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ABSTRACT 
Scientists, engineers, and decision makers in a wide 
variety of fields are faced with the problem of visualizing 
the effect of multiple parameters on quantities of interest. 
Oftentimes a model of some physical system is involved 
in which the participants are interested not only in the 
model results, but also how the various driving 
parameters of the model have influenced that result. 
Moreover, the data sources and models have uncertainties 
associated with them. It is generally important to be able 
to visualize those uncertainties, and especially to be able 
to quickly focus on areas where there is considerable 
disagreement. In this paper, we review the use of a new 
visualization technique called Attribute Blocks and 
demonstrate how this can be used to visualize uncertainty 
in multiple driving model parameters simultaneously. 
KEY WORDS 
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1.  Introduction 
 
Multidimensional multivariate visualization refers to the 
visualization of n attributes as a function of their position 
in d-dimensional space [1, 2, 3]. A variety of visualization 
and exploration tools have been investigated, both for 
navigating the d spatial dimensions as well as for 
presenting how the n attributes vary across the d-
dimensional spatial domain. 

Attribute Blocks form the basis of a visualization 
technique in which a regular array of cells are employed, 
one cell being used to visualize the variation of a single 
attribute across the small region covered by the cell [4]. 
Originally conceived as a tool for visualizing the 
continuous variation of multiple independent parameters 
across some region of interest, we noticed that visualizing 
the same parameter derived from different sources 
provided an effective mechanism for visualizing the 

inherent uncertainty involved in using those data. 

In this paper we briefly review the concept of uncertainty 
in scientific models, then we demonstrate the use of 
Attribute Block displays to visualize this uncertainty. 

2.  Previous Work 
The backdrop for the work presented here is 
multidimensional multivariate visualization in scientific 
and engineering contexts. There is an extensive literature 
in this area which space does not permit us to review in 
depth here. Some starting points into the literature include 
the general surveys by Wong and Bergeron [1], de 
Oliveira and Levkowitz [2], and Love [3]. Slocum’s text 
[5] provides a cartographic perspective as well as an 
extensive survey of a variety of methods. 
The area of uncertainty modeling and visualization is also 
a well-studied problem. Early surveys by MacEachren 
[6], Pang [7], and Gershon [8] are good starting points. 
More recent methods are described by Johnson and 
Sanderson [9] and MacEachren [10]. 
One traditional method of displaying multiple attributes 
(or uncertainty in a single attribute coming from multiple 
independent sources) is to use side-by-side (or small 
multiple) displays. Each display covers the same region of 
space, but shows different attributes or data sources. The 
user forms a mental image of the combined displays in 
order to visualize the values of all the attributes at a given 
location [5]. 
When the entire visualization is present in a single 
display, we eliminate the need for the user to shift their 
gaze from display to display, but we pay for this by 
creating a generally more complex single display that 
presents n attributes across the entire spatial region of 
interest. 
An icon-based representation of multiple attributes has 
been developed by Healey based on what he calls 
perceptual texture elements (pexels) [11]. A pexel is a 
polygon of fixed width whose height and color can be 
used to encode attribute values at a given location. 
Moreover, based on studies of how the human visual 
system perceives and analyzes texture and patterns, 

 



Healey exploits the fact that density and regularity of 
pexels can also be used to encode additional attributes. 
Three levels of regularity are identified: regular, irregular, 
and random. Given sufficient numbers of pexels, it is 
possible to perceive changes in the density of pexel 
placement, independent of regularity [11]. 
 
We have developed an alternative approach based on 
Attribute Block displays, an interactive arrangement of all 
or a selected subset of the n attributes into a dynamically 
configurable kr x kc array [4]. Each element of the 
Attribute Block array encodes a single attribute value. All 
attributes are defined everywhere; the Attribute Block 
array simply acts like a “screen door” of lenses, each 
allowing a single attribute value to be seen at the specific 
location. The dimensions of each “lens” – denoted br x bc 
– are also dynamically adjustable. The current kr x kc array 
of br x bc lenses is then tiled across the entire region 
 
3.  Using Attribute Blocks for Uncertainty 
Visualization 
 
Cliburn, et al. developed and described several techniques 
for visualizing uncertainty in computational climatology 
models, both with and without climate change predictions 
[12]. Here we demonstrate how Attribute Blocks can be 
used to rapidly identify areas of a display where 
significant differences in predicted behavior exist. 

 

Figure 1: Visualizing uncertainty in temperature and 
precipitation inputs 

Two critical driving parameters of the water balance 
model are temperature and precipitation. There are many 
different sources for this data, each typically starts from 
different raw data sources, and each typically uses 
different interpolation algorithms with various 
assumptions to obtain measures of these data at grid 
points throughout a region. To better understand how 
confident we can be with the predicted water balance 

results in a region, we need to visualize the extent to 
which there is agreement or disagreement with the values 
for various critical input data. In figure 1, we see a display 
of two different temperature and two different 
precipitation data sources displayed across a region 
centered on India. The legend of figure 2 shows the 
template that is repeated across the display. 

 

Figure 2: The legend showing how the two different 
temperature and precipitation data source displays are 

tiled across Figure 1. 

From figure 2 we can see that alternating rows of the 
display will show temperature and precipitation inputs 
from the two different sources. Notice that we are using 
the same red color scale for the two temperature data sets. 
Similarly we are using the same blue color scale for the 
two precipitation data sets. Where they agree, we should 
therefore see a solid line segment (since the color scales 
are the same). Where they disagree, we will see 
alternating rectangles. By studying figure 1, we note that 
the two temperature predictions are in strong agreement 
across the bulk of India. In the mountainous region of the 
northeast, however, we see significant variations. This is 
not surprising since the two interpolation algorithms treat 
the altitude variations there very differently. 

We can also visualize uncertainty due to varying 
precipitation inputs from the same display. The ability to 
see both in a single display is one of the strengths of this 
approach. Specifically, we see very little disagreement in 
the northwest – both sources predict very little 
precipitation there – however we see rather a lot of 
disagreement throughout much of the rest of the country. 
This is most noticeable in the center of the country and 
the leading edge of the mountains in the northeast. 

One problem with the simple 2x2 arrangement used in 
figure 1 is that it is hard to detect which prediction is 
higher than the other. By altering the structure of the 



attribute block display, we can make the shapes of the 
cells sufficiently distinct so that it is easy to tell at a 
glance which is which. 

 

Figure 3: Using a 4x4 cell layout to make individual data 
sources more visually obvious. 

Consider the example of figure 3 in which corner 
sections, diagonals, and broken vertical bars are used to 
make the two pairs of data sources more visually obvious. 

 

Figure 4: The assignment of data sources to cells used in 
figure 3. 

The legend in figure 4 shows the actual assigned layout. 
The two temperature sources are displayed in two 
opposing corner layout orientations. One of the 
precipitation sources is laid out along a diagonal; the 
other appears as a vertical bar which is “broken”. That is, 
it shifts alternately to the right and left as it progresses 
from top to bottom. 

By comparing the legend with the main display, it is 
immediately obvious that in areas of precipitation 
uncertainty, the “LW_Gage” data is uniformly drier than 
the “CRU” data. The diagonal pattern stands out very 
well. 

Simple arrangement of the cells does not always work 
that well, however. For example, it is still a little difficult 
to determine which of the two temperature predictions is 
uniformly higher than the other. This is because the two 
opposing corner notches are blended together when the 
pattern is tiled across the display. We can overcome this 
problem by forcing a column and/or row divider line to 
appear in the background color. In the case of Figure 3, it 
suffices to introduce a single pixel wide column of 
background color between each column of Attribute 
Blocks. The image of figure 5 shows the result. 

 

Figure 5: Introducing a single pixel wide column between 
Attribute Block cells to make opposing notches clear. 

Notice that it is now immediately obvious that it is the 
“CRU” temperature data prediction that is uniformly 
lower than that of the “LW_DEM” data in areas such as 
the northeast where they differ. 

We can study more than two types of data at once and/or 
more than two data sources for each type. In the system 
described by Cliburn, et al. [12], for example, we actually 
alternated between using three different temperature and 
three different precipitation data sets. They each differed 
in terms of how they selected weather stations from which 
to obtain raw data, whether they applied corrections for 
known errors in the data, the interpolation algorithms 
used, and whether the interpolation took into account 
geographical differences between the weather stations 
such as the interposition of mountains. 



 

Figure 6: Using a 3x2 pattern of attribute block cells to 
show three temperature inputs and three precipitation 

inputs to the water balance model. 

The legend in figure 7 shows the assignment of data sets 
to cell locations in the Attribute Block display. 

 

Figure 7: The assignment of data sets to attribute block 
cell locations used in figure 6. 

Notice that the color scale creation strategy used 
throughout the paper is based on mapping minimal 
attribute values to background color and maximum values 
to the full red or blue. This has been found to be helpful in 
the context of our climatology visualizations because the 
greater the impact of a given parameter on the result, the 
more visually apparent it is in the display. 

In the context of the uncertainty presentation being 
described here, however, that makes it slightly more 
difficult in some areas of the display to see the corner 
notch structures. Specifically, it is sometimes harder to 

clearly identify which of the three temperature or three 
precipitation data values is the outlier.  In the display of 
figure 6, we have used a one-pixel wide row and column 
separator to overcome this problem. Now it is apparent 
that, with the exception of a few areas (for example, in the 
central northern border region of the data set), the “CRU” 
predictions for precipitation are uniformly wetter than 
those for the other two. 

Similarly, with a few exceptions, it is clear that the 
“LW_DEM” data is generally warmer than the other data 
sets in areas where they disagree. 

This tool is able to point out systematic differences such 
as these. Notice that there is no claim that one data set or 
the other is “more correct” in areas of difference. This 
tool can simply be used to highlight high areas of 
uncertainty, thereby allowing the scientist to quickly be 
able to determine areas that perhaps require additional 
study. 

4.  Implementation 
 
This system is designed to be used as a highly interactive 
exploratory tool. One needs to be able to rapidly alter the 
configuration of cells (i.e., the number of rows and 
columns in the template) as well as the specific 
assignment of attributes to cells. Moreover, we need to be 
able to dynamically alter the display size of each cell. 
Most of the images in this paper were generated using 
attribute block cells of size 6x6 pixels. 

Our approach is based on using the programmable shader 
facility of the OpenGL graphics API [13]. We define 
OpenGL/GLSL attributes for each type of data in a given 
data set. We then define their values at vertices of 
polygons sent to the display. All attributes are therefore 
defined everywhere throughout the display. In our 
fragment shader, we calculate where we are in the generic 
Attribute Block template based on the current pixel 
coordinates, the pixel size of the attribute block cells, and 
the current numbers of rows and columns in the Attribute 
Block template. 

The ability to relegate all these operations to the vertex 
and especially the fragment shader enabled the 
decoupling of Attribute Block cells from the geometry 
definition and was critical to the successful 
implementation of these ideas. Moreover, the entirety of 
the C++ program itself is completely independent of the 
actual data. Our data file begins with a short header that 
describes the data. The vertex and fragment shaders are 
then in separate files and employ the variable names 
identified in the data file. To use Attribute Blocks in a 
different context, one needs only design the data file 
header and modify the vertex and fragment shader files 
accordingly. 



Even modifying the vertex and fragment shaders is 
straightforward. Much of the code for operations like 
mapping a pixel location to an attribute index is itself 
independent of the data. For those portions that are data-
dependent (e.g., anything that involves the actual name of 
an attribute) we have a tool that automatically generates 
the code from the information in the data file header. 

The current Attribute Block template is communicated to 
the fragment shader via uniform variables passed from the 
OpenGL program to the GLSL shader. On the OpenGL 
side, each entry of the Attribute Block template has an 
associated popout menu that allows the user to 
dynamically alter the attribute assigned to that location. 
This triggers a redisplay, and the image is then 
immediately redrawn with the new attribute assignment. 

From the perspective of the fragment shader, Attribute 
Block cell sizes are always specified in pixel units.  In 
some applications, the user wants to fix these cell sizes in 
model space. When this is desired, the application 
computes at the beginning of each display callback what 
the pixel dimensions are based on the current field of 
view and viewport dimensions. In either event, the 
fragment shader simply gets (via “uniform variables” 
[13]) the current br x bc dimensions in pixel units. 

5.  Further Applications 
 
In the original water balance application from which the 
examples of this paper were derived, the primary 
parameters were temperature, precipitation, soil holding 
capacity, and potential evapotranspiration. These were all 
known (or computed) throughout a region at a certain 
time resolution (monthly averages, in our case). These 
quantities fed our computational water balance model, 
allowing us to approximate the water balance in the 
region at the same time and spatial resolution. 

The original visualization of this model was developed as 
the key portion of a collaborative decision support system 
[12]. That application focused on visualizing the 
computed water balance as well as our level of confidence 
in that final measure. But to adequately address the 
underlying goal of the effort – collaborative policy and 
decision making – it became clear we needed to 
understand not only where there was a deficit or surplus 
of water, but also get an idea as to why the surplus or 
deficit was there. From a policy making perspective, this 
understanding could provide insight into appropriate 
remediation strategies, if any. For example, we might be 
able to better understand whether irrigation might be 
appropriate to address a periodic chronic deficit in a 
region, or whether instead alternative land usage decisions 
should be made. Coupled with the ability to incorporate 
climate change predictions along with their uncertainties 
(which the system also modeled [12]), the tool could be 
especially helpful for policy makers. 

 

Figure 8: Visualizing the Water Balance Model 
Prediction Along With its Primary Driving Parameters 

The example of figure 8 uses a 3x3 attribute block display 
in which the leftmost column and bottommost row display 
the water balance using a diverging brown to background 
to green color scale. (See figure 9.) Brown indicates a 
water deficit; green indicates a water surplus; background 
colors indicate a balance between need and supply. The 
interior 2x2 portion of the 3x3 attribute block display 
shows the four primary driving parameters of the model: 
temperature (red), precipitation (blue), soil holding 
capacity (yellow), and potential evapotranspiration 
(cyan). 

 

Figure 9: The Attribute Block Cell Assignments for the 
display of Figure 8. 

The value of this display is that one can simultaneously 
visualize the calculated water balance along with getting 
insight into why there is a surplus or deficit in each area. 
In the Midwest, for example, the high soil moisture 
holding capacity has a clearly obvious effect on the high 
water surplus. In the southwest, we see how high 
temperatures and high water demand (potential 



evapotranspiration) combine with relatively low 
precipiation to produce a significant water deficit. 

6.  Summary 
 
We have described the Attribute Block visualization 
method, focusing on its applications in uncertainty 
visualization. As demonstrated in section 5, however, it is 
also generally useful for any sort of multivariate 
visualization application. 

While it is admittedly difficult to obtain a feel for the 
precise value of any given attribute at a particular location 
in an Attribute Block display, the strength of this method 
seems to be the ability to rapidly locate areas where one 
attribute or another is most dominant. In an uncertainty 
visualization context, we are able to quickly see areas 
where various predictions differ considerably. This is 
certainly an important visualization task. Moreover, it is 
clearly straightforward to address the need for 
quantitative measures by supplementing this technique 
with a “click and probe” tool which would allow precise 
values to be displayed in any of a number of ways for a 
given attribute at a selected location. 
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