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Macaulay’s concise but explicit expression for nmltivariate resultants has many potential

applications in computer-aided geometric design. Here we describe its use in solid modeling for
finding the intersections of three implicit quadric surfaces. By B6zout’s theorem, three quadric
surfaces have either at most eight or intlnitely many intersections. Our method finds the
intersections, when there are finitely many, by generating a polynomial of degree at most eight
whose roots are the intersection coordinates along an appropriate axis. Only addition, subtrac-
tion, and multiplication are required to find the polynomial. But when there are pmsibilities of
extraneous roots, division and greatest common divisor computations are necessary to identify
and remove them.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling– curve, surface and object representatwns; geometric algorithms, languoges and
systems; physically based modeling

General Terms: Algorithm, Design, Theory

1. INTRODUCTION

Quadric surfaces appear with surprising regularity on the boundary of physi-
cal objects commonly modeled in computer-aided design and manufacturing
(CAD/CAM) systems. However, only bounded portions of these surfaces
actually lie on the boundary of the model. The challenge for computer-aided
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geometric design (CAGD) is to determine those portions of the surfaces that
do lie on the object and to represent them in the database.

Relevant portions of surfaces are generally determined from Boolean opera-
tions on quadric half-spaces. As a result, the pieces of the surfaces that lie on
the model are bounded by curves of intersection between pairs of quadric
surfaces. In general these curves are irreducible space quartics, although in
certain situations they are reducible, either to a line plus a space cubic or to a
pair of (possibly degenerate) conies. Like the surfaces from which they arise,
it is typically the case that only portions of these curves actually lie on the
boundary of the object. The endpoints of the curves are the locations in space
where the complete curve intersects yet a third quadric surface.

Computing the intersection curves and partitioning them at their intersec-
tions with other surfaces is one of the primary tasks of the Boundary
Evaluation algorithm in solid modeling systems. This algorithm generates
the boundary representation of the solid resulting from a Boolean operation
applied to two other solids. Boundary evaluation is of vital importance to
solid modeling systems since so many application functions and interaction
techniques require a complete and accurate representation of the bounding
faces, edges, and vertices of a solid. It is also generally the most complex
piece of software in such systems, owing to the many complex geometric
relationships that can arise which must be handled properly in an automatic
fashion.

The Boundary Evaluation algorithm operating on solids A and B can be
summarized at a high level as follows [19]:

1. Generate a suftlcient set of tentative edges.

(a) Intersect each surface on the boundary of A with each surface on the
boundary of B.

(b) Partition the original edges of A, the original edges of B, and the new
curves generated in part (a) at their intersections with other surfaces.

2. Classify each partitioned edge as INSIDE, OUTSIDE, or ON (the boundary ofI
the resulting solid.

3. Retain only those edges whose classification is ON.

Robust algorithms which address step l(a) in the context of the so-called
natural quadrics have been described in Miller [13], O’Connor [17], and Piegl
[181. General algebraic techniques not restricted to the natural quadrics are
presented in Levin [81. Sarraga [21] has also studied these techniques in the
context of the natural quadrics. Ocken et al. [16] have reported general
algebraic intersection schemes applicable to any pair of rational surfaces (of
which quadric surfaces are a subset). More recently, Farouki et al. [61have
described general algebraic methods for automatically intersecting any pair
of quadrics, detecting degenerate results such as conies and other rational
parametric curve branches in the process.

We focus in this paper on issues related to part (b) of step 1. At least 3
methods of partitioning curves are known. Since none of the methods perform
satisfactorily (or are even applicable) in all situations, a given system will
typically implement more than one technique and then use which ever one is
best for a particular geometric configuration. Briefly, the known methods are
the following (see Miller [12] for further details and references).
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(1) Curve-surfme intersection. Directly intersect the quadric surface inter-
section curve with other quadric surfaces on the model. This approach is
commonly used when the curve is a straight line or a conic section.

(2) Curve-curve intersection. If an intersection curve between surfaces S1
and S2 intersects (nontangentially) another surface S3, then it must be
the case that both S1 and S2 intersect S3 along distinct intersection
curves. The partitions could then be determined by intersecting any 2 of
these 3 curves. Again this technique is most commonly employed when
the two chosen curves are conic sections; however, Levin describes a
rather elaborate algebraic scheme for intersecting two general nonplanar
quartic intersection curves [8].

(3) Three-quadric intersection. It is clear from the discussion to this point
that the bounding vertices of the curves lie at points common to three
quadric surfaces. Partitioning the intersection curves by pursuing this
observation is most commonly used as a fall-back approach when no two
of the surfaces intersect in straight lines or conic sections. A scheme to
find such points based on the application of quick heuristics with general,
but slower, fall-back numerical methods is described in Morgan and
Sarraga [141. The remainder of this paper describes a new approach
using multivariate resultants to find the points in common to 3 quadric
surfaces. 1

Using multivariate resultants [22] to find the intersections of 3 implicit
quadric surfaces is a new approach in CAGD.2 It provides new insight to the
intersection problem by isolating the algebraic details into a single resultant
expression. At one stroke a polynomial of degree at most 8 is found, whose
roots are the intersection coordinates along one of the coordinate axes. When
the polynomial is a nonzero constant (degree zero), there is no intersection in
affhe space; when it is identically zero, the intersection is infinite (a curve).
We refer to such polynomials derived from resultants as intersection
polynomials.

Our method differs from those using the more commonly known Sylvester
resultants [20]. With Sylvester resultants, an intersection polynomial can be
found by successive elimination: first compute 3 resultants of degrees at most
4 by eliminating one variable; then compute 3 more resultants of degrees at
most 16 by eliminating another variable; finally compute the greatest com-
mon divisor (GCD) of the latter 3 resultants. This method has several
drawbacks. Computationally it is very expensive; 6 resultants and the GCD
of 3 polynomials of degrees up to 16 must be computed. The degrees of the
intersection polynomials produced may exceed 8, and more seriously, it is not
clear how to detect and remove extraneous roots —roots which are introduced

*While the curve and surface intersection techniques surveyed above, as well as the specific
implementation of the 3 quadric intersection algorithms to be described, are applicable only to
quadric surfaces, they are nonetheless useful in modeling systems supporting higher order
surfaces, possibly in addition to quadrics. We expand upon two aspects of this observation in
8ection 6.
‘This use of multivariate resultants has also been discussed by Bajaj et al. [1].
ACM Transactions on Graphics, Vol. 10, No. 4, October 1991.
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during the derivation of the intersection polynomial, but which do not
represent the coordinates of any intersections. In contrast, multivariate
resultants produce, in a single step, an intersection polynomial of degree at
most 8. This approach also allows the identification of extraneous roots when
they exist.

In the following sections we briefly introduce resultants and describe
Macaulay’s method3 for finding them. The use of multivariate resultants for
computing the intersections of 3 implicit quadric surfaces is presented, and
special techniques for practical implementation are discussed. These tech-
niques include the avoidance of division in Macaulay’s multivariate resultant
expression, systematic detection of degree deficiencies, and removal of extra-
neous roots. An evaluation of the accuracy and robustness of this method is
also reported.

2. MACAULAY’S MULTIVARIATE RESULTANT EXPRESSION

Resultants are an important tool in elimination theory. They are polynomial
functions of the coefficients of a system of homogeneous (all terms having the
same degree) polynomial equations, whose vanishing is a necessary and
suficient condition for the system of homogeneous equations to have a
nontrivial (not all zero) common solution. For k homogeneous polynomial
equations in k variables, the resultant always exists. B6zout and Sylvester
resultants are well-known resultant expressions for k = 2 (see Salmon, [20]).
For k >2, a concise but explicit resultant expression was provided by
Macaulay [10]. We use the term “multivariate resultants” for the case k >2,
since in this case a resultant eliminates more than two variables from a
system of homogeneous polynomial equations. This differs from the terminol -
ogy of Collins [5] whose multivariate resultants refer to the case k = 2 but
with indeterminate coeftlcients.

2.1 The Algorithm

Macaulay’s multivariate resultant expression for k homogeneous polynomial
equations in k variables is a quotient of two determinants I D I/ I M I where
the denominator I M I is a factor of the numerator I D I and M itself is a
submatrix of D. D and M can be constructed by the following algorithm
adapted from Macaulay [101. Important facts are given as comments in the
algorithm. Their proofs can be found in Macaulay [101. When the degrees of
the k homogeneous polynomials are all equal, a similar method by Macaulay
produces smaller matrices D and M [4, 91.

Input. k homogeneous polynomials fl, ” “ “, f~ of degrees nl,. ~“, nk in xl,. “ “, x~.
t-l+ ~$(n, –1)
Qf+{x;l . ..xplil+ik. +ik =t}

‘]In his ACM 1987 Doctoral Dissertation Award-winning thesis, Canny [21 discussed and applied
multivariate resultants, using a formulation originally due to Hurwitz. Subsequently he also
discovered expressions for multivariate resultants due to Cayley and Macaulay. We discovered
Macaulay resultants independently in May 1988 while reading his The Algebraic Theory of
Modular Systems [111.
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Comment. flf is the set of all degree t homogeneous monomials in xl,”” “, xk.
T+~t
for i from 1 to k do

S + set of monomials ~ T divisible by ~~,

0
s+—---,,—1

x:’
T+l’.S

Comment. @ is partitioned as x~’f10 U . . . U x~bOk_l.
for i from 1 to k do

for each monomial a(t- “1) in fli _ ~,compute the polynomial o(~- “I)f,

Comment.
( )
t+k–1 h

k-1
omogeneous polynomials of degree t are formed.

D - coefllcient matrix’ of these polynomials with Q’ as column indices
forifrom Otok–2do

Fi + set of powers E fl, divisible by at least one of x ~:$z,. .-, x ~k
&f+- the minor of D with

column indices X;I F. U . . . U xf!-~ Fk _~ and rows from polynomials
flFo,..., fk.lF~_Z

Output. lD1/liWl.

2.2 An Example

To illustrate the algorithm, consider three homogeneous polynomials a, b,
and c:

a-alx2+ azxy+a~xz +a1y2+a~yz+aGz2=0

b= blx2 + b2xy+ b~xz+ bay2 + b~yz+ bez2 =0 (1)

c=c1x+c2y+c3z=o.

By writing the monomial xi yJz k as ~k, we have

!23 = {300,210,201,120,111,102,030,021,012,003)

il~,fll= {100,010,001]

G’2= {110,101,011,002)

I’o,I’l= {001)

and

a1a2a3a4a5a6 ““””
al. a2a3”a4 a5a6”

. . a1”a2a3”ad a5a6

blbzb3bdb~b6”.. .

bl”b2b3”bbb~b6.
. . bl”b2b~”bdb~bc

c~”czc~”” ““”
. . C1” C2C3”” ““
. . . . c1””c~c3”
. . . . . C~”” C2C3

ACM Transactions on Graphics, Vol. 10, No. 4, October 1991.
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where the dots in (2) represent zero entries. Note that M is the submatrix of
D with column indices (2 OO) I’o, (O 2 O) FI and rows from (OO1) a and (OO 1)
b.

The construction of D is greatly facilitated by arranging the monomials in
the lexicographic order. For example, powers 120, 300, and 210 are ar-
ranged in the order 300, 210, 120.

2.3 Equivalent Resultant Expressions

If we arrange (1) as c, a, b and the variables as y, x, z for input to the
algorithm, the resultant expression will be

ID I
— .
IMl

C1C2C3 . . . ““””
C*” C2C3. ” ““”

. . C1” C2C3”” ““

. . . C1”” C2C3” “

. . . . cl”” c~c~” C2 “

. . . . . cl””c~c~ +.C2, (3)

a1a2a3a4a5a6 ““””
. . a1”a2a3”a4 a~a~

blbgb~bbb~bc”.” .
. . bl”bzb~”b.bbbe

It can be verified by direct computation using Maple [3] that (2) and (3) are
equivalent, except possibly for sign. In fact, there are ( k!)z ways of express-
ing Macaulay resultants for a system of k homogeneous polynomials in k
variables. To indicate that a resultant expression is generated by the permu -
tations u and 6 on the equations and variables, the resultant expression is
denoted as ( ~;o1 ~$~ f$s)X,,XtiX,, where ffl, f,j’z, f-fs are homogeneous poly -
nomials in the variables xl, Xz, X3 of degree nl, nz, n~, respectively. For
examples, resultant expressions (2), (3) are denoted as (a2b2cl)=Y=(c1a2 b2)YXz,
respectively.

3. MACAULAY RESULTANTS WITHOUT DIVISION

Since Macaulay’s multivariate resultant expression is a quotient of two
determinants, division is required when k >2. This is undesirable because
in our context the determinant entries will be polynomials and some special-
izations of determinant entries will result in 0/0. This problem can be
avoided by expanding and dividing the determinants to arrive at an integral
expression before specializing the entries. But this will usually result in
hundreds and thousands of terms. Fortunately division can be avoided with-
out losing the conciseness of the resultant expression by the following two
techniques.

3.1 Resultant Expressions Conducive to Division

The first technique involves choosing the “right” Macaulay expression and
using the determinant identity I a + ~, ~ I = Ia, ~ I + I ~, ~ 1. For example,
(3) is one of the 36 equivalent resultant expressions for the system a2 bzcl in
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the variables x, y, z. Expanding by cofactors of the seventh column and
ignoring sign, we find that

(C’a’b’)yxz = +C2. (4)

. . al “ a2 a3 a4 a5 a6

blbzb~bbbbb~”””
. . b, “ bz b~ b, bb be

But the determinant in (4) can be written as the sum of two determinants by
splitting the second column as

C1C2C3 ”””
. . . C2 c~ “
. . c1 “ C2 C3
. . c1 “
. . . . . c1

%“a3a4a5a6
. . al “ a2 a3

bl “ b~ bd b~ be
. . b, - bz b~

•t

. . .

. . .

. . .

C2 Cq “

C2 C3
. . .

a4 a5 ae
. . .

b4 b~ be

C1” C3 ”””” ““

c1”c2c~”” ““
. . C~” C2C3 ”””
. . . . C~” C2C3”
. . . . . c1 “ C2 C3

a~azasa~abae ““”
. . al “ a2 a3 a4 a5 a6

b1b2b3b4bhb6 ”””
. . bl . b2 b3 b4 b~ be

. (5)

Clearly, the first determinant is divisible by C2, which is a factor of the
second column. The same procedure can be repea~ed with the second determi-
nant. Eventually we will arrive at a determinant whose entries do not
involve Cz; this determinant must be zero since it must be divisible by Cz.
Consequently the resultant for the system a2 b2cl can be written as a linear
combination of five 9 x 9 determinants with no division whatsoever.

3.2 Pat%alSpecialization

The other technique may be called partial specialization-introducing zero
values into the determinant expressions to facilitate division. For example,

ACM Transactionson Graphics,Vol. 10, No. 4, October 1991.
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one of the 36 resultant expressions for the system a2 b2c2 is

a1a2a3a4a5a6” ““.”””. .

a1”a2a3”a4a5 a6’.”.””
,. a1”a2a3”a4a5 a6””.””
. . . a1””a2a3”. a4a5a6””
. . . . al”. a2a3”. a4a5a6”
. . . . . . . a2a3. .a4a5a6

blb2b~bdb~;;.... . . . . .
(a2b2c2),YzX = .bl.bzb~.bdb~bc.. . . . .

“bl.b2bz.bbb~bG. . . . .
. . . -b, ” .b2ba.. b, b, b~ .

. . . . .bl - “bzb~. “ bd b~ b~
C* C2C3C4C5C6”” ““”””””

C1” C2C3” C4C5 c~” ”””””
,. C1” C2C3” C4C5 c~” ””””
. . . . C1”” C2C3”” C4C5C6”

ad a~ “

% a4+ (6)
bb b~ “

Note that the denominator reduces to a; b~ when a6 = O. Furthermore, if
b, = c, = O, then successive expansion by cofactors of the 1lth, 12th, 15th,
and 7th columns gives

a1a2a3a4a5. ““...
. . al. a2a3a4a5 .“.
. . . . . al “ a2 a~ al a5

b, b2bB . b~ be . . - . s

b1”b2b~”b~bG”” .

(a2b2c2)YzI = a, . . b, . b2b~ “ b~b~ . . . (7)
. . . . bl”b2b, b,b G

C1C2C3. C5C6 ““”’”
cl”c2c~”c5 cc’””

. . C1” C2C3” C5 c~”’

. . . . c1”c2c3”c~ C6

Thus when a~ = bb = cd = O, the resultant for the system a’ b2C2 is an

expression involving no division.

3.3 Triangularization

To use the technique of partial specialization, the “right” zeros must be
introduced into the Macaulay expressions. This can be done systematically

ACMTransactions on Graphics, Vol. 10, No. 4, October 1991.
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by triangularizing the matrix

()

ad a~ a~

b4 bb b~ (8)
C4 c~ c~

using Gaussian elimination.
By interchanging rows if necessary, the structure of matrix (8) can be

reduced to one of the following eight conilgurations, where an x represents
an entry which can be either zero or nonzero:

I II III Iv

Ooooololx Olx
000000000 001
000000000 000

v VI VII VIII

lXXIXX1 Xx lxx
0000010 lXOIX
00000000 0001

Thus given any system az b2c2, a system with the same common solutions
and with a~ = b; = c~ = O can always be derived; so ( a2 b2c2) ~zX can always
be written as (7) and no division is involved. But when the rank of matrix (8)
is less than 3, simpler expressions without division can be obtained by
similar techniques, as is shown later.

4. THE METHOD

By using multivariate resultants, we show that the intersection problem
reduces to solving for the roots of a single univariate polynomial and for each
root solving three simultaneous polynomial equations in two variables. Note
that not all real roots of an intersection polynomial correspond to real
quadric intersections for they may be paired with complex valued solutions in
the other axes, Solving univariate polynomials is a well-understood numeri-
cal problem [151; solving three simultaneous polynomial equations in two
variables can be done by finding the three pairwise Sylvester resultants and
then solving the GCD of the pairwise resultants. The following sections
provide the details of this use of multivariate resultants.

4.1 Finding the Intersection Polynomials

The general equations of three quadric surfaces can be written as

‘2H+’2F:I+Z2EI+X
“H+YEI+ZE!I’

ACM Transactions on Graphics, Vol. 10, No. 4, October 1991.
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By regarding any one of the variables x, y, or z as an indeterminate constant
and introducing a homogenizing variable, the quadric equations can be
written as homogeneous equations like (11), where x has been taken as the
indeterminate constant.

We refer to (11) as the x-homogenized equations of (10). This should not be
confused with the homogeneous equations of (10) which are

The resultant RX of(11) can be obtained using the Macaulay expression for
the system a’b2C2 with the substitutions

al= Alx2+ATx+A10 a2=Aqx+A~ a~=ABx+Ag
bl=Blx2+Z3Tx+B10 b2=BAx+B~ b~=BGx+Bg
C1=C1X’+C7X+C10 c’ = C4X+C8 c3=c6x+cg

It is clear that RX is a polynomial in x. By B6zout’s theorem [22], the
degree of Rx should, in general be 8. This is not obvious from the resultant
expression but can be established theoretically by using the isobaric property
of the resultant which we now explain. Each coefficient of (11) is assigned an
integer value known as the weight. This is done by first arbitrarily choosing
any one variable from WX,y, z. The weight of a coefficient is then set equal to
the power of that variable in the term where the coefficient occurs. The
weight of a term in a resultant expression is defined to be the sum of the
weights of the coefllcients appearing in that term. With this weight assign-
ment, it is known that resultants are isobaric (all terms have the same
weight), and the weight of each term is equal to the product of degrees of the
given equations [11]. Thus by choosing the variable WX, the weights of the

ACM Transactions on Graphics, Vol. 10, No. 4, October 1991.
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“ 1 for az, a3, b2, b3, C2, C3; andcoefilcients of (11) are as follows: 2 for al,b ~, c1,
O for the rest. But here the coefficients are polynomials in x, and clearly
their weights are simply their degrees. Consequently the resultant is isobaric
of weight 2 x 2 x 2 means each term has a weight of 8. It follows that the
degree of x in the resultant expression is at most 8.

As an example, the x, y, and z intersection polynomials for the quadrics
(14)

‘2[:I+Y2[3+Z2[!+XY[I+Y
‘x[:l+yEl+z[:l+[a=[!l (14)

are (15), (16), and (17), respectively:

X4(X– 1)(19x+25)(x2 –x– 25) = O (15)

Y4(Y– 2)(19Y+50)(2Y2 – 2Y+ 25) = O (16)

24(’ – 3)(192 + 75)(322 + Z – 25) = O. (17)

Since the vanishing of the resultant is a necessary and sufficient condition
for the solvability of a system of polynomial equations, each root x of RX = O
corresponds to a solution (WI, y, z) of (11). If WX# O, then (x, y/ WX,z/ WX)is
a solution of (10). But it is also possible that a root x may correspond to a
solution (O, y, z) of (11). Such x’s do not correspond to a solution of (10).
Consequently the intersection problem reduces to solving for the roots of a
single univariate polynomial R. = O, provided that R, is a nonzero noncon -
stant polynomial and we know what roots of R. = O to discard.

Clearly similar arguments apply if y or z, instead of x, is considered to be
an indeterminate constant.

4.2 Identically Zero Resultants

An identically zero resultant for (11) means that a nontrivial solution exists
regardless of the value of x. For example, (w,, y, z) = (O, – 6, a) is always a
nontrivial solution of (18) for any value of x.

AI X2+ AT X+A10

B1X’+B7X+B10

1CIX’+ C,x+ Clo

ACM Transactions on Graphics, Vol. 10, No. 4, October 1991,
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This means that the resultant RX, a polynomial in x, has infinitely many
roots and thus is identically zero. But notice that in this case (18) could have
been homogenized as (19), which is a system of homogeneous equations of
degrees 221. In fact, there is a correspondence between rank deficiencies of
matrix (8) and degree deficiencies of the homogenized quadric equations. For
ranks 2, 1, and O, the homogenized quadric equations are of degrees 221,
211, and 111, respectively. They are given by (19), (20), and (21):

(A1X2+A7X +A1O)UI~+ (A, X+ A8)WxY

+( A6x+A9)wXz +A2y2+A5yz+A3z2=0

(B1x’+B7x +B1O)w: +( B4x+B8)w1y

+( B6x+B9)wxz +B2y’+B5yz+B3z’=o

(C1X2+C,X+ C,,)r.ux+ (c4x+c8)y+ (C6X+C,)Z= o (19)

(A1X2 +A, X+ AIO)W; + (A, x +A8)WXY

+( A6x+Ag)wXz +A2y2+A~yz+A~z2=0

(B1X2+B7X+B10)WX+ (B4x+B8)y+ (B6X+B,Z) =0

(c, x’+ C7X+ C,,)wx+ (C,x-tc,)y+ (c, x+ C,)z=o (20)

(A1X2+A7X +A,O)WX+( A4X+A8)Y +( A6X+A,)Z= O

(B,X’+B7X+B,0)WX+ (B4x+B8)y+ (B6X+B,)Z=0

(clx’ + C,x+ Clo)wx+ (c, x+ C,)y+ (c, x+ C,)z= o. (21)

When the rank is O or 1, the degree of the intersection polynomial is at
most 4 or 6, respectively. This does not contradict B~zout’s theorem because
x, y, 2 are afflne coordinates but the theorem is true only in projective space.

In many cases, this provision of degree deficiencies will overcome the
problem of identically zero resultants. Exceptional cases still exist like (22):

(A1x2+A, x+ A10)w~+ (A4X+A,)WXY+ (A6X+A,)WXZ

+aply ’ + (CYql +Bpl)yz+pqlz’ = o

(B, X’+B7X+B,0)W; + (B4x+B8)wxy+ (B6X+B,)WXZ (22)

+ap’y ’ + (aq’+ Dp’)yz+pq’z’ = o

(cl X’+ C7X+ c,o)wx+ cr(p3x+ q3)y+B(p3x+q3)z=o

where ( WX,y, z) = (O, – 6, a) is again a nontrivial solution for all values of
x. In this case, y or z rather than x could be taken as the indeterminate
constant to produce an intersection polynomial provided the given quadric
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equations do not have the following structure:

S2(y2) + r2(z2) = rs(yz),

s(xy) – r(zx), s(y) – r(z), (y2), (z2), (yz) are coplanar

qz(zz) +pz(xz) =pq(zx),

9(Y) -P(W) >9(Z) -P(~) !(z2), (~2), (=) are coplanar

U2(X2) + Uz(yz) = Zw(xy),

U(zx) – U(yz), u(x) – Up,,, are coplanar

where (X2), (y2), . . . . are the coefficients of X2, Y2, . . . . written as column
vectors like those in (10). An example of quadric equations with this struc -
ture is

1:

1

X2 \

o I
o

+y
21

0

+ Z2

11
CY

+x qey + j
Uez

o

0

1

+ Xy

v
—
u

u
—

:

[

St)x

+ z pey

7

+ yz

o
s
—
r

r
—
s

[1

kl

+k2=

ka

+2X

o
0

0.1 (23)

where sq v = rpu. For systems like (23), the resultants of the x, y, and
z-homogenized quadrics are all identically zero. Transforming the given
quadric equations is one way to get around this problem. For example, after
applying transformation (24), the method can be used to find x’, y’, and z’.
An inverse transformation will then give x, y, and z. However, we do not
know if a transformation will always work, and if so what transformation is
most efficient,

H=(:: w (24)

In many situations an identically zero resultant may actually indicate the
presence of degeneracies which enable the solutions to be found in a simpler
manner. For example, when the three equations involve only one variable,
all intersections polynomials will be identically zero.

4.3 Extraneous Roots

A root x of RX = O that corresponds to a root (O, y, z) of the given quadrics
does not constitute a root (x, y, z) of the given quadrics. These x roots are
extraneous roots; they can be found by solving for those x for which the
system of equations derived by setting WXto O in (11), (19), (20), or (21) has
nontrivial common solutions. For (11), there are no such x values; for (19),
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(20), or (21), these x values are roots of the polynomial GX, which
of the pairwise Sylvester resultants which are, respectively:

Az A5 A3
B6 B3 O ,
0 B5 B3

AZ A5 A3
I$x+BB BGx+Bg o

0

Az A5
C4X+C8 C6X+C9

. 391

is the GCD

(25)

A3
B~x+B~ BGx+B~

o ,
C4X+C8 C6X+C9

(26)

o C4X+C8 C6X+C9

lAIX+A~ A6X+A~l IB4X+B8 B6X+Bgl

B4X+B8 B6X+B9 ‘ C4X+C8 C6X+C9 ‘

c4x+c~ C6X+C9
A4X+A8 A6X+A9 “

(27)

Equations (26) and (27) are obvious. Equation (25) can be obtained by
considering the triangularized matrix (8), which can be of configurations IV,
VI, or VII in (9). Since roots of GX are roots of RX, it follows that G= divides
R.. Strictly speaking, rather than R., RX/ GX is the desired intersection
polynomial since it has no extraneous roots.

These extraneous x values should not be confused with intersections at
infhity, which are solutions of the homogeneous quadric equations (12) with
w = O. The following example amply illustrates this fact:

x2+y+2z=o

xy+2z=o

zx+y+z=o.

The x, y, z intersection polynomials are, respectively, X2(x + 2),4 y2(3 y +
4), 22(3 z + 4). An extraneous root x = 1 must be removed from the resultant
of the x-homogeneous equations. This extraneous root is not a solution at
infinity because such solutions necessarily have x = O (this is obvious by
examining the first equation). The extraneous factors in the resultant of the
x-homogeneous equations always indicate that (w : x : y: z) = (O: O: y: z),
where y, z are not both zero, is an intersection of the given quadrics. But
intersections at infinity do not imply that there will be extraneous factors; for
example, (20), (21) always have intersections at infinity.

5. AN EMPIRICAL EVALUATION OF THE METHOD

To find out whether this use of multivariate resultants leads to a practical
algorithm, we incorporated the method into a solid modeling system running
on a Silicon Graphics IRIS 4D/60 workstation and performed an empirical
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evaluation. 4 The performance of our implementation is reasonable but not
perfect: for 150 3-quadric configurations involving 650 intersections, 663
intersections are found; among them, 13 intersections are bogus and 29
intersections are not accurate enough (one or more coordinates of an intersec-
tion has less than 6 correct digits). Thus over 90 percent of the values
computed by the algorithm were correct to better than 6 digits. This outcome
is rather satisfactory given that determinant expansions and GCD computa-
tions have to be performed using floating-point arithmetic with limited
precision. A detailed description of the experiment and an analysis of our
results follow.

5.1 Empirical Results

The typical situations under which purely algebraic methods for curve and
surface intersections have been known to fail in practice involve various
types of degeneracies such as tangencies or reducible intersections (i.e.,
intersection curves which are a pair of conic sections or a line plus a space
cubic). Such conditions are difficult to detect and handle reliably when armed
only with algebraic coefficients for the curves and surfaces.

To understand how our method works in practice, we examined a number
of test cases, representative examples of which are shown in Figures 1-4. In
Figure 1, the cone and sphere intersect in a degenerate nodal space quartic.
The cylinder intersects this quartic in four points. There are two degenera-
cies illustrated in Figure 2(a). The two cylinders intersect in a pair of
ellipses, and the horizontal cylinder intersects the cone in a line and a space
cubic. In Figure 2(b) we remove the first of these degeneracies by shrinking
the size of the vertical cylinder. Then in Figure 2(c) we remove the second
degeneracy by translating the horizontal cylinder down by a small amount.
Figure 3 also has a degeneracy in that the two cylinders intersect in a pair of
straight lines. Finally, the cone and cylinder of Figure 4 intersect in a
nondegenerate space quartic with two branches, and the sphere intersects
both the cone and the cylinder in nondegenerate one-branch space quartics.

Correct results were generated for these and all other cases we tried. The
points of intersection computed by our algorithm are illustrated in the
figures by white M’s. The intersection curves from two of the three pairs of
quadrics are also shown in yellow and cyan, respectively.

We wanted to understand how sensitive the calculations were to small
perturbations in the coeftlcients. Furthermore, this method introduces a
certain coordinate axis bias since it tries to find roots along one axis at a
time. Our approach to understanding the sensitivity while minimizing the
effects of coordinate axis bias is given below. In the following we speak of
geometric versus algebraic descriptions. The former representation is baaed
on storing, for example, a center point and radius for a sphere. The latter is

41n our evaluation only natural quadrics are used, since another intersection algorithm is
needed to verify the results. This should not be construed to mean that the algorithm works only
for natural quadrics.
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Figure  1

based on storing the 10 coeffkients  of the general  second degree equation  in
X, y, and z. See Miller  [121 for details.

For each of the cases illustrated  in Figures  l-4, a series of tests were
performed.  The ith test did the following:

1. Copy the original  geometric data describing the quadrics  to Qr, Qs, and  Q3.
2. Generate  the algebraic  representations  from the geometric ones,  and  intersect  the

3 quadrics  using  the algorithm described  in this paper.  Save  the results.
3. Generate  i random  rotation axes and i random  angles  in the range  - T to + K.

Save  the axes and angles.
4. forj= lto ido

Qk = rotation  j applied  to Qk,  k = 1 to 3.

5. Generate  the algebraic representations  from the (transformed)  geometric  ones and
intersect  the 3 quadrics  using the algorithm  described  in this paper.  Save  the
results.

6. for j = i downto  1 do

Qk = inverse  of rotation j applied  to Qk,  k = 1 to 3

7. Generate  the algebraic  representations  from  the (transformed)  geometric  ones and
intersect  the 3 quadrics  using  the algorithm described  in this paper.  Save the
results.

Note that  we perform  all basic  modeling and editing on the geometric
representation,  and we only  convert to the algebraic form when  we are ready
to apply  the algorithm of this paper.  That is why the test procedure  applied
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(4

Figure  2
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Fig.  2. (Continued)

the rotations  to the geometric representations  instead  of to the algebraic
ones. We believe  this approach  is reasonable  since  it exactly mirrors the
overall  modeling environment in which such an algorithm would  exist.
Experience  has shown  that  database  representations  and modeling opera-
tions  based on geometric descriptions  are far more robust  than  ones built on
algebraic  representations  171.

For the ith test at steps 2, 5, and 7, there  were  never  any errors  at steps 2
or 7; the results  at step  5, however,  were  occasionally incorrect.  There  were
no missing intersections.  Nevertheless two types  of errors  did occur  when
potential  intersections were  computed  but deemed  not to lie on the quadric
surfaces  when  substituted  back into the implicit equations:  these  intersec-
tions  were either  bogus or insufficiently accurate.  The number  of times  these
errors  occurred  at step 5 for the given test cases  is summarized  in Table  I. As
expected,  the situations  involving  degeneracies  generally fared  the worst.

5.2 Analysis of the Empirical Results

A major  concern  in our implementation is the use of floating-point  GCD
computations,  which are known to be highly instable.  In our implementation,
there  are two occasions  where  GCD computations  are needed:  removing
extraneous  factors  from the multivariate resultant  R, (or  R,, R,) and
solving three  equations in two variables; that is, after  one of the variables
x, y, z is calculated,  we need to solve  for the other  two variables using the
original three  quadric  surface  equations.  The GCD computations  for
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Figure 3

Figure 4
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Table I. Summary of Errors at Step 5

Figure Number of intersections Total
number Degeneracies Total Inaccurate Bogus errors

Fig. 1 Nodal space quartic 100 0 0 0

Fig. 2(a) 2 ellipses and line + space cubic 150 13 3 16

Fig. 2(b) Line + space cubic 150 11 5 16

Fig. 2(c) None 100 4 4 8

Fig, 3 2 lines 100 0 0 0
Fig, 4 None 50 1 1 2

Note. There are no errors at Steps 2 and 7,

extraneous factors can be done with a high degree of accuracy, since the two
polynomials involved are arrived at with very little computation (see (25),
(26), and (27)). Furthermore, in practice, there may not be any extraneous
roots— for example, when the rank of matrix (8) is 3. The same cannot be said
for the GCD computations involved in solving three equations of two vari-
ables. The roots obtained from the intersection polynomial certainly do not
have the same degree of accuracy as the coefficients of the quadric equations
since the intersection polynomial is obtained after some determinant expan-
sion; consequently the coefficients of the three quadric equations in the two
remaining variables are not as accurate as the given quadric surface coeffi -
cients. But GCD computations in this context do not require as much
accuracy, for we know that the GCD has to be a nonconstant polynomial; that
is, we only need to identify nearby roots of two polynomials.

Thus our algorithm finds all the intersection points, at the price of admit-
ting some bogus intersections of coordinates that are not sufficiently accurate
(in our experiments this means less than 6-digit accuracy). Bogus intersec-
tions can easily be detected; they are simply too far from one or more of the
quadrics. Intersections with inaccurate coordinates can easily be polished
with Newton –Raphson iteration. In our implementation, we simply applied
Newton- Raphson to any point in error (that is, bogus or inaccurate), The
bogus roots converged to actual intersection points, and the inaccurate points
were refined. This refining procedure is qualitatively different from using
Newton- Raphson for equation solving. An average of two or three iterations
were sufficient to refine an inaccurate root to an acceptable value. This
treatment of bogus roots required a final filtering operation to make sure
that roots were not recorded multiple times, but allowed us to avoid having to
distinguish between inaccurate and bogus roots. Supplemented by this
Newton-Raphson refinement, then, the method has yet to fail in any of our
experiments.

6. CONCLUSION

To best address the practicality of the techniques described in this paper, we
must again consider the larger context in which they are to be applied. In
particular, recall step 1 of the Boundary Evaluation algorithm described in
Section 1. We first compute the unbounded intersection curves between the
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unbounded quadric surfaces on the model. These curves are then partitioned
into pieces such that the interior points on each piece will have an identical

classification (INSIDE, OUTSIDE, ON) with respect to all the other quadric

surfaces on the model.

A robust implementation which works at least in the context of the natural

quadrics is as follows. Compute the underlying quadric surface intersection

curves using the geometric methods of Miller [131, O’Connor [17], or Piegl

[181, detecting conic sections, isolated intersection points, and other reducible

cases in the process. When partitioning these curves, use robust geometric

schemes whenever possible. Certainly straight lines and conies can be parti-

tioned in this fashion Miller [121. The straight line plus space cubic case can

be addressed by substituting the parametric representation of the cubic into

the implicit representation of the quadric and solving the resulting degree 6

polynomial in the curve parameter. Only when all of the pairwise intersec-

tion curves between the 3 quadrics are nondegenerate quartic curves (a

condition which will have been detected geometrically “by default” since

none of the previous cases will have been discovered) are the algebraic
schemes of this paper invoked. Our experience indicates that the application
of these methods in that framework is highly reliable.

The techniques described in this paper (as well as the other conic curve and
quadric surface intersection schemes surveyed in the introduction) are appli-
cable in any modeling system which has conies and quadrics as one of its
geometric forms. As with any nontrivial software application, the architec-
ture of modeling systems ought to be layered so that high-level modules are
unaware of the actual curve and surface representations. When such a
high-level module requires the intersection of two geometric entities, it ought
simply to call a low-level intersection utility that examines the types of the
two objects and invokes an appropriate intersection algorithm. If, for exam-
ple, this low-level routine receives two natural quadrics, then the relevant
quadric-quadric intersection algorithm can be invoked. If it receives a quadric
and a rational B-spline, then it might need to convert the quadric to a
rational B-spline and invoke the routine that intersects two rational B-splines.

This architectural philosophy is especially important for the robust practi-
cal implementation of the technique described in this paper. Suppose (e.g.,
during the course of the Boundary Evaluation algorithm) that a nondegener-
ate 4th-degree quadric surface intersection curve (c) is generated from the
intersection of quadrics Q 1 and Q2. Suppose further that it must now be
partitioned at its points of intersection with another quadric surface (Q3).
The algorithm of choice depends upon the types and relative geometric
orientations of the three quadrics. For example, it may be the case that Q1
intersects Q3 in a degenerate curve of some sort. If so, it will be more reliable
numerically to compute these degenerate intersection curves and then inter-
sect them with Q2 than it would be to do a 3-quadric intersection. On the
other hand, if there are no degeneracies between any of the 3 quadrics, then
the methods of this paper are numerically reliable and ought to be used.

There is another aspect to this claim of “broader than quadrics” applicabil-
ity. The method of multivariate resultants can, in theory, be applied to
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higher order surfaces. We chose to study quadric intersections for several
reasons:

(1) to test the method on the simplest nonplanar case;

(2) the resultant matrices get intractably large (given today’s technology) as
the surface degree rises;

(3) there are some nice quadric-specific tricks that allow us to eliminate the
denominators (cf. Section 3).

The only real obstruction with respect to using these techniques with
higher order surfaces is the size of the matrices involved. As computers get
larger and faster, this will become less of a problem. Now that the theory has
been developed and tested in the realm of quadrics, we should be able to use
it for higher order surfaces when the requisite computer hardware technology
reaches a suitable level.

The practical applicability of this approach has been established. It pro-
vides a solution when nonnatural quadrics are involved; for natural quadrics,
it provides a plausible alternative to existing algorithms.
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