Diode Content and Equations

Diode Symbol, Terminal Names, Voltage and Current Orientations

Ideal Diode: FB: $v_D = 0$, for $i_D > 0$ RB: $i_D = 0$, for $v_D < 0$	Model Short Open	
Junction Diode:	$i_D = I_S(exp(v_D/nV_T) - 1)$, for both FB and RB	
Range of values for I_s (1x10 ⁻⁸ to 1x10 ⁻¹⁵ [Amps]) and n (1 to 2). V_T is dependent on temperature (Typically 0.025V)		
FB approximation $(v_D >> nV_T)$: RB approximation $(v_D << -nV_T)$:		
0.7V CVD Model:	RB: Open or FB: 0.7V Battery	
FB: $v_D = 0.7V$, for $i_D > 0$	Short in series with 0.7V Battery (ideal diode is FB)	
RB: $i_D = 0$, for $v_D < 0.7V$	Open in series with 0.7V Battery (ideal diode is RB, $v_{DI} < 0$)	
PWL Model:	RB: Open or FB: Resistor and Battery	
FB: $i_D = (v_D - V_{D0})/r_D$, for $v_D > V_{D0}$	Short in series with Resistor and Battery	
RB: $i_D = 0$, for $v_D < V_{D0}$	Open in series with Resistor and Battery	
Small Signal Diode Model:	$r_{1} = nV_{2}/l_{0}$	

Small Signal Diode Model: $r_d = nV_T/I_D$ **always assume the diode is FB for small signal analysis problems**

 $\begin{array}{ll} \mbox{Small Signal resistance given i(v)} & r = 1/i'_D(v_D) \mbox{ evaluated at } (V_D,I_D) \\ \mbox{Know the table of devices and their Large Signal Model and Small Signal Model} \end{array}$

Zener Diode (CVD Mo	el): Ideal Diode in series with a Battery	
BD: $v_z = V_z$, for $i_z > $	Short in series with a Battery (ideal diode is FB)	
RB: $i_z = 0$, for $v_z < V$	Open in series with a Battery (ideal diode is RB, v	′ _{DI} < 0)
7		

Zener Diode (PWL Model):

Ideal Diode in series with Resistor and Battery

BD: $i_z = (v_z - V_{z0})/r_z$, for $v_z > V_{z0}$ RB: $i_z = 0$, for $v_z < V_{z0}$ Short in series with Resistor & Battery (ideal diode is FB) Open in series w/ Res. & Battery (ideal diode is RB, $v_{DI} < 0$)

Zener Symbol and Voltage & Current Orientations Difference and Similarities between Zener and Junction Diodes

Diode Applications (what is the purpose, basic circuit and basic operation)

Current Protection Simple Digital Logic Limiter (Circuit Protection) – Transfer Functions Rectifier Circuits (v_{OUT}/v_{IN}, PIV) Regulator (line regulation, load regulation) AC/DC Supply (approximation for ripple voltage) Voltage Controlled Attenuator Frequency Mixer

Semiconductors

Silicon lattice (intrinsic, covalent bonds). Current (two types) Drift – charge moving due to electric field. Diffusion – charge moving due to heat and concentration gradient.

Doped Silicon

N-Type: use Phosphorus to add extra electrons. P-Type: use Boron to add extra holes. Majority carriers Minority carriers Depleted

PN Junction and Bias States (FB, RB, Breakdown)

Exam I Organization

Around 4-5 Problem Sections	
Diode analysis at DC:	Given a circuit, assume a bias, find the answer, & verify bias.
Diode Transfer Function:	Given a circuit, assume a bias, find the transfer function, and find the range of the independent variable.
Diode Small Signal Analysis:	Large Signal Circuit, Small Signal Resistance, Small Signal Relationship.
Short Answer Section:	True or False, Calculations (maybe using exponential model), General Application Questions (line regulation, Peak Inverse Voltage, Ripple Voltage,), AC/DC Supplies, Quick Analysis, Concept Understanding.
	Semiconductor Examples:
	HW8. (Concepts, not specific equations)
	What are majority carriers in N-type silicon?
	What direction does positive drift current flow in the PN junction?
	When a P-Type silicon becomes depleted it will be positively charged. True or False.