $v_c(t)$, and $i_D(t)$. Estimate values for V_r , Δv_O , Δt , and I_{DMAX} from the plots.