
Metaview: A Tool for Learning About Viewing in 3D

James R. Miller
Electrical Engineering and Computer Science

1520 W. 15 Street; 2001 Eaton Hall
Lawrence, KS 66045

1-785-864-7384

jrmiller@ku.edu

ABSTRACT
Metaview is an interactive tool that helps to teach concepts related
to nested 3D coordinate systems, especially in the context of
defining and establishing views of 3D scenes in common graphics
APIs like OpenGL and Direct3D. We describe the context in
which nested coordinate systems arise in the study of graphics
programming, then we relate the common conceptual difficulties
students typically experience when studying and trying to put this
material into practice. We then describe the role that metaview
plays in helping to overcome these problems. Space allows us
only to describe its core uses in these areas; several of its
additional features are briefly listed at the end. Metaview is
packaged with a set of built-in 3D models used to demonstrate
major concepts. In addition, external and/or student-programmed
models are easily imported into the tool. Metaview can be run
anywhere, anytime using Java Web Start. The latest released
version of the tool can be executed from
http://people.eecs.ku.edu/~miller/JOGL/metaview.jnlp. We are
currently working on a port to OpenGL ES targeted for portable
smart devices such as tablet computers.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– distance learning

K.3.2 [Computers and Education]: Computer and Information
Science and Education – computer science education; self-
assessment

General Terms
Design, Experimentation, Human Factors.

Keywords
Computer-aided Learning; Educational Technology; Computer-
Graphics; Self-paced learning.

1. INTRODUCTION
Learning how to employ a 3D graphics API like OpenGL [10] or
Direct3D [8] to generate specific desired views of 3D models

seems to be a difficult skill for typical upper level undergraduates
to master. Users of turnkey 3D modeling systems frequently
experience analogous challenges when trying to understand how
to build, view, and animate a 3D model. Especially problematic is
the case when a 3D model (or the piece of it in which we are
currently interested) has unequal dimensions with respect to the
coordinate axes and/or is not near the origin of the coordinate
system. In such cases, the graphics programmer must understand
and bring to bear a solid understanding of how the various
coordinate systems used by the graphics engine (most notably, the
world and eye systems whose definitions are reviewed below) are
specified as well as how they relate to one another and to the
coordinate system of the display device.

Our Introduction to Computer Graphics course is targeted towards
senior undergraduates, although there will typically be some
beginning graduate students as well. No prior knowledge of
computer graphics is assumed. There is no formal laboratory
associated with the course, however students complete about four
programming projects that require increasingly sophisticated uses
of OpenGL. After quite a few years teaching this course, a
number of conceptual problems related to viewing in 3D have
been observed to cause high levels of frustration for students. This
paper describes the design and use of metaview, an interactive
graphics tool designed to help students achieve a deeper
understanding of viewing in 3D in the context of a conventional
graphics API.

Before they begin using the metaview tool described here,
students learn about basic 2D graphics concepts including
defining geometry, using window-viewport transformations,
modeling transformations, handling events, creating animations,
and so forth. The first two projects allow them to use these
concepts in practice, and they generally do very well. However,
the transition to 3D is a significant one. Lectures and assigned
readings from the text (currently [1]; formerly [6]) describe the
major concepts, but experience has shown that, even when warned
about the quantum jump in difficulty they will see with their first
3D project, many students ignore this, only to achieve high levels
of frustration as they labor late into the night a day or so before
the due date.

Of course an enormous amount of related information and
examples can be easily located on the internet, but as noted in [5],
this more often than not simply serves to confuse them even more
because the examples often include certain advanced features not
yet discussed in class that have non-obvious side effects and/or
additional requirements that students don’t notice or don’t
understand.

Spending meaningful time learning concepts and completing
projects is vitally important to mastering the material [11]. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02...$10.00.

135

goal of this effort was therefore to provide an easy-to-use
interactive learning tool that is accessible whenever and wherever
students find themselves working that can help them over some of
the major stumbling blocks in 3D modeling and viewing, for
example, achieving expected views of 3D objects, both when
generating still images as well as animated sequences such as 3D
walk-throughs.

When helping the student make the connection between the
viewing abstraction and a programming construct, a specific
graphics API had to be chosen. Two obvious candidates were
OpenGL [10] and Direct3D [8]. Moreover, two styles are
common in OpenGL: classical v2.1 with routines like gluLookAt,
and the more modern v3.3 and later in which gluLookAt and many
other routines have been deprecated along with the fixed function
pipeline. There is a 1-1 mapping between the viewing-related
functions in OpenGL 2.1 and their counterparts in Direct3D.
Moreover, even in OpenGL 3.3, it is common for programmers to
use their own versions of analogous routines. In the end, we chose
to use generic names and formal parameter calling sequences,
based loosely on the OpenGL 2.1 conventions since we use
OpenGL in classes here. Obviously it is trivial to alter these
mappings for other environments.

2. RELATED WORK
Significant real estate is allocated in common textbooks to the
development of an intuition for viewing in 3D (e.g., [1, 6, 10]). A
typical textbook starting point for this intuition is to introduce and
develop a camera analogy. Figures illustrate moving the camera
around, sometimes with attached depictions of coordinate system
axes, and snapping pictures. Sometimes the development of the
intuition is intermixed with the mathematics and/or computer code
representing one way to carry out the operations.

Since the presentation is static in the textbook, students are of
course unable to try different viewing orientations or incorporate
their own models. Experience with metaview has shown that the
ability to interact with the viewing abstraction seems to enhance
the ability to master the relationships among the coordinate
systems. Coupled with a small set of key text displays that are
kept in sync as the student directly manipulates key graphical
abstractions, this knowledge is then more quickly transferred to an
understanding of how to use a given graphics API to achieve
desired views.

An early inspiration for the tool described here came from
illustrations in [6] in which photographs of hands holding tinker
toys were used in an attempt to make the relationship among the
various coordinate systems concrete. After trying that exact
technique once in class here, it was obvious that it was helpful to
have a physical abstraction that was not restricted to the pages of
the textbook. At the same time, it was also obvious that so much
more could be done if the abstraction were a bit more flexible and
embedded in a more powerful interactive framework.

The birth and evolution of metaview began shortly thereafter, now
just over a decade ago. It started as a simple C++-based OpenGL
program with a single object (the “XYZCube” that is now a part
of the startup screens), using the GLUI [9] for interactive controls.
The initial goal was to make the tinker toy idea a bit more
interactive as well as to make some visuals for lectures and
handouts. After the first couple of years, I noticed students being
more engaged in those lectures and asking better questions. Some
of the feedback I received was that they wanted to be able to run
the program themselves outside of class and incorporate their own

(or at least other) models. Unfortunately, it had never been
designed for use by anyone other than the instructor, and it was
incomplete and idiosyncratic in operation.

After spending some time making the tool a bit more robust and
intuitive, I made it available on the machines allocated to the
course. This proved useful, but was not nearly as effective as had
been hoped, largely because by that time students were
increasingly using their own machines and resisted trips to the lab
just to use this tool. The answer seemed to be to make it available
on their machines, but that immediately led to innumerable
problems related to different operating systems and a host of
configuration issues.

The emergence of Java, Java OpenGL (JOGL), and Java Web
Start led to what ultimately proved to be a viable solution. The
original tool was completely redesigned and redeveloped in
Java/JOGL, using Swing for the GUI. Many additional features
were added (and continue to be added) as well, and the result is
the version described in this paper.

While this evolution of metaview was occurring, other interactive
tools appeared. Three-dimensional modeling toolkits including
Maya [2] and Blender [3] had appeared, providing the ability to
create and animate elaborate 3D models. Instructors at a few
universities had started to use these and similar tools to present,
teach, and explore these concepts in an interactive setting.

We learned more recently of two other comprehensive interactive
educational systems that were evolving over the same period of
time. The Brown University Computer Graphics Research Group
is actively developing the Exploratory Project [4]. The long-term
goal is to develop a rich set of learning modules for a variety of
topics. Their current products include tools for teaching 3D
graphics concepts such as those presented here.

The system described by Hunkins [7] consists of a set of
interactive OpenGL-based programs used to illustrate and teach
3D graphics concepts such as those targeted by metaview. The
version described in [7] is written in C++ using the C binding to
OpenGL 2.1 and is supported on Windows machines. Hunkins
referred to development of a Java-JOGL version as well [7].

3. MAIN CONTRIBUTIONS OF THIS
EFFORT
As noted in the previous section, there are many books, articles,
and online tutorials that include static pictures and descriptions of
this process. There are also some interactive tools that have been
employed. Unique aspects of metaview include:

• It can be used as a platform independent and completely
turnkey system. The application downloads and launches
automatically via Java web start following, for example,
clicking on a link in a web page. This avoids platform-specific
installation issues and involvement of system administrators. It
also makes it readily accessible to non-programmer users.
Access to the metaview system is freely available to anyone.

• In addition to using numerical spinner controls, students can
directly manipulate the graphical abstractions of the viewing
parameters. They can click and drag the eye, the center of
attention, and all the other parameters reviewed and discussed
below. Regardless of whether students type new values or
directly manipulate the graphical abstractions, both are kept in
sync by the system. Direct manipulation of certain quantities
(e.g., the view frustum) is correctly constrained to maintain its

136

proper orientation with respect to the eye coordinate system.
Other quantities are unconstrained, but they are allowed to be
constrained. Constraining how the eye point can be dragged, for
example, allows it to be moved around without altering the
direction of the reference line of sight.

• In addition to normal orthogonal and perspective viewing,
metaview helps students learn the mechanics of stereoscopic
viewing by presenting a pair of eye points, each with its own
view frustum along with the two resulting left and right eye
images.

• The projection plane position is unrestricted. Metaview allows
the plane to be positioned anywhere inside the view volume.
This helps students understand and control phenomena like
motion parallax in animations.

• In addition to the models that come bundled with metaview,
users can import their own models into the metaview
framework, either by importing a Wavefront obj file or by
writing a simple pair of classes whose structure is documented
along with a complete example in the greeting page that
appears when the application starts. The latter is especially
helpful for students when trying to understand how to focus on
arbitrary portions of their own models.

• While originally developed to illustrate how viewing in
standard interactive 3D APIs worked, the tool can also be used
for a variety of other purposes such as visualizing issues related
to aliasing and antialiasing and understanding how the ray
tracing rendering paradigm works.

4. COORDINATE SYSTEMS AND
TRANSFORMATIONS
Before presenting the educational aspects of the metaview tool
and describing its use in class, some basic concepts must be
established so that the features of metaview will make sense to the
reader. Virtually all modern graphics APIs utilize multiple
coordinate systems. During rendering, vertices of primitives are
transformed from one coordinate system to the next until pixels on
the display covered by the primitives are determined. The typical
progression of coordinate systems through which each vertex
passes is, in order: modeling coordinates, world coordinates, eye
coordinates, normalized projection coordinates, and device (pixel)
coordinates. The names used by specific graphics APIs vary
somewhat, but conceptually they all use this same sequence. The

definition and use of the systems of primary interest to us here is
briefly reviewed below.

Modeling coordinate systems employ application-defined units
(e.g., centimeters, angstroms) and provide a basic reference frame
in which subcomponents of a model can be defined by assuming a
simple placement and orientation with respect to the modeling
system axes. A complete model can be assembled by creating a
hierarchy of modeling coordinate systems by successively placing
one or more systems inside of a parent system. The highest level
modeling coordinate system is called the world coordinate system.
Note that the geometry of this model is view-independent.

Once this view-independent model geometry has been defined,
creating a view of the model can be imagined as representing it in
a different coordinate system whose axes have specific
relationships with respect to the view and display device. This is
typically accomplished in two stages using two successive
coordinate systems. The first is called the eye coordinate system
and is defined so that a reference line of sight is along the
negative z-axis; the x- and y-axes are parallel to the horizontal and
vertical display device directions, respectively. The
transformation from world coordinates to eye coordinates is a
rigid one that simply re-orients and translates the model while
preserving the basic application units (e.g., centimeters). A
subsequent transformation accounts for the field of view, a desired
3D to 2D projection method (e.g., orthogonal or perspective), and
a mapping to a logical device coordinate viewport region.

For a variety of reasons, the field of view is defined in the eye
coordinate system; not in world coordinates. This seemingly
simple fact is one of the major sources of confusion experienced
by students, and it is therefore one of the more important
intuitions that metaview seeks to solidify.

When defining the view-independent structure of the model, a
graphics programmer is typically concerned only with modeling
and world coordinates, including how the various component
modeling systems are placed inside of one another. Students
generally have relatively little conceptual difficulty with this step.
On the other hand, significant conceptual difficulties often arise in
the next step as the programmer tries to generate desired views by
creating an appropriate world coordinate to eye coordinate
transformation and then using the resulting eye coordinate system
to define an appropriate projection system. It was to help with the
intuition and development of these two transformations that
metaview was originally designed.

	 	
	

Figure	 1(a):	 Positioning	 the	 eye	 (E)	 of	 a	 viewer	
and	 looking	 towards	 a	 center	 of	 attention	 (C).	
Both	 E	 and	 C	 are	 defined	 in	 the	 world	 coordinate	

system,	 shown	 here	 in	 blue.	

Figure	 1(b):	 From	 E,	 C,	 and	 the	 orientation	 of	
the	 viewer,	 the	 graphics	 system	 can	

automatically	 compute	 the	 eye	 coordinate	
system,	 shown	 here	 in	 yellow.	

Figure	 1(c):	 The	 view	
of	 the	 teapot	 as	 seen	
by	 our	 robot	 observer.	

	 	 	

137

4.1 Defining the World to Eye Coordinate
System Transformation
The physical analogy involves someone standing at some position
in the world coordinate space, looking towards another point in
the same space. This defines the reference line of sight mentioned
above. See Figure 1(a) in which we use a robot model as an
abstraction of our viewer or observer.

The reference line of sight is directed from the eye point towards
the center of attention and becomes the negative z-axis of the eye
coordinate system, and the position of the observer (more
precisely, the position of the observer’s eye) becomes the origin
of the eye coordinate system as shown in Figure 1(b). What the
robot viewer will see is shown in Figure 1(c).

For monoscopic views, the eye can be imagined as either the left
or the right eye; for stereoscopic views, we generate two eye
coordinate systems and two views, one for each eye. With this
background on coordinate systems and transformations between
them, we can begin our description of how metaview contributes
to the educational experience of students in graphics classes.

5. STUDENT LEARNING OBJECTIVES
Generating desired views of a 3D model is surprisingly hard for
beginning graphics programmers. It is even harder if the desired
view represents some arbitrary subset of their model. Oftentimes
it is straightforward for students to create basic views of simple
models because they can arrange to have the world and eye
coordinate systems being very similar to one another. When this
happens, it is almost irrelevant whether certain information is
given in one frame or the other, and in any event, simple trial and
error parameter tweaking quickly yields a reasonable view.
Unfortunately the students are left at this point without a real
understanding of what they have done or why it worked. Worse
yet, they often create such nearly identical systems without
realizing it. Then when they need to make a change – for example,
to focus on some detail in some remote location of their model –
they are totally baffled when the result is a blank screen. They
then revert to trial and error parameter tweaking using their
intuition, usually just making things worse. These problems are
often exacerbated if their model happens to have quite different
dimensions along the three world coordinate axes as illustrated in
some of the examples below.

The primary learning objective, then, was to help students more
quickly and efficiently master these concepts. The approach was
to provide an interactive tool with a variety of built-in self-test
features with built-in checks for correctness so that students could
access and learn anytime and anywhere. More specifically, the
learning objectives included:

• Develop the intuition surrounding how an observer relates to a
world coordinate system, how this relationship determines the
relationship between the world and eye coordinate systems,
and the significance of the fact that the view frustum is
defined in eye, not world, coordinates. It is over this latter
point that students especially stumble.

• Understand how to apply knowledge of the relationships
mentioned in the previous objective to an actual graphics API
(in our case, OpenGL [10]) so that desired views can be easily
and naturally generated.

• Understand how several other important imaging concepts
relate. Included are: parallel versus perspective projections,

controlling the amount of perspective distortion, impact of
placement of the projection plane on effects like motion
parallax in animations, image generation by projection versus
by ray tracing, aliasing and antialiasing.

• Encourage students to engage in meaningful self-assessment
of their understanding of these concepts in a variety of ways:

° Find and generate specific views of objects hidden in the
metaview program.

° Directly insert their own arbitrarily complex model (either
implemented in code or imported from a file) into the
metaview framework to explore how to create desired
views of all or parts of it.

6. TOOLS, METHODS, AND EXERCISES
DEVELOPED
When the program starts, the user sees the three windows shown
in Figure 2. The window on the bottom is a tabbed Control Panel
with several exploration, annotation, and self-test features. The
tab initially shown is a general greeting that begins with an
explanation of the motivation and context for the metaview tool.
This greeting explains that the window on the left (labeled
“View”) always contains a rendering of a 3D scene with some
assumed line of sight, field of view, and projection type. The
window on the right (labeled “Metaview”) is a visual abstraction
of how the view on the left was determined. It goes on to explain
that the robot is an abstraction of the viewer, and the “View”
image on the left is what the robot “sees” when viewing the model
as indicated. The “Metaview” window contains a static text label
at the bottom explaining to the user that the world coordinate axes
are shown in blue, while the eye coordinate system axes are in
yellow. This text will be suppressed in the rest of the figures in the
paper. There are also dynamic text labels on the bottom of the
“View” window that will be discussed later.

Figure 2: The three windows of the metaview program when

the program launches.

The basic interactive controls are also described in the greeting
tab. Included is a description of how the mouse works in the
metaview window and what controls are to be found in the other
tabs of the control panel.

138

6.1 Tools for Visualizing Relationships among
World and Eye Systems and the Frustum
In their initial study of 2D graphics, students learn about the world
coordinate window, a rectangular subset of the xy-plane such that
only that portion of a model inside the window will actually
appear on the display. The analog in 3D is the view frustum,
drawn as a yellow truncated pyramid in Figure 3(a). While the
basic role is the same (i.e., only that part of our 3D scene lying
inside the frustum will appear on the display), the important
difference is that the frustum is defined in the eye coordinate
system in 3D. (It actually is defined in eye coordinates in 2D as
well, but the default 3D-related view parameters are such that the
typical 2D programmer is not aware of the fact.) As mentioned
earlier, internalizing and truly understanding this fact is often
difficult for students. The metaview approach to conveying this
idea is discussed next.

Three quantities uniquely define the eye coordinate system: the
eye point (E), the center of attention (C), and an orientation
determined by a so-called “up” vector. The component of the
“up” vector perpendicular to the reference line of sight determines
the positive y direction of the eye coordinate system. Once the
programmer provides E, C, and up (e.g., as shown in Figure 3(a))
the graphics system computes the x, y, and z eye system axis
directions – also shown in Figure 3(a) – which determine the
orientation of the “View” image shown in Figure 3(b).

One exercise students perform is to modify the viewing
parameters by direct manipulation. For example, starting with the
configuration in Figure 3(a), the student can grab the observer and

drag it around in world coordinate space (Figure 3(c)). What is
observed while doing so is that (i) the xyz eye coordinate axes
move rigidly along with the observer, and (ii) the frustum also
rigidly moves with the observer and eye coordinate system.
Meanwhile, the “View” image in the “View” window always
shows what the observer currently sees (Figure 3(d)).
Continuously updated text labels at the bottom of the View
window show “lookAt” and projection function parameters
corresponding to the current position of the observer. Even though
the frustum moves with the observer, the students see that only the
numeric values for “lookAt” actually change while dragging the
observer around. The combination of these observations clarifies
the meaning of and cements the idea that the view frustum is
defined in eye coordinates.

The role of the up vector is also sometimes hard for students to
grasp. For example, the fact that it is just a reference direction
used to determine the actual eye coordinate system y axis – i.e.,
up is not necessarily equal to y – is confusing. Its role is to fix the
degree of freedom corresponding to a rotation of the viewer about
the eye coordinate system z-axis. Starting with the situation
depicted in Figure 4(a), for example, the student observes that
certain types of changes to the up vector have no effect on the eye
coordinate system (and hence the view frustum) whatsoever.
Specifically, any changes to the up vector that do not change the
plane containing E, C, and up, and that leave the up vector on the
same side of the line of sight in that plane will have no effect.
Compare Figure 4(a) to Figure 4(b). The up vectors differ, but the
resulting eye coordinate systems are the same, hence the resulting
image (Figure 4(c)) is the same in either case. Changes that do not
alter the plane, but lead to the up vector being in the opposite half
of the plane turn the observer on its head (Figure 4(d)), producing
the view of Figure 4(e).

7. DISCUSSION
Space constraints limit the features of metaview we can discuss.
In addition to the core features described, metaview facilitates an
understanding of different projection types; what influences and
how to control the amount of perspective distortion; stereoscopic
viewing in which two frustums and two View images are
presented; aliasing and antialiasing techniques; ray tracing; and
issues related to parallax. Moreover, students can easily add their
own models to metaview, either programmatically or via
Wavefront obj files.

In addition, there are several exploration, self-test, and self-
assessment features in the Control Panel tabs that could not be
completely described here. For example, several models are

	 	

Figure 3(a); E, C, up define the Eye
Coordinate System	

Figure 3(b): The “View” from 3(a)	 Figure 3(c): Interactively dragging the
observer to another location

Figure 3(d): The “View” after the direct manipulation in (c).

139

“hidden” in the environment. Students can query the world
coordinate bounding box for such objects and then test their
understanding by manually setting viewing and projection
parameters to try to obtain specified views of the hidden objects.
For example, “generate a view of the rear of the castle, using an
approximate line of sight from the red turret towards the flag”.

While no formal user study has been performed, we have solicited
anonymous feedback from students from the past few offerings of
the course. The feedback has generally been positive, exposed
some bugs that have been corrected, and led to some useful
usability improvements, both to the metaview program itself as
well as to a web site often used in conjunction with the program.

8. FUTURE DIRECTIONS
While the Java Web Start mechanism used for launching the
program has proven to be very effective, the emergence of
portable smart devices like tablets has made it clear that an
OpenGL ES version should be developed. Such devices do not
currently support (and may never support) Java Web Start, hence
design for an OpenGL ES port is underway.

Also underway is design and development for functionality that
will allow interactive placement of light sources of various types.
Among other things, goals include understanding the implications
of light source placement in various coordinate systems, most
notably world versus eye.

9. ACKNOWLEDGMENTS
The work described here was supported in part by the National
Science Foundation under Grant No. 0633016. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the
views of the National Science Foundation. I would also like to
thank the creative and mostly anonymous designers that make
their models freely available for use without restriction. The
saloon and stagecoach models used here were obtained from
www.sharecg.com. Other such models are packaged with various

versions of metaview, and the “Info” display for those models
acknowledges their source.

REFERENCES
[1] Angel, E. 2012. Interactive Computer Graphics: A Top-

Down Approach With Shader-Based OpenGL. Addison-
Wesley, Boston, MA. (6th edition).

[2] Autodesk. 2011. Autodesk Maya. Retrieved October 16, 2011
from http://usa.autodesk.com/maya.

[3] Blender. 2011. Blender. Retrieved October 16, 2011 from
http://www.blender.org.

[4] Brown. 2011. Exploratories. Retrieved October 16, 2011
from http://www.cs.brown.edu/exploratories.

[5] Colace, F. and De Santo, M. 2010. Ontology for E-Learning:
A Bayesian Approach. IEEE Transactions on Education 53
(May 2010), 223-233.

[6] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.
1990. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, MA, (2nd edition).

[7] Hunkins, D. 2011. Computer Graphics: An Interactive
Introduction with OpenGL. Retrieved October 16, 2011 from
http://cgems.inesc.pt/ModuleInfo.aspx?id=79.

[8] Luna, D. 2008. Introduction to 3D Game Programming with
DirectX 10. Wordware Publishing, Inc., Plano, Texas.

[9] Rademacher, P. 2011. GLUI User Interface Library.
Retrieved October 16. 2011 from
http://www.cs.unc.edu/~rademach/glui/.

[10] Schreiner, D., Woo, M., Neider, J., and Davis, T. 2008.
OpenGL Programming Guide. Addison-Wesley, Boston,
MA. (6th ed.).

[11] Wolf, T. 2010. Assessing Student Learning in a Virtual
Laboratory Environment. IEEE Transactions on Education
53 (May 2010), 216-222.

	

	

Figure 4(a): The original viewing
parameters.	

Figure 4(b): (TOP) An up vector change
that has no effect

Figure 4(c): (BOTTOM) “View” for
settings shown in both 4(a) and 4(b)	

Figure 4(d): An up vector setting that
flips the viewer upside down.

Figure 4(e): (BOTTOM) “View” for
settings shown in Figure 4(d)

140

