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Sensors and sensor placement are critical in 
applications related to military situational 
awareness in combat zones and unfriendly 

urban areas. They also play a central role in non-
military applications such as security cameras for 
homes and businesses,1 motion detectors in sensi-
tive areas, and detecting dangerous materials dis-
persed into the air.2

Of particular importance in military applica-
tions involving unfamiliar environments contain-
ing uneven terrain, buildings, and other major 
line-of-sight obstructions is the ability to dynami-
cally move a collection of sensors independently 
throughout an environment while monitoring ex-
actly which parts of the environment are visible to 
which sensors. As sensors move, the field-of-view 
and line-of-sight analysis must be updated and re-
flected in displays in real time.

To achieve these goals, I developed a pair of al-
gorithms, each of which achieves the goals in a 
slightly different and potentially complementary 
fashion. One samples each sensor’s field of view 
with lines of sight that are truncated at the first 
surface element encountered. The other first deter-
mines the portions of all surface elements in the 
scene that each sensor can observe. It then paints 
the surface with a dynamically generated colored 
texture pattern that allows preattentive observa-
tion of the number of sensors that can see the 
area. (Aspects of an image that are noticed within 
the first couple hundred milliseconds are generally 
considered to be preattentive.) The pattern’s colors 
identify the specific sensors that can see each piece 
of the surface area.

Operational Environment and Approach
My overarching goal is to provide an interactive vi-
sual monitoring and directing tool for operators—
that is, individuals who monitor the environment 

and interactively direct the sensors’ movement and 
orientation. This tool should let operators view all 
the sensors’ current positions and orientations 
and visualize those portions of the environment 
that are or are not currently visible to the sen-
sors. When sensor coverage areas overlap, the vi-
sualization should indicate the number of sensors 
that can see any given area and identify the exact 
sensors involved. This information will enable the 
operators to determine how best to interactively 
reposition or reorient one or more sensors.

The sensor line-of-sight analysis must take into 
account potential blocking of all or part of the sen-
sor’s view by terrain, buildings, and so on.3 Also, 
the analysis and display must dynamically update 
as sensors move throughout the environment.

Input: Environment and Sensors
My representation of the environment is straight-
forward; it’s a collection of an arbitrary number 
of abstract scene items. Each scene item consists 
of a piecewise linear construct akin to OpenGL 
draw modes (triangle strips, triangle fans, and 
so on). The scene is read during program startup 
from a standard file format. The program doesn’t 
currently distinguish between buildings, terrain, 
or other objects—it treats all surface elements 
the same. However, operators can augment scene 
items with attributes that might be relevant to cer-
tain types of sensors. I return to this idea later.

Figure 1 shows the scene I use to test my method. 
For now, I use a neutral color with no texture map-
ping. This is primarily because I use color and tex-
ture to display sensor visibility, and I don’t want to 
confuse building colors and textures with those 
depicting sensor visibility.

To construct the scene, I used a program of my 
own design that generates a pseudorandom col-
lection of “buildings” of various sorts placed on a 



 IEEE Computer Graphics and Applications 9

terrain that can be configured to include hills such 
as the one visible in Figure 1. This program can 
easily generate buildings with an adjustable num-
ber of vertices (and hence triangles). This lets me 
experiment with increasingly complex scenes while 
watching the performance impact. It also lets me 
observe how the display quality improves with in-
creasing vertex density. Specifically, my second al-
gorithm operates on a per-vertex basis. So, increas-
ing the vertex density produces higher-resolution 
results, but at the obvious cost of performance.

The program supports sensors that determine 
their sight lines differently. For spherical sensors, 
the sight lines start from the sphere’s center and 
may emanate in all directions or be restricted to 
a subset of the spherical surface. For cylindrical 
sensors, the sight lines are defined over a finite 
subset of an infinite right circular cylinder and 
are perpendicular to the cylinder axis. For a planar 
sensor, the sight lines are perpendicular to the 
plane and restricted to a finite rectangular area 
of the plane. The operator specifies an arbitrary 
collection of sensors when the program starts.

Figure 2 zooms in on the area of the sensors 
shown in Figure 1. The figure includes a sample of 
each supported sensor type. It specifically illustrates 
their respective fields of view by showing a sampled 
set of sight lines emitted from the sensors.

Processing and Visualization
Once my tool has processed the environment and 
initial sensor descriptions, the operator can use 
either or both algorithms. To achieve real-time 
display updates, the algorithms employ GPU-based 
ray casting. I developed them using the CUDA 
(Compute Unified Device Architecture) toolkit and 
libraries (www.nvidia.com/object/cuda_home_new.
html).

Sampling Sight Lines
My first algorithm imposes a grid over each sen-
sor’s field of view and then traces one line-of-
sight ray through each grid point. As I mentioned 
before, it traces the ray up to the ray’s first in-
tersection point with a surface in the scene. Vari-
ous display options are available for the trimmed 
sight lines.

This algorithm produces displays similar to 
those created by Tyler Garaas’s voxel-based algo-
rithm (see the sidebar), in that they both can color 
the open spaces visible to the given sensors. This 
effect is especially obvious for the two planar sen-
sors in Figure 2. However, these two algorithms’ 
implementations differ considerably.

Figure 1. The geometry of the city used for the study. The image also shows four sensors. I use a neutral color 
with no texture mapping to avoid confusing building colors and textures with those depicting sensor visibility.

Figure 2. Samples of each sensor type along with a representation of their 
field of view. I currently use spherical, cylindrical, and planar sensors.
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Painting Surfaces
My second algorithm has two stages. The first fil-
ters vertices according to the sensor’s field of view. 
It passes the vertices found in that field to the sec-
ond stage, which traces a ray from the sensor to 
each vertex.

The two stages let me maximize the use of 
bounding-volume techniques while minimizing the 
number of thread processors that sit idle because 
of early-out tests. At the end of the two stages, the 
algorithm associates a visibility bit mask with each 
vertex. The bit for sensor i is set if and only if the 
vertex is visible to i (that is, it’s in the field of view, 

and no surfaces are found between the sensor and 
the vertex).

The algorithm interpolates the per-vertex vis-
ibility flags across the triangles of which they’re 
a part. A GLSL (OpenGL Shading Language) frag-
ment shader receives these interpolated flags as 
floating-point values between 0 and 1 for each 
sensor. So, I can interpret each value as a proba-
bility that the pixel is visible to the corresponding 
sensor. The visualization’s goal is then to convey 
the exact set of sensors that can see each por-
tion of a building. To do this, the algorithm re-
tains the neutral color of Figure 1 for portions of 

Research has targeted various aspects of this general 
problem. Some methods employ 2D algorithms, but 

to be effective in the sorts of applications I discuss in the 
main article, the analysis and display must be 3D. This 
is because you must take uneven terrain, buildings, and 
other large structures into account when determining sen-
sor visibility.

The most common 3D approach is to use ray casting to 
simulate sensor lines of sight. The challenge is to compute 
information detailed enough to allow at least near real-
time analysis while producing high-quality, high-resolution 
results.

Mark Livingston and Evan Herbst described an interac-
tive system that places sensors in an open environment and 
performs basic line-of-sight analysis.1 It determines strings 
of sensors, each of which can “see” the next sensor in the 
string. It also determines how many sensors can see into a 
given area of the display, taking into account terrain (but 
not nonterrain features such as buildings). The system pro-
duces images revealing the number of sensors that can see 
an area, but it doesn’t identify the sensors.

Eric Becker and his colleagues devised a method to au-
tomatically position a collection of sensors in an environ-
ment so as to cover all predetermined critical areas.2 It 
doesn’t address sensor movement, and it doesn’t quantify 
or display the numbers or identities of specific sensors that 
can see a given area. Its analysis leads to a purely binary 
“can or can’t be seen.”

Tyler Garaas presented an interactive tool for simulat-
ing the positioning of video cameras in a 3D environ-
ment.3 It determines and visualizes the environment’s 
overall coverage by the collection of cameras. This tool is 
unique in that it initially creates a voxel grid of some res-
olution enclosing the entire scene. It then casts rays from 
a sensor’s field of view through the voxel grid, marking 
each voxel encountered before hitting a surface. Instead 
of painting the actual objects in the scene according to 
whether they’re visible, the tool colors the open spaces 
according to this visibility analysis’s results. This method 

differs considerably from the one that I developed (see 
the main article). However, my first algorithm generates a 
display that’s somewhat similar in appearance and infor-
mation content.

A central goal of my research is to display a pattern 
that allows preattentive determination of the number 
of sensors, n, that can see the area, and whose colors 
identify specific sensors. (Aspects of an image that are 
noticed within the first couple hundred milliseconds are 
generally considered to be preattentive.) Each atomic 
piece of the pattern should correspond to one sensor, 
and its assigned attribute block cell should share an edge 
with a cell of each other sensor that can also see that 
area. Muhammad Malik and his colleagues argued for the 
value of edge sharing in similar visualization schemes.4 
They developed a method based on a uniform tiling of 
the plane with hexagons that they use for all values of n. 
My method instead uses rectangular attribute blocks for 
n = 1, 2, 3, and 5. To handle n = 4, I use triangular attri-
bute blocks.

References
 1. M.A. Livingston and E.V. Herbst, “Interactive Operations for 

Visualization of Ad-hoc Sensor System Domains,” Proc. 2005 

IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS 05), 

IEEE, 2005, pp. 341–345.

 2. E. Becker, G. Guerra-Filho, and F. Makedon, “Automatic Sensor 

Placement in a 3D Volume,” Proc. 2nd Int’l Conf. Pervasive 

Technologies Related to Assistive Environments (PETRA 09), ACM, 

2009, article 36; doi:10.1145/1579114.1579150.

 3. T.W. Garaas, Sensor Placement Tool for Rapid Development of 

Video Sensor Layouts, tech. report TR2011-020, Mitsubishi 

Electric Research Laboratories, Apr. 2011; www.merl.com/

reports/docs/TR2011-020.pdf.

 4. M.M. Malik, C. Heinzl, and M.E. Gröller, “Comparative 

Visualization for Parameter Studies of Dataset Series,” IEEE 

Trans. Visualization and Computer Graphics, vol. 16, no. 5, 

2010, pp. 829–840.

Related Work in Sensor Visibility
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the environment invisible to all sensors. It colors 
the rest according to the set of sensors to which 
they’re visible.

Attribute blocks. Because I can interactively turn 
individual sensors off and on, I could cycle 
through (automatically or under operator control) 
the various sensors, coloring portions of buildings 
visible to each sensor in turn. Although my sys-
tem allows this, my standard approach is to use 
attribute blocks.4 Attribute blocks can be used to 
visualize the values of several attributes continu-
ously defined across some domain. I define a kr × 
kc rectangular pattern in which each cell displays 
an attribute’s value. Operators can independently 
adjust the br × bc size of each cell in the kr × kc pat-
tern, in either pixel space or model space.

In a previous article, I described applications in 
which users had interactive controls for adjusting 
kr × kc and br × bc, and mapping attributes to cells 
in the attribute block pattern.4 In the application 
I describe here, the attributes are the nonzero 
visibility flags, and I want to always display all of 
them. So, operators have no control over the kr × 
kc pattern other than turning specific sensors off 
and on. I dynamically determine in the fragment 
shader (that is, pixel by pixel) what the kr × kc 
pattern should be and assign the visibility flags to 
cells in the pattern.

My premise when determining the required 
attribute block pattern is that all visibility flags 
are equally important and should generally receive 
equal display space. Moreover—whenever possible—
each sensor cell should share an edge with each 
cell of all the other sensors that can see the 
area. This arrangement maximizes the ability to 
conceptualize coverage in an area and is consistent 
with similar observations by Muhammad Malik 
and his colleagues.5

Assume that n stands for the number of sensors 
that can see a given point and that A, B, C, D, and 
E each indicate a sensor. Constructing an attribute 
block pattern for n = 1, 2, 3, and 5 such that each 
block shares an edge with all the others is trivial. 
The n = 1 case is simply a solid color; Table 1 shows 
the patterns for n = 2, 3, and 5. (Handling n × 6 so 
that each cell shares an edge with all the others is 
considerably more difficult, but such cases haven’t 
proved important.)

I use a modified pattern for the n = 3 case to better 
support my goal of preattentive identification of the 
number of sensors that can see a surface. Swapping 
the A in the upper left with the B in the lower 
right produces a distinctive pattern: two L-shaped 
notches with a diagonal pattern between them.

For n = 4, I switch to a triangular attribute block 
pattern so that each triangle shares an edge with a 
triangle for each other sensor.

In Figure 3, areas that are visible to 0, 1, 2, 3, 
and 4 sensors are immediately obvious. The pat-
terns are, respectively, a solid neutral color, a solid 
sensor color, L-notched, a simple checkerboard, and 
triangular. The figure displays several areas visible 
to exactly two sensors. So, the operator immediately 
knows the number of sensors covering the area 
(critical in military applications3); further color-
based examination reveals which sensors they are.

The n (and hence the texture’s structure) varies 
from region to region along a surface. Fortunately, 
the fragment shader performs all texture com-
putations on a pixel-by-pixel basis; I never need 

Table 1. Attribute block patterns for n numbers of sensors 
(labeled A, B, C, D, and E) that can see a given point.

n kr × kc* Pattern

2 2 × 2 A B
B A

3 3 × 3 A B C
B C A
C A B

5 5 × 5 A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

* kr × kc is a rectangular pattern in which each cell displays the 
value of a single attribute.

Figure 3. Areas visible to 0, 1, 2, 3, or 4 sensors are immediately obvious. 
The patterns are, respectively, a solid neutral color, a solid sensor color, 
L-notched, a simple checkerboard, and triangular.
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to create a complete standalone texture pattern. 
At each fragment (pixel), I know which sensors 
see it, so I know what abstract pattern to apply. I 
use modulo arithmetic akin to that described in 
the original attribute block article4 to determine 
where in the abstract pattern I am and hence what 
pixel color to assign.

Screen space vs. model space. As I mentioned before, 
operators can size and orient the attribute block 
patterns in screen space or model space. In screen 
space, the blocks’ edges are always aligned along 
pixel rows in columns. In model space, they’re 
aligned with axes associated with the local coor-
dinate systems of the objects in the scene.

Screen-space patterns are often the better choice 
when the scene isn’t dynamically rotated, because 
the patterns tend to be more sharply defined. This 
is especially true when the cell sizes (br × bc) are 
small in order to provide high-resolution displays. 
If the scene undergoes frequent dynamic view 
manipulations, screen-space patterns can be dis-
tracting because they aren’t locked to the object; 
instead, they appear to slide around. Moreover, the 
fact that the patterns retain their same pixel size 
during zooming can sometimes be confusing.

In those cases, model-space patterns are fre-
quently preferable because they’re defined with 
respect to each object’s local coordinate system 
and hence remain locked in place on the object as 
it moves during rotation and panning. The indi-
vidual cell sizes also grow and shrink as expected 
as the operator zooms in and out. Even when no 
dynamic view manipulations are involved, model-
space patterns are frequently preferable when the 
br × bc cell sizes are larger because they better pre-
serve the sense of 3D surface orientations.

The basic color of each cell in a pattern is deter-
mined by the color assigned to the sensor that has 
been determined to be able to see the object there. 
I can modulate this color in two ways: by adding 
a lighting model and by attenuation based on the 
visibility probability. Recall that I interpolate the 
individual 0 or 1 per-vertex visibility flag across 
each triangle’s interior. If all three vertices have 

the same flag, the triangle is uniformly visible or 
invisible. However, if one vertex has a classifica-
tion different from that of the other two, then the 
pixels in the triangle’s interior have a flag some-
where between 0 and 1. I can interpret this as the 
probability that this pixel is visible to the given 
sensor, and I can use the probability to attenuate 
the color. So, I have—for both the screen-space and 
model-space modes—four choices: no attenuation, 
lighting-model attenuation, visibility probability 
attenuation, and attenuation by both the lighting 
model and visibility probability. Figure 4 illustrates 
the choices, using model-space attribute blocks.

Implementation and Performance
In the simplest scene, the city is defined with 
15,411 vertices and 14,714 triangles. The most 
complex version I tested had 32,139 vertices with 
48,096 triangles. Display updates during sensor 
repositioning and reorienting were instantaneous 
for both scenes on a 3.2-GHz Intel Core 2 Duo 
running Linux with a Quadro 600 GPU.

I’ve achieved my primary goal of delivering real-
time performance as sensor placement and 

orientation dynamically change under operator 
control. Assigning colors or textures to buildings 
and the terrain might make the scene more 
realistic, but operators must be careful about 
overusing color. Very muted monochrome textures 
might be effective. Another extension could be 
to endow the sensors and scene geometry with 
additional properties. For example, my method 
could then support sensors that can see through 
certain types of walls. 
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Figure 4. Modulating the color in the model space: (a) lighting off, visibility probability off; (b) lighting off, visibility probability 
on; (c) lighting on, visibility probability off; (d): lighting on, visibility probability on.

Register today! 
http://compsac.cs.iastate.edu/ 

16-20 July 2012

Izmir, Turkey

IEEE COMPSAC 2012 
36th IEEE International Computer Software and 
Applications Conference


