

Silicon: 14 electrons 4 in outer shell

Silicon at T=0K;

Covalent bonds Poor conductor

Silicon at T>0K; Better Conductor

Charge Carriers: free electrons and holes

n: number of f.e. per unit volume (cm³) p: number of holes per unit volume

Intrinsic (pure silicon) n=p=n; B=7.3x10¹⁵[cm⁻³K^{-3/2}] n;=BT^{3/2}e^{-Eg/2kT}

Commonly refer to the product pn=n²

Area (n_i^2) is set by temperature. *# of charge carriers is set by the perimeter.* Square is the worst shape to maximize perimeter (p+n).

<mark>n.</mark>2 p=n; n=n: $E_{a}=1.12[eV], k=8.62x10^{-5}[eV/K]$

Silicon at T>0K; Better Conductor

What is the concentration of charge carriers (p and n) for intrinsic silicon at 27 degree C.

Silicon at T>0K; Better Conductor

What is the concentration of charge carriers (p and n) for intrinsic silicon at 27 degree C. 27C = 300Kp=n=n;=BT^{3/2}e^{-Eg/2kT}

 $B=7.3 \times 10^{15} [cm^{-3}K^{-3/2}]$ E_{a} =1.12[eV] Electron Volt 1eV = 1.6x10⁻¹⁹ J k=8.62x10⁻⁵[eV/K]

 $p=n=7.3x10^{15} (300^{3/2}) e^{-1.12/(2*8.62e-5*300)}$ =1.5x10¹⁰ carriers/cm³

There are 5x10²² atoms/cm³ for silicon, so only 1 out of every $5x10^{12}$ is ionized.

Current: Free Electrons and Holes Moving. How do they move? (2 Types)

Drift Current: Current due to an e-field. Electric field (left to right) Force: **Property:** Charge

Equations: velocity (cm/s) = mobility × Force (E=V/cm) $v_{p-drift} = \mu_p E$ $\mu_p = 480 \text{ cm}^2/\text{Vs}$ (for silicon) depends on Temp $v_{n-drift} = -\mu_n E$ $\mu_n = 1350 \text{ cm}^2/\text{Vs}$ (for silicon)

Current (A) = Area $(cm^2) \times (\#/cm^3) \times v (cm/s) \times charge (q)$ A = (#q)/s (left to right: same direction as E-field) $I_p = A \cdot q \cdot p \cdot v_{p-drift} = A \cdot q \cdot p \cdot \mu_p \cdot E$ $I_n = -A \cdot q \cdot n \cdot v_{n-drift} = A \cdot q \cdot n \cdot \mu_n \cdot E$

Current Density = Current / Area = Conductivity × Force $J_{p} = q \cdot p \cdot \mu_{p} \cdot E \qquad \qquad J_{n} = q \cdot n \cdot \mu_{n} \cdot E$ $J = J_p + J_n = q(p \cdot \mu_p + n \cdot \mu_n)E = \sigma \cdot E$

Conductivity and resistivity $\sigma = q(p \cdot \mu_p + n \cdot \mu_n) \qquad \rho = 1/\sigma = 1/q(p \cdot \mu_p + n \cdot \mu_n)$

Drift Current: Current due to an e-field. Electric field (left to right) Force: **Property:** Charge

Conductivity and resistivity $\sigma = q(p \cdot \mu_p + n \cdot \mu_n) \qquad \rho = 1/\sigma = 1/q(p \cdot \mu_p + n \cdot \mu_n)$

What is the resistivity of intrinsic silicon at room temp (T=300K)?

Drift Current: Current due to an e-field. Electric field (left to right) Force: **Property:** Charge

Conductivity and resistivity $\sigma = q(p \cdot \mu_p + n \cdot \mu_n) \qquad \rho = 1/\sigma = 1/q(p \cdot \mu_p + n \cdot \mu_n)$

What is the resistivity of intrinsic silicon at room temp (T=300K)?

 $\rho = 1/\sigma = 1/q(p \cdot \mu_p + n \cdot \mu_n)$

 $\rho = 1/(1.6e-19)(1.5e10*480 + 1.5e10*1350) = 2.28x10^{5} \Omega cm$

Currents: Free Electrons and Holes Moving. How do they move? (2 Types) 2) Concentration Gradient, p'(x)

Currents: Free Electrons and Holes Moving. How do they move? (2 ways) 2) Concentration Gradient, p'(x)

Currents: Free Electrons and Holes Moving. How do they move? (2 ways) 2) Concentration Gradient, p'(x)

Currents: Free Electrons and Holes Moving. How do they move? (2 ways) 2) Concentration Gradient, p'(x)

$\mathbf{J}_{\mathbf{p}} = -\mathbf{q} \cdot \mathbf{D}_{\mathbf{p}} \cdot \mathbf{p}'(\mathbf{x})$

	X
0	
0	
0	

Currents: Free Electrons and Holes Moving. How do they move? (2 ways) 2) Concentration Gradient, n'(x)

$\mathbf{J}_{n} = \mathbf{q} \cdot \mathbf{D}_{n} \cdot \mathbf{n}'(\mathbf{x})$

Diffusion Current: Current due to an mass, heat, and con. grad. Heat Force: **Property:** Mass and Concentration Gradient

Current Density = Current / Area = Conductivity × Force $J_{p} = -q \cdot D_{p} \cdot p'(x) \qquad D_{p} = 12 \text{ cm}^{2}/\text{s} \quad \text{(for silicon)}$ $J_n = q \cdot D_n \cdot n'(x)$ $D_n = 35 \text{ cm}^2/\text{s}$ (for silicon)

Remember, Current = Current Density × Area $I_p = -A \cdot q \cdot D_p \cdot p'(x)$ $I_n = A \cdot q \cdot D_n \cdot n'(x)$

 $D_n/\mu_n = D_p/\mu_p = V_T$

The problem with pure (intrinsic) silicon is that p and n are small resulting in a poor conductor.

How can we increase the number of f.e. or holes?

N-type Silicon: **Doped with Phosporus (Donor) Excess of free electrons (negative)** n_n=N_D Donor Concentration $n_n >> p_n$ $p=n_i^2/N_D$ $p_n n_n = n_i^2$ n=N_D $p_n = n_i^2 / N_n$ **Charge Carriers** free electrons: **majority carriers** holes: **minority carriers**

If f.e. are removed to equalize holes and f.e. The region becomes depleted (poor cond.) The region becomes positively charged

Doped Silicon: With Boron (5)

P-type Silicon: Doped with Boron (Acceptor) Excess of holes (positive) p_p=N_A Donor Concentration $p_p >> n_p$ $p_p n_p = n_i^2$ $n_p = n_i^2 / N_A$

Charge Carriers holes: majority carriers free electrons: **minority carriers**

If holes are filled to equalize holes and f.e. The region becomes depleted (poor cond.) The region becomes negatively charged

Review (Silicon):

- Silicon lattice (intrinsic, covalent bonds).
 - **OK no charge carriers.**
 - >0K free electrons (negative), holes (positive). n: concentration of free electrons.
- - **p: concentration of holes.** p=n=n; which is a function of Temperature.
 - **Current (two types)**
 - **Drift charge moving due to electric field.**
 - **Diffusion charge moving due to heat and** concentration gradient.
 - Intrinsic silicon even at room temperature does not have a sufficient amount of charge carriers to be a good conductor

Review (Doped Silicon):

- N-Type: use Phosphorus to add extra electrons.
 - Majority carriers: f.e. $-n_n = N_D$
 - Minority carriers: holes $-p_n = n_i^2/N_D$
 - Depleted
 - Remove f.e. to equalize n and p.
 - Results in a positive charge.
 - P-Type: use Boron to add extra holes.
 - Majority carriers: holes p_p=N_A
 - Minority carriers: f.e. $-n_p = n_i^2/N_A$
 - Depleted
 - Add f.e. to fill holes and equalize n and p.
 - Results in a negative charge.

d extra electrons. J_D =n;²/N_D

n and p. rge.

holes. =N_A 2/N_A

equalize n and p. arge.

n(x),p(x)

Diffusion Current

Net Charge

E-field

Drift Current

n(x),p(x) Diffusion Current

NONE

Drift Current

Depletion Region

Majority Carriers

Minority Carriers

Diffusion Current (anode to cathode) Majority Carriers Significantly blocked by the depletion region voltage. **Dependent on voltage (overcome the depletion region voltage).**

Drift Current (cathode to anode) Minority Carriers Not dependent on e-field, but rather the small number of available charge carrier. Significantly reduced by small number of minority carriers. **Relatively constant.**

Diffusion and Drift Currents are in opposite directions.

 $\mathbf{i}_{D} = \mathbf{i}_{Diffusion} - \mathbf{i}_{Driff}$

Diffusion Current Majority Carriers Significantly blocked by the depletion region voltage. **Dependent on voltage (overcome the depletion region voltage).**

Drift Current

Minority Carriers Not dependent on e-field, but rather the small number. Significantly reduced by small number of minority carriers. **Relatively constant.**

Forward Biased PN Junction. $v_{\rm D}$ is from P to N, opposite that of the depletion region voltage. **Diffusion current increases.** The solution to a diffusion equation is an exponential.

 $i_{diffusion} = Kexp(v_D/nV_T)$

Diffusion Current Majority Carriers Significantly blocked by the depletion region voltage. **Dependent on voltage (overcome the depletion region voltage).**

Drift Current

Minority Carriers Not dependent on e-field, but rather the small number. Significantly reduced by small number of minority carriers. **Relatively constant.**

Reversed Biased PN Junction. $v_{\rm D}$ is from N to P, enhances that of the depletion region voltage. **Diffusion current is pushed to near zero. Drift current is constant.**

i_{drift} = I_S

Diffusion Current Majority Carriers Significantly blocked by the depletion region voltage. **Dependent on voltage (overcome the depletion region voltage).**

Drift Current

Minority Carriers Not dependent on e-field, but rather the small number. Significantly reduced by small number of minority carriers. **Relatively constant.**

Diffusion and Drift Currents are in opposite directions.

 $i_{D} = Kexp(v_{D}/nV_{T}) - I_{S}$

Passive device $i_D(0) = 0$, so $K = I_S$.

 $i_{\rm D} = I_{\rm S}(\exp(v_{\rm D}/nV_{\rm T}) - 1)$

$I_{n} = A \cdot q \cdot D_{n} \cdot n_{p}'(x)$ $n_{p}(x) = n_{p0} + n_{p0} (e^{V/V_{T}} - 1) e^{-(x_{p} - x)/L_{n}}$ $n_{p}(x), p_{n}(x)$

Diffusion Current

Net Charge

E-field

Drift Current

 $I_{S} = Aqn_{i}^{2} \left(\frac{D_{p}}{L_{n}N_{D}} + \frac{D_{n}}{L_{n}N_{A}} \right)$

Depletion Region

$l_{p} = -A \cdot q \cdot D_{p} \cdot p_{n}'(x)$ $p_{n}(x) = p_{n0} + p_{n0} (e^{V/V_{T}} - 1) e^{-(x - x_{n})/L_{p}}$

Majority Carriers

Minority Carriers

Diffusion Current Majority Carriers Significantly blocked by the depletion region voltage. **Dependent on voltage (overcome the depletion region voltage).**

Drift Current

Minority Carriers Not dependent on e-field, but rather the small number. Significantly reduced by small number of minority carriers. **Relatively constant.**

PN Junction in Breakdown. $v_{\rm D}$ is from N to P and is very large. v_{D} is sufficiently large (negative) to break covalent bonds (Zener).

Rush of free electrons.

Electrons collide with other bonds freeing those electrons (Avalanche).