
8 July/August 2012 Published by the IEEE Computer Society 0272-1716/12/$31.00 © 2012 IEEE

Applications Editor: Mike Potel

Real-Time Visualization of Domain Coverage
by Dynamically Moving Sensors
James R. Miller
University of Kansas

Sensors and sensor placement are critical in
applications related to military situational
awareness in combat zones and unfriendly

urban areas. They also play a central role in non-
military applications such as security cameras for
homes and businesses,1 motion detectors in sensi-
tive areas, and detecting dangerous materials dis-
persed into the air.2

Of particular importance in military applica-
tions involving unfamiliar environments contain-
ing uneven terrain, buildings, and other major
line-of-sight obstructions is the ability to dynami-
cally move a collection of sensors independently
throughout an environment while monitoring ex-
actly which parts of the environment are visible to
which sensors. As sensors move, the field-of-view
and line-of-sight analysis must be updated and re-
flected in displays in real time.

To achieve these goals, I developed a pair of al-
gorithms, each of which achieves the goals in a
slightly different and potentially complementary
fashion. One samples each sensor’s field of view
with lines of sight that are truncated at the first
surface element encountered. The other first deter-
mines the portions of all surface elements in the
scene that each sensor can observe. It then paints
the surface with a dynamically generated colored
texture pattern that allows preattentive observa-
tion of the number of sensors that can see the
area. (Aspects of an image that are noticed within
the first couple hundred milliseconds are generally
considered to be preattentive.) The pattern’s colors
identify the specific sensors that can see each piece
of the surface area.

Operational Environment and Approach
My overarching goal is to provide an interactive vi-
sual monitoring and directing tool for operators—
that is, individuals who monitor the environment

and interactively direct the sensors’ movement and
orientation. This tool should let operators view all
the sensors’ current positions and orientations
and visualize those portions of the environment
that are or are not currently visible to the sen-
sors. When sensor coverage areas overlap, the vi-
sualization should indicate the number of sensors
that can see any given area and identify the exact
sensors involved. This information will enable the
operators to determine how best to interactively
reposition or reorient one or more sensors.

The sensor line-of-sight analysis must take into
account potential blocking of all or part of the sen-
sor’s view by terrain, buildings, and so on.3 Also,
the analysis and display must dynamically update
as sensors move throughout the environment.

Input: Environment and Sensors
My representation of the environment is straight-
forward; it’s a collection of an arbitrary number
of abstract scene items. Each scene item consists
of a piecewise linear construct akin to OpenGL
draw modes (triangle strips, triangle fans, and
so on). The scene is read during program startup
from a standard file format. The program doesn’t
currently distinguish between buildings, terrain,
or other objects—it treats all surface elements
the same. However, operators can augment scene
items with attributes that might be relevant to cer-
tain types of sensors. I return to this idea later.

Figure 1 shows the scene I use to test my method.
For now, I use a neutral color with no texture map-
ping. This is primarily because I use color and tex-
ture to display sensor visibility, and I don’t want to
confuse building colors and textures with those
depicting sensor visibility.

To construct the scene, I used a program of my
own design that generates a pseudorandom col-
lection of “buildings” of various sorts placed on a

 IEEE Computer Graphics and Applications 9

terrain that can be configured to include hills such
as the one visible in Figure 1. This program can
easily generate buildings with an adjustable num-
ber of vertices (and hence triangles). This lets me
experiment with increasingly complex scenes while
watching the performance impact. It also lets me
observe how the display quality improves with in-
creasing vertex density. Specifically, my second al-
gorithm operates on a per-vertex basis. So, increas-
ing the vertex density produces higher-resolution
results, but at the obvious cost of performance.

The program supports sensors that determine
their sight lines differently. For spherical sensors,
the sight lines start from the sphere’s center and
may emanate in all directions or be restricted to
a subset of the spherical surface. For cylindrical
sensors, the sight lines are defined over a finite
subset of an infinite right circular cylinder and
are perpendicular to the cylinder axis. For a planar
sensor, the sight lines are perpendicular to the
plane and restricted to a finite rectangular area
of the plane. The operator specifies an arbitrary
collection of sensors when the program starts.

Figure 2 zooms in on the area of the sensors
shown in Figure 1. The figure includes a sample of
each supported sensor type. It specifically illustrates
their respective fields of view by showing a sampled
set of sight lines emitted from the sensors.

Processing and Visualization
Once my tool has processed the environment and
initial sensor descriptions, the operator can use
either or both algorithms. To achieve real-time
display updates, the algorithms employ GPU-based
ray casting. I developed them using the CUDA
(Compute Unified Device Architecture) toolkit and
libraries (www.nvidia.com/object/cuda_home_new.
html).

Sampling Sight Lines
My first algorithm imposes a grid over each sen-
sor’s field of view and then traces one line-of-
sight ray through each grid point. As I mentioned
before, it traces the ray up to the ray’s first in-
tersection point with a surface in the scene. Vari-
ous display options are available for the trimmed
sight lines.

This algorithm produces displays similar to
those created by Tyler Garaas’s voxel-based algo-
rithm (see the sidebar), in that they both can color
the open spaces visible to the given sensors. This
effect is especially obvious for the two planar sen-
sors in Figure 2. However, these two algorithms’
implementations differ considerably.

Figure 1. The geometry of the city used for the study. The image also shows four sensors. I use a neutral color
with no texture mapping to avoid confusing building colors and textures with those depicting sensor visibility.

Figure 2. Samples of each sensor type along with a representation of their
field of view. I currently use spherical, cylindrical, and planar sensors.

10 July/August 2012

Applications

Painting Surfaces
My second algorithm has two stages. The first fil-
ters vertices according to the sensor’s field of view.
It passes the vertices found in that field to the sec-
ond stage, which traces a ray from the sensor to
each vertex.

The two stages let me maximize the use of
bounding-volume techniques while minimizing the
number of thread processors that sit idle because
of early-out tests. At the end of the two stages, the
algorithm associates a visibility bit mask with each
vertex. The bit for sensor i is set if and only if the
vertex is visible to i (that is, it’s in the field of view,

and no surfaces are found between the sensor and
the vertex).

The algorithm interpolates the per-vertex vis-
ibility flags across the triangles of which they’re
a part. A GLSL (OpenGL Shading Language) frag-
ment shader receives these interpolated flags as
floating-point values between 0 and 1 for each
sensor. So, I can interpret each value as a proba-
bility that the pixel is visible to the corresponding
sensor. The visualization’s goal is then to convey
the exact set of sensors that can see each por-
tion of a building. To do this, the algorithm re-
tains the neutral color of Figure 1 for portions of

Research has targeted various aspects of this general
problem. Some methods employ 2D algorithms, but

to be effective in the sorts of applications I discuss in the
main article, the analysis and display must be 3D. This
is because you must take uneven terrain, buildings, and
other large structures into account when determining sen-
sor visibility.

The most common 3D approach is to use ray casting to
simulate sensor lines of sight. The challenge is to compute
information detailed enough to allow at least near real-
time analysis while producing high-quality, high-resolution
results.

Mark Livingston and Evan Herbst described an interac-
tive system that places sensors in an open environment and
performs basic line-of-sight analysis.1 It determines strings
of sensors, each of which can “see” the next sensor in the
string. It also determines how many sensors can see into a
given area of the display, taking into account terrain (but
not nonterrain features such as buildings). The system pro-
duces images revealing the number of sensors that can see
an area, but it doesn’t identify the sensors.

Eric Becker and his colleagues devised a method to au-
tomatically position a collection of sensors in an environ-
ment so as to cover all predetermined critical areas.2 It
doesn’t address sensor movement, and it doesn’t quantify
or display the numbers or identities of specific sensors that
can see a given area. Its analysis leads to a purely binary
“can or can’t be seen.”

Tyler Garaas presented an interactive tool for simulat-
ing the positioning of video cameras in a 3D environ-
ment.3 It determines and visualizes the environment’s
overall coverage by the collection of cameras. This tool is
unique in that it initially creates a voxel grid of some res-
olution enclosing the entire scene. It then casts rays from
a sensor’s field of view through the voxel grid, marking
each voxel encountered before hitting a surface. Instead
of painting the actual objects in the scene according to
whether they’re visible, the tool colors the open spaces
according to this visibility analysis’s results. This method

differs considerably from the one that I developed (see
the main article). However, my first algorithm generates a
display that’s somewhat similar in appearance and infor-
mation content.

A central goal of my research is to display a pattern
that allows preattentive determination of the number
of sensors, n, that can see the area, and whose colors
identify specific sensors. (Aspects of an image that are
noticed within the first couple hundred milliseconds are
generally considered to be preattentive.) Each atomic
piece of the pattern should correspond to one sensor,
and its assigned attribute block cell should share an edge
with a cell of each other sensor that can also see that
area. Muhammad Malik and his colleagues argued for the
value of edge sharing in similar visualization schemes.4
They developed a method based on a uniform tiling of
the plane with hexagons that they use for all values of n.
My method instead uses rectangular attribute blocks for
n = 1, 2, 3, and 5. To handle n = 4, I use triangular attri-
bute blocks.

References
 1. M.A. Livingston and E.V. Herbst, “Interactive Operations for

Visualization of Ad-hoc Sensor System Domains,” Proc. 2005

IEEE Int’l Conf. Mobile Adhoc and Sensor Systems (MASS 05),

IEEE, 2005, pp. 341–345.

 2. E. Becker, G. Guerra-Filho, and F. Makedon, “Automatic Sensor

Placement in a 3D Volume,” Proc. 2nd Int’l Conf. Pervasive

Technologies Related to Assistive Environments (PETRA 09), ACM,

2009, article 36; doi:10.1145/1579114.1579150.

 3. T.W. Garaas, Sensor Placement Tool for Rapid Development of

Video Sensor Layouts, tech. report TR2011-020, Mitsubishi

Electric Research Laboratories, Apr. 2011; www.merl.com/

reports/docs/TR2011-020.pdf.

 4. M.M. Malik, C. Heinzl, and M.E. Gröller, “Comparative

Visualization for Parameter Studies of Dataset Series,” IEEE

Trans. Visualization and Computer Graphics, vol. 16, no. 5,

2010, pp. 829–840.

Related Work in Sensor Visibility

 IEEE Computer Graphics and Applications 11

the environment invisible to all sensors. It colors
the rest according to the set of sensors to which
they’re visible.

Attribute blocks. Because I can interactively turn
individual sensors off and on, I could cycle
through (automatically or under operator control)
the various sensors, coloring portions of buildings
visible to each sensor in turn. Although my sys-
tem allows this, my standard approach is to use
attribute blocks.4 Attribute blocks can be used to
visualize the values of several attributes continu-
ously defined across some domain. I define a kr ×
kc rectangular pattern in which each cell displays
an attribute’s value. Operators can independently
adjust the br × bc size of each cell in the kr × kc pat-
tern, in either pixel space or model space.

In a previous article, I described applications in
which users had interactive controls for adjusting
kr × kc and br × bc, and mapping attributes to cells
in the attribute block pattern.4 In the application
I describe here, the attributes are the nonzero
visibility flags, and I want to always display all of
them. So, operators have no control over the kr ×
kc pattern other than turning specific sensors off
and on. I dynamically determine in the fragment
shader (that is, pixel by pixel) what the kr × kc
pattern should be and assign the visibility flags to
cells in the pattern.

My premise when determining the required
attribute block pattern is that all visibility flags
are equally important and should generally receive
equal display space. Moreover—whenever possible—
each sensor cell should share an edge with each
cell of all the other sensors that can see the
area. This arrangement maximizes the ability to
conceptualize coverage in an area and is consistent
with similar observations by Muhammad Malik
and his colleagues.5

Assume that n stands for the number of sensors
that can see a given point and that A, B, C, D, and
E each indicate a sensor. Constructing an attribute
block pattern for n = 1, 2, 3, and 5 such that each
block shares an edge with all the others is trivial.
The n = 1 case is simply a solid color; Table 1 shows
the patterns for n = 2, 3, and 5. (Handling n × 6 so
that each cell shares an edge with all the others is
considerably more difficult, but such cases haven’t
proved important.)

I use a modified pattern for the n = 3 case to better
support my goal of preattentive identification of the
number of sensors that can see a surface. Swapping
the A in the upper left with the B in the lower
right produces a distinctive pattern: two L-shaped
notches with a diagonal pattern between them.

For n = 4, I switch to a triangular attribute block
pattern so that each triangle shares an edge with a
triangle for each other sensor.

In Figure 3, areas that are visible to 0, 1, 2, 3,
and 4 sensors are immediately obvious. The pat-
terns are, respectively, a solid neutral color, a solid
sensor color, L-notched, a simple checkerboard, and
triangular. The figure displays several areas visible
to exactly two sensors. So, the operator immediately
knows the number of sensors covering the area
(critical in military applications3); further color-
based examination reveals which sensors they are.

The n (and hence the texture’s structure) varies
from region to region along a surface. Fortunately,
the fragment shader performs all texture com-
putations on a pixel-by-pixel basis; I never need

Table 1. Attribute block patterns for n numbers of sensors
(labeled A, B, C, D, and E) that can see a given point.

n kr × kc* Pattern

2 2 × 2 A B
B A

3 3 × 3 A B C
B C A
C A B

5 5 × 5 A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

* kr × kc is a rectangular pattern in which each cell displays the
value of a single attribute.

Figure 3. Areas visible to 0, 1, 2, 3, or 4 sensors are immediately obvious.
The patterns are, respectively, a solid neutral color, a solid sensor color,
L-notched, a simple checkerboard, and triangular.

12 July/August 2012

Applications

to create a complete standalone texture pattern.
At each fragment (pixel), I know which sensors
see it, so I know what abstract pattern to apply. I
use modulo arithmetic akin to that described in
the original attribute block article4 to determine
where in the abstract pattern I am and hence what
pixel color to assign.

Screen space vs. model space. As I mentioned before,
operators can size and orient the attribute block
patterns in screen space or model space. In screen
space, the blocks’ edges are always aligned along
pixel rows in columns. In model space, they’re
aligned with axes associated with the local coor-
dinate systems of the objects in the scene.

Screen-space patterns are often the better choice
when the scene isn’t dynamically rotated, because
the patterns tend to be more sharply defined. This
is especially true when the cell sizes (br × bc) are
small in order to provide high-resolution displays.
If the scene undergoes frequent dynamic view
manipulations, screen-space patterns can be dis-
tracting because they aren’t locked to the object;
instead, they appear to slide around. Moreover, the
fact that the patterns retain their same pixel size
during zooming can sometimes be confusing.

In those cases, model-space patterns are fre-
quently preferable because they’re defined with
respect to each object’s local coordinate system
and hence remain locked in place on the object as
it moves during rotation and panning. The indi-
vidual cell sizes also grow and shrink as expected
as the operator zooms in and out. Even when no
dynamic view manipulations are involved, model-
space patterns are frequently preferable when the
br × bc cell sizes are larger because they better pre-
serve the sense of 3D surface orientations.

The basic color of each cell in a pattern is deter-
mined by the color assigned to the sensor that has
been determined to be able to see the object there.
I can modulate this color in two ways: by adding
a lighting model and by attenuation based on the
visibility probability. Recall that I interpolate the
individual 0 or 1 per-vertex visibility flag across
each triangle’s interior. If all three vertices have

the same flag, the triangle is uniformly visible or
invisible. However, if one vertex has a classifica-
tion different from that of the other two, then the
pixels in the triangle’s interior have a flag some-
where between 0 and 1. I can interpret this as the
probability that this pixel is visible to the given
sensor, and I can use the probability to attenuate
the color. So, I have—for both the screen-space and
model-space modes—four choices: no attenuation,
lighting-model attenuation, visibility probability
attenuation, and attenuation by both the lighting
model and visibility probability. Figure 4 illustrates
the choices, using model-space attribute blocks.

Implementation and Performance
In the simplest scene, the city is defined with
15,411 vertices and 14,714 triangles. The most
complex version I tested had 32,139 vertices with
48,096 triangles. Display updates during sensor
repositioning and reorienting were instantaneous
for both scenes on a 3.2-GHz Intel Core 2 Duo
running Linux with a Quadro 600 GPU.

I’ve achieved my primary goal of delivering real-
time performance as sensor placement and

orientation dynamically change under operator
control. Assigning colors or textures to buildings
and the terrain might make the scene more
realistic, but operators must be careful about
overusing color. Very muted monochrome textures
might be effective. Another extension could be
to endow the sensors and scene geometry with
additional properties. For example, my method
could then support sensors that can see through
certain types of walls.

Acknowledgments
To select the colors assigned to the different sensors,
I used the ColorBrewer website (http://colorbrewer2.
org). I thank the NASA World Wind project team—
especially Tom Gaskins and Patrick Hogan—for sup
porting me while prototyping this and other tools
for NASA World Wind (http://worldwind.arc.nasa.
gov/java).

References
 1. T.W. Garaas, Sensor Placement Tool for Rapid Devel

opment of Video Sensor Layouts, tech. report TR2011-
020, Mitsubishi Electric Research Laboratories, Apr.
2011; www.merl.com/reports/docs/TR2011-020.pdf.

 2. T.C. Gruber Jr. and L.B. Grim, “Visualization of
Foreign Gases in Atmospheric Air,” Proc. 11th Int’l

Screen-space patterns are often the better
choice when the scene isn’t dynamically

rotated, because the patterns tend to be
more sharply defined.

 IEEE Computer Graphics and Applications 13

Symp. Flow Visualization, 2004; www.meshoxford.
com/Visualization%20of%20Foreign%20Gases%20
in%20Atmospheric%20Air.pdf.

 3. M.A. Livingston and E.V. Herbst, “Interactive Oper-
ations for Visualization of Ad-hoc Sensor System
Domains,” Proc. 2005 IEEE Int’l Conf. Mobile Adhoc
and Sensor Systems (MASS 05), IEEE, 2005, pp. 341–345.

 4. J.R. Miller, “Attribute Blocks: Visualizing Multiple
Continuously Defined Attributes,” IEEE Computer
Graphics and Applications, vol. 27, no. 3, 2007, pp.
57–69.

 5. M.M. Malik, C. Heinzl, and M.E. Gröller, “Com-
parative Visualization for Parameter Studies of Data-
set Series,” IEEE Trans. Visualization and Computer
Graphics, vol. 16, no. 5, 2010, pp. 829–840.

James R. Miller is an associate professor in the Depart
ment of Electrical Engineering and Computer Science at the
University of Kansas. Contact him at jrmiller@ku.edu.

Contact department editor Mike Potel at potel@wildcrest.
com.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

(a) (b)

(c) (d)

Figure 4. Modulating the color in the model space: (a) lighting off, visibility probability off; (b) lighting off, visibility probability
on; (c) lighting on, visibility probability off; (d): lighting on, visibility probability on.

Register today!
http://compsac.cs.iastate.edu/

16-20 July 2012

Izmir, Turkey

IEEE COMPSAC 2012
36th IEEE International Computer Software and
Applications Conference

