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Abstract

We describe a collection of algorithms, visualizations, and interactive operations that allow
operators controlling the movement of a collection of sensors through an environment to
monitor in real time the portion of the environment that can or cannot be seen by some
subset of the sensors. The visualization allows preattentive detection of the number of
sensors that can see a given location, and the coloring allows the exact identities of the
sensors involved to be identified. Two primary ray tracing based algorithms are described.
A GPU implementation using CUDA is used that allows all scene updates and sensor
movements to be processed and reflected in the display in real time.

1.0 Introduction

Sensors and sensor placement play a central role in military as well as several other
general security applications. Such sensors play a critical role in applications related to
military situational awareness in combat zones and unfriendly urban areas. Other
examples include security cameras for homes and businesses [Garaas 2011], motion
detectors in sensitive areas, detecting dangerous materials dispersed into the air [Gruber
and Grim 2004], and many others.

Of particular importance in military applications involving unfamiliar environments in
which the presence of uneven terrain, buildings, and other major line of sight obstructions
exist is the ability to dynamically move a collection of sensors independently throughout an
environment while monitoring exactly which parts of the environment are visible to which
sensors. As sensors are moved, the field of view and line of sight analysis must be updated
and reflected in displays in real time.

In this paper we describe a pair of algorithms, each of which achieves these goals in slightly
different and potentially complementary fashions. One approach samples the field of view
of each sensor with lines of sight that are truncated at the first surface element
encountered. The other algorithm determines the portions of all surface elements in the
scene that can be observed by each sensor and “paints” the surface with a dynamically
generated colored texture pattern that allows preattentive observation of the number of
sensors that can see the area. The colors in the pattern identify the specific sensors that are
able to see each piece of surface area.

2.0 Previous Work

Several efforts have targeted various aspects of this general problem. Some methods
employ 2D algorithms, but to be effective in the sorts of applications we are addressing, the
analysis and display must be 3D, because it is important to take uneven terrain, buildings,
and other large structures into account when determining sensor visibility.



The most common 3D approach is to utilize ray casting in some fashion to simulate sensor
lines of sight. The challenge is to compute sufficiently detailed information in this way so as
to allow at least near real-time analysis while producing high quality and high resolution
results.

Livingston and Herbst described an interactive system that allows sensors to be placed in
an open environment and basic line of sight analysis to be performed [Livingston & Herbst
2005]. They can determine relationships such as which sensors have line of sight contact
with which other sensors. They can determine strings of sensors, each of which can “see”
the next sensor in the string. They can determine for a given area of the display how many
sensors can see into the area, taking terrain elevations and other properties of the ground
that may affect the physical operation of the sensors into account. They do not support
non-terrain features such as buildings, nor do they visually identify which sensors can see a
given area, only the number of them that can.

Becker described a method to automatically position a collection of sensors in an
environment so that all pre-determined critical areas are covered [Becker, Guerra-Filho, &
Makedon 2009]. It does not address sensor movement, nor does it attempt to quantify or
display the numbers or identities of specific sensors that can see a given area. Its analysis
leads to a purely binary “can or cannot be seen”.

Garaas presented an interactive tool for simulating the positioning of video cameras in a 3D
environment and determining and visualizing the overall coverage of the environment by
the collection of cameras [Garaas 2011]. Their approach differs from the others (and from
ours) in that it initially creates a voxel grid of some resolution enclosing the entire scene. It
then casts rays from a sensor’s field of view through the voxel grid, marking each voxel
encountered before hitting a surface. They track how many sensors have rays passing
through each voxel. Instead of painting the actual objects in the scene according to whether
they are visible or not, they “color” the open spaces (i.e., the voxels comprising the air)
according to the results of this visibility analysis. Several coloring schemes are supported.
For example, a voxel color might indicate the number of cameras that can see the voxel.
Alternatively, since their analysis is capable of tracking the range of angles from which a
given voxel can be seen, this range can be used to determine the voxel color. Regardless of
the specific scheme, the visualization appears as colored air in the open spaces. While this
approach is quite different from ours, the display we generate from the first of our two
algorithms is somewhat similar in appearance and information content.

The second of our two analysis algorithms leads to a characterization of those sensors that
are able to see each object vertex in our scene. We can use this to approximate the extent of
a given surface visible to a given sensor, and we will want to visualize not only the number
of sensors involved, but also be able to identify the exact ones. We use an approach based
on Attribute Blocks [Miller 2007] to present this visualization. Attribute Blocks are used to
map onto the surface of an object a visual representation of a set of n attributes whose
values are defined continuously across the surface. (In the case of the work here, the n
attributes will be visibility flags for n sensors.) The approach uses an OpenGL GLSL shader



program [Rost & Licea-Kane 2010] to dynamically generate and apply a texture whose
pattern encodes both the number of attributes being visualized as well as their current
values. It is especially effective in applications such as this where the exact quantitative
value of an attribute is not of primary importance (although we will show some
experimental results where this might be of some value), rather we are concerned with
identifying the number and identity of sensors that can see a particular portion of a surface.

The goal is to display a pattern that will allow preattentive determination of the number of
sensors that can see the area, and whose colors identify the specific ones. Ideally the
pattern should be comprised of regular polygons. To aid in analysis and help ensure equal
coverage, each atomic piece of the pattern should correspond to one sensor, and its
assigned Attribute Block cell should share an edge with that for each of the other sensors
that are also able to see that area. Arguments for the value of edge-sharing are echoed by
[Malik, Heinzl, and Groller 2010] who go on to describe a method based on a uniform tiling
of the plane with hexagons that they use for all values of n. Our approach uses instead
rectangular Attribute Blocks for the n =1, 2, 3, and 5 cases. The n = 4 case will be handled
using triangular Attribute Blocks. More complete details (as well as issues related to other
values of n) are described below.

3.0 Visibility Determination, Interaction, and Visualization

Our over-arching goal is to provide an interactive visual monitoring and directing tool for
operators, i.e., individuals who monitor the environment and interactively direct the
movement and orientation of the sensors. The operators can view the environment,
including the current positions and orientations of all sensors, and visualize those portions
of the environment that are or are not currently visible to the sensors. When sensor
coverage areas overlap, the visualization will indicate the number of sensors that can see
any given area and identify the exact sensors involved. Based on this information, the
operators can know how best to interactively reposition and/or reorient one or more
sensors (e.g., “drive them around the environment”). As these repositionings are executed,
the display is dynamically updated.

The sensor line of sight analysis must take into account potential blocking of all or part of
the sensor’s view by terrain, buildings, etc. [Livingston & Herbst 2005]. An additional
requirement for our application is that the line of sight analysis and display be dynamically
updated as sensors are moved throughout the environment.

To achieve real-time display updates, both algorithms we developed utilize GPU-based ray
casting. We developed our algorithms using the CUDA toolkit and libraries [NVIDIA 2011].
We first discuss the common representation of sensors used in this application, and then
we discuss the two major techniques developed and the visualization techniques used to
present the results of the analysis.

3.1 Input: Environment and Sensors

Our representation of the environment is straightforward, consisting of a collection of an
arbitrary number of abstract scene items. Each scene item consists of a piecewise linear



construct akin to OpenGL draw modes (triangle strip, triangle fan, etc.) The scene is read at
program startup time from a standard file format. The program does not currently
distinguish between buildings, terrain, or other objects - all surface elements are treated
the same - however it is possible to augment individual scene items with attributes that
might be relevant to certain types of sensors. We return to this idea at the end of the paper.

Figure 1: The geometry of the city used for the study. Four sensors are also shown.

The scene used to test the approaches in this paper is shown in Figure 1. We use a neutral
color with no texture mapping for now, primarily because we use color and texture for
displaying sensor visibility, and we do not want to confuse building color and texture with
that created based on sensor visibility.

The scene was constructed by a program of our own design that generates a pseudo-
random collection of “buildings” of various sorts placed on a terrain that can be configured
to include hills such as the one visible in Figure 1. We used this program in part for
performance testing purposes since the buildings and terrain can easily be generated with
an adjustable number of vertices (and hence triangles) per building allowing us to
experiment with increasingly complex scenes while watching the impact on performance. It
also allowed us to observe how the quality of results can improve with increasing vertex
density. Specifically, the second of the two algorithms described below operates on a per-
vertex basis, so increasing vertex densities produces higher resolution results, but at the
obvious cost of performance.

The program also supports sensors of different types. Currently, the primary difference is
how the family of sensor lines is determined. Sight lines from a spherical sensor start from
a common point (the sphere center). A spherical sensor may emit sensor lines in all
directions, or the lines may be restricted to a subset of the spherical surface defined by a
minimum and maximum 6 and ¢ angle. The sight lines for a cylindrical sensor are defined
over a finite subset of an infinite right circular cylinder. All sight lines from cylindrical



sensors are perpendicular to the cylinder axis. The third type of sensor is a planar sensor.
All sight lines for planar sensors are perpendicular to the plane and are restricted to a finite
rectangular area of the plane.

Figure 2: Samples of each sensor type along with a representation of their field of view.

The collection of sensors is read at program startup time. A simple file format is used to
read the relevant data. An arbitrary number of sensors can be specified. In Figure 2, we
have zoomed into the area of the sensors shown in Figure 1. The figure includes a sample of
each sensor type currently supported, and it specifically illustrates their respective fields of
view by showing a sampled set of sight lines emitted from the sensors.

3.2 Processing and Visualization

Once the environment and initial sensor descriptions have been processed, two pairs of
analysis and rendering algorithms can be used. One samples the field of view of each
sensor, tracing a dynamically configurable number of sight lines into the environment,



drawing the portion of each sight line up to its first point of obstruction. The other tests
each scene vertex with respect to the field of view of each sensor and the other surfaces in
the scene, associating a per-sensor visibility mask with each vertex. From this information,
an OpenGL GLSL shader program generates a dynamic colored texture that encodes the
exact set of sensors that can see each portion of the scene.

While we normally use one algorithm or the other at any one time, both could be used
together. Both algorithms rely on ray tracing, but the second is much more
computationally demanding. The following two sections describe each algorithm in turn.
Our CUDA-based GPU implementation of the two algorithms operates in real time as the
sensors are moved around the scene. Details are in section 3.3.

3.2.1 Algorithm 1: Sampling Field of View Sight Lines

A grid is imposed over the field of view of each sensor, and one line of sight ray is traced
through each grid point. The ray is traced up to its first intersection point with a surface in
the scene. Various display options are available for the trimmed sight lines. While quite
different in implementation than the voxel-based algorithm of [Garaas 2011] described
earlier, the displays often look similar in that they can be made to “color the open air
spaces” visible to given sensors as Figure 2 shows. This is especially obvious for the two
“planar” sensors of Figure 2.

3.2.2 Algorithm 2: Painting Surfaces with Dynamically Generated Visibility Textures

A two-stage CUDA-based algorithm is used to characterize, for each scene vertex, the exact
sensors to which it is visible. In the first stage, vertices are filtered according to the field of
view of the sensor. Those vertices found to be inside a sensor’s field of view are then
passed to the second stage of the algorithm in which a ray is traced from the sensor to each
vertex. The use of this two-stage algorithm allowed us to maximize use of bounding volume
techniques while minimizing the number of thread processors that sat idle because of early
out tests. At the end of the two-stage algorithm, a visibility bit mask is associated with each
vertex, and the bit for sensor i is set if and only if the vertex is visible to sensor i (i.e.,, if it is
inside the field of view, and no surfaces are found between the sensor and the vertex).

The per-vertex visibility flags are interpolated across the triangles of which they are a part.
The GLSL fragment shader receives these interpolated flags as floating point values
between 0 and 1 for each sensor. Each value can therefore be interpreted as a probability
that the pixel is visible to the corresponding sensor. The goal of the visualization is then to
convey the exact set of sensors that can see each portion of a building. The general
approach is to retain the neutral color of Figure 1 for portions of the environment invisible
to all sensors, and to color the rest according to the set of sensors to which they are visible.

Since we can interactively turn individual sensors off and on, we could cycle through
(automatically or under user control) the various sensors, coloring portions of buildings
visible to each sensor in turn. While our system allows this, our standard approach is to use
Attribute Blocks [Miller 2007]. Attribute Blocks can be used to visualize the values of
several attributes continuously defined across some domain. A k:xk. rectangular pattern is



defined in which each cell displays the value of a single attribute. The b.xb. size of each cell
in the k-xk. pattern can be independently adjusted, either in pixel space or in model space.

For the applications described in [Miller 2007], the user was given interactive controls for
adjusting k-xke, brxb., and the mapping of attributes to cells in the Attribute Block pattern.
In the application here, the “attributes” are the non-zero visibility flags, and we want to
always display all non-zero flags. Hence the user has no control over the k:xk. pattern used
other than being able to turn specific sensors off and on. Instead we dynamically determine
in the fragment shader (i.e., pixel by pixel) what the k:xk. pattern should be - including a
special case in which we locally switch to triangular Attribute Blocks as described below -
and assign the visibility flags to cells in the pattern. The user/operator is able to control the
cell sizes (i.e., brxb:) and whether the sizes and Attribute Block orientation is in pixel space
or model space.

Our premise when determining the required Attribute Block pattern is that all visibility
flags are of equal importance and should generally be accorded equal display space.
Moreover — whenever possible - each sensor cell should share an edge with a cell for all
other sensors that can see the area. This arrangement has been found to maximize our
ability to conceptualize coverage in an area and is consistent with similar observations
made in [Malik, Heinzl, & Gréller 2010].

If we let n stand for the number of sensors that can see a given point and use letters to
identify sensors, then designing an Attribute Block pattern for n=1, 2, 3, and 5 such that
each block shares an edge with all the others is trivial to construct. The n=1 case is simply a

n | krx k. | Attribute Block Layout | solid color; Table 1 shows the patterns for the n=2, 3,
9| 252 AB and 5 cases.
BA The n=4 case is somewhat challenging because of our
ABC shared edge and equal coverage requirements. An
3| 3x3 BCA alternative that supports the goal of preattentive
CAB identification of numbers of sensors that can see an
area is to switch to a triangular Attribute Block
éggig pattern for the n=4 case. All sensors are assigned a
5| 5x5 EABCD triangle, and each can easily share an edge with a
BCDEA triangle for another sensor.
DEABC The n=6 case is challenging because that would
Table 1 require a pentagonal tiling, and there is no good,

easy-to-generate pentagonal tiling of a plane. The
n=7 case could use a hexagonal tiling which is easy to generate. We have not yet had a need
to handle the n>5 case, so we will not discuss that further in this paper.

We actually use a modified pattern for the n=3 case. One of our goals was to support
preattentive identification of the number of sensors that can see a surface, with subsequent
interpretation of color allowing operators to identify the specific sensors. By swapping the
‘A’ in the upper left corner of the n=3 pattern with the ‘B’ in the lower right corner, we



produce a pattern that is very distinctive in that we see two L-shaped notches with a
diagonal pattern between them. In Figure 3, areas that are visible to 0, 1, 2, 3, and 4 sensors
are immediately obvious since the patterns are, respectively, solid neutral color, solid
sensor color, L-notched, simple checkerboard, and triangular. Several areas visible to
exactly two sensors can be seen. Thus the operator immediately knows the number of
sensors covering the area (critical in military applications [Livingston & Herbst 2005]), and
further color-based examination reveals which sensors they are.

Figure 3: Areas visible to 0, 1, 2, 3, or all 4 sensors are immediately obvious.

Notice that the “n” (and hence the structure of the texture) varies from region to region
along a surface. Fortunately, all texture computations are done on a pixel-by-pixel basis in
the fragment shader, and we never need create a complete standalone texture pattern
anywhere. At each fragment (pixel), we know which sensors see it, hence we know what
abstract pattern should be applied, and we use modulo arithmetic akin to that described in



the original Attribute Block paper to determine where in the abstract pattern we are, and
hence assign the corresponding pixel color.

The Attribute Block patterns themselves can be sized and oriented in screen space or
model space. In screen space, the edges of the blocks are always aligned along pixel rows in
columns; in model space, they are aligned with axes associated with the local coordinate
systems of the individual objects in the scene.

Screen space patterns are often best when the scene is not dynamically rotated because the
patterns tend to be more sharply defined. This is especially true when the cell sizes (bxb.)
are small in order to provide high resolution displays. If the scene undergoes frequent
dynamic view manipulations, screen space patterns can be distracting because they are not
locked to the object; instead they appear to “slide around”. Moreover the fact that the cells
in the patterns retain their same pixel size during zooming can sometimes be confusing.
Model space patterns are frequently better in these cases since they are defined with
respect to the local coordinate system of each object and hence remain locked in place on
the object as it moves during rotation and panning. The cell sizes also grow and shrink as
expected as the operator zooms in and out. Even when no dynamic view manipulations are
involved, model space patterns are frequently preferred when the byxb. cell sizes are larger
because they better preserve the sense of 3D surface orientations.

The basic color of each cell inside of a given pattern is determined by the color assigned to
the sensor that has been determined to be able to see the object there. This color can be
modulated in two ways: by adding a lighting model and by attenuation based on the
visibility probability. Recall we interpolate the individual 0 or 1 per-vertex visibility flag
across the interior of each triangle. If all three vertices have the same flag, then the triangle
is uniformly visible or invisible. However, if one vertex has a classification different from
the other two, then pixels in the interior of the triangle have a floating point visibility flag
somewhere between 0 and 1. This can be interpreted as the probability that this pixel is
visible to the given sensor, and the probability can be used to attenuate the color. We thus
have - for each of screen space and model space Attribute Blocks - four choices: no
attenuation, lighting model attenuation, visibility probability attenuation, and attenuation
by both visibility probability and lighting model. Figure 4(a-h) shows the same scene and
sensor placement using each of these eight options in turn. Attenuation by both frequently
results in images that are too dark. Hence we usually either use neither or just one.

3.3 Performance and Other Implementation Notes

This tool was designed with the primary goal of delivering real-time performance as sensor
placement and orientation was dynamically changed under operator control. We have
achieved that with our testing environment here. Our city generation software generates
the buildings and terrain in the images shown in this paper with a user-definable
resolution in terms of numbers of vertices and triangles. In the simplest scene, the city is
defined with 15,411 vertices and 14,714 triangles. The most complex version we tested had
32,139 vertices with 48,096 triangles. Display updates during sensor repositioning and



reorienting were instantaneous for both scenes on a 3.2GHz Intel Core 2 Duo running Linux
with a Quadro 600 GPU.

One performance tuning technique that proved to be useful - especially for algorithm 2 -
was to break up the field of view of a sensor into a subarray, mapping each subset of the
field of view to its own kernel launch. (The first stage field of view filtering of course used
the decreased field of view corresponding to each element of the subarray.) Then each
kernel was broken down into blocks according to a dynamically determined desired
number of threads per block. To facilitate the tuning operation, we added GUI controls to
adjust this breakdown interactively.

A variety of other interactive options are available. Operators can turn individual sensors
on and off. Current sensor positions can be saved to a file. All the color attenuation options
and Attribute Block size and space options are dynamically adjustable.

Figure 4(a): Screen Space; Lighting off; Visibility Probability off
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Figure 4(h): Model Space; Lighting on; Visibility Probability on

4.0 Summary, Discussion, and Future Work

We have discussed algorithms and visualization methods that allow operators to decide
how sensors should be moved around an environment in real time to achieve required
instantaneous domain coverage. Our usage of the system has led us to conclude that the
ability to dynamically alter the brxb. Attribute Block sizes, the use of screen space versus
model space definitions, and the use of visibility and lighting attenuations, coupled with
dynamic view manipulations adds dramatically to the insight one can gain. It takes a short
while to get used to the role of the patterns as revealing the number of sensors that can see
aregion, but once that insight has been achieved, one quickly learns how to manipulate the
sensors to achieve desired domain coverage.

We are considering a number of possible extensions. Assigning colors and/or textures to
buildings and the terrain might make the scene more realistic, but we need to be careful
about over-use of color. Perhaps very muted monochromatic textures could be effective.
Another possible extension would be to endow our sensors and scene geometry with
additional properties. For example, we could then support sensors that could see through
certain types of walls.
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