Sequential Logic: Inverter and Transfer Function

Two Inverters in Series

Two Inverters in Series with Feedback

If v_{OUT} is at v_2 , a very small amount of positive noise will push v_{OUT} to $v_3 = V_{OH}$, and negative noise will push v_{OUT} to $v_1 = V_{OL}$.

The circuit will not stay at v_2 as this operating point is unstable.

Pro: Once set, it will hold its value (logic high or low) without an input. Con: There are no inputs.

Pro: Once set, it will hold its value (logic high or low) without an input. Con: There are no inputs.

Adding inputs with NOR or NAND gate. NOR: if one input is low, it behaves as an inverter. NAND: if one input is high, it behaves as an inverter.

Adding inputs with NOR or NAND gate. NOR: if one input is low, it behaves as an inverter. NAND: if one input is high, it behaves as an inverter.

SR Latch

SRQ/Q00Q/Q010110101100

2 Inverters: 4 Trans. 4 NOR: 16 Trans.

20 Transistors.

The D-Flip Flop ... Edge Triggered

2x D-Latch: 32~40 Transistors 2x Inverter: 4 Transistors

The D-Flip Flop ... Edge Triggered

2x D-Latch: 32~40 Transistors 1x Inverter: 2 Transistors

