Instruction: You must show all your work clearly for credit. Partial credit will only be given to meaningful answers.

1. (12) When implementing an ADT for a set of records S, $|S| = 2^6$, it is determined that a find operation, find(x, S), will requires 0.5 ms (10^{-3} s) to execute. If the complexity of the find operation is given by the following closed-form expressions $T(n)$, compute the time required to execute this operation when $|S| = 2^{16}$.
 (a) $T(n) = 560$.
 (b) $T(n) = n \log n$.
 (c) $T(n) = n^2 \log n$.
 (d) $T(n) = n^3$.

2. (6) If an algorithm requires 0.5 ms to solve a problem with input size of 100, how large a problem it can solve in 1 min if the complexity of the algorithm is given by the following function $T(n)$ in closed-form?
 (a) $T(n) = n$.
 (b) $T(n) = n^2$.

3. (10) Given the following algorithm for finding the two largest integers in an array $A[1..n]$ of n distinct positive integers. Base on the number of comparisons between elements in A, compute $T_B(n)$ and $T_n(n)$. You must justify your answer and show your work clearly for credit.

```plaintext
    then   largest = $A[1]$;               
            $s_{\text{largest}} = A[2]$
            $s_{\text{largest}} = A[1]$
endif;

    if $A[i] > s_{\text{largest}}$   // $A[i]$ is one of the two largest integers
        if $A[i] > $largest        // $A[i]$ is the current largest integer
            then  $s_{\text{largest}} = $largest;
                     largest = $A[i]$
            else    $s_{\text{largest}} = A[i]$
        endif
    endif
endfor;
```
4. (10) Assuming that all basic operations require the same constant cost C, by concentrating on the dominating step(s), compute the cost of the resource function $R(n)$ for the following program segment in closed-form.

```plaintext
x = 2;
y = 10;
for i = 1 to n do
  for j = i to n do
    y = x * y / 2;
  for k = 1 to j do
    x = x + y - 10;
endfor;
endfor;
endfor;
```

5. (7) Let A_1 and A_2 be two algorithms with closed-form complexity $T_1(n) = 10n^2$ and $T_2(n) = 499n + 50$. Find smallest integer n_0 such that for all $n > n_0$, algorithm A_2 will always be more efficient than algorithm A_1.

6. (7) Use the definition of big-O to prove or disprove that $2^{2^n} = O(3^n)$.

7. (7) Prove or disprove that if $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$, the $T_1(n) + T_2(n) = O(f(n))$.

8. (7) Prove or disprove that if $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$, then $\frac{T_1(n)}{T_2(n)} = O(1)$.

9. (10) Use the definition of big-Θ to prove that

$$\frac{2n^4 - n^3 - 5n^2 + 4}{n^2 - 6n + 7} = \Theta(n^2).$$

 (a) By using the hash function $h(x) = x \mod m$ and chaining with singly linked list in constructing an open hash table H with $m = 11$ buckets, insert a set of 7 records with keys 35, 28, 43, 17, 39, 3, and 46, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit. Remark: Insertion must be done at the beginning of the list.

 (b) By using the hash function $h(x) = x \mod m$ and quadratic probing in constructing a closed hash table H with $m = 11$ buckets, insert a set of 7 records with keys 35, 28, 43, 17, 39, 3, and 46, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit.

 (c) Given two hash functions $h(x) = x \mod m$ and $h^+(x) = p - x \mod p$. By using open addressing with $f_i = i \cdot h^+(x)$ and double hashing in constructing a closed hash table H with $m = 11$ buckets and $p = 5$, insert a set of 7 records with keys 35, 28, 43, 17, 39, 3, and 46, in the given order, into H. You must show your computations for locations and illustrate the final structure of your hash table H clearly for credit.