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Using solid geometry, we 
developed efficient and 
numerically robust 
algorithms to compute 
plane sections of the 
natural quadric surfaces 
common in modeling. 
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In computer-aided design and manufacturing, engineers and system de- 
velopers often need to compute plane sections of geometric models. They 
use these sections to create tool path geometry for numerically-controlled 
machines or to compute various sectioned views in a drawing. Since portions 
of geometric models are often bounded by quadric surfaces, plane sections 
of quadrics are particularly important. Moreover, pairs of quadric surfaces 
sometimes intersect in planar curves, and system developers will frequently 
find it easiest to calculate these planar intersections by reducing the problem 
to one or two plane-quadric intersections.’ 

Algorithms for intersecting planes and quadric surfaces depend on the 
underlying representation scheme. Previous researchers like Levin and 
Sarraga have represented quadric surfaces by using implicit polynomial 
equations (the algebraic approach233), tagged sets of scalars, points, and 
vectors (the geometric approach’3435), or rational piecewise polynomial pa- 
rameterizations (for example, nonuniform rational B-splines637). Algo- 
rithms for quadrics represented as implicit algebraic equations generally 
transform the quadric to a coordinate system in which the sectioning plane 
is the x-y plane, but if the quadric is expressed as a tagged set of scalars, 
points, and vectors, algorithms based on geometric constructions applied 
directly in untransformed world coordinates are more stable numerically. 
On the other hand, if the quadric is represented as a rational polynomial (or 
piecewise polynomial) parametric curve, we can easily represent the inter- 
section as a curve in the parameter space of the quadric. 
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Researchers have developed few specialized techniques for 
computing plane sections of quadrics. We know of no tech- 
niques for the rational polynomial approach and only a few for 
representations based on implicit equations or tagged sets of 
geometric parameters. We developed robust algorithms, based 
solely on geometric constructions, that let us compute plane 
sections of the natural quadric surfaces when the surfaces are 
represented as tagged sets of scalars, points, and vectors. 

The natural quadrics are the sphere, right circular cylinder, 
and right circular cone.4 For simplicity, we use the terms “cylin- 
der” for “right circular cylinder” and “cone” for “right circular 
cone.” We derive the majority of our geometric constructions 
by applying a result about cylinders and cones from classical 
solid geometry.x 

and 

Although existing algorithms based on Levin’s implicit-poly- 
nomial method’ are more general than ours, serious numerical 
instabilities arise in practice. It is ironic that numerical in- 
stabilities are often the worst when relative geometric configu- 
rations are the simplest. Worse, it is precisely these simple 
configurations that designers often prefer. The general meth- 
ods typically compute quantities whose sign is used to deter- 
mine first whether a real intersection exists, and then the type 
of the intersection (circle, ellipse, hyperbola, and so forth). For 
example, if such a quantity is precisely zero, we get one type of 
result. If instead it is positive, we get another, and if negative, 
yet another. Since these quantities are the result of numerical 
computations, they will rarely be precisely zero. Generally 
speaking, the more calculations required to compute a quantity, 
the less reliable that quantity will be. Our methods determine 
the type of intersection with very few computations-in fact, 
often directly from the database representations with no addi- 
tional computation. Moreover, the units are spatial; thus, we 
can easily determine reasonable tolerances for comparisons. 

Previous work 
We know of no comprehensive treatment of the problem of 

computing plane sections of quadric surfaces. Apparently, 
Levin* and Sarraga3 used an algebraic approach based on coor- 
dinate system transformations. A general quadric in arbitrary 
position is represented algebraically as 

Ax2 + By2 + Cz2 + 2Dxy 
+~E~~+~Fxz~-~Gx+~H~+~.Jz~K=O 

We can write this equation in matrix form: 

pep’ = 0 

where 

DBEH 

GHJ K 

p=(x,y,z,l) 

Affine transformations map quadrics into other quadrics. If Q 
is a matrix describing an arbitrary quadric and R is an affine 
transformation matrix, we can compute the matrix Q’ describ- 
ing the quadric that results from applying R to Q as 

Q’ = R-‘Q&f 

In the algebraic approach to plane sections, we determine a 
combination of translations and rotations that map the section- 
ing plane to the x-y plane. We then apply these transformations 
to Q, that is, the algebraic representation of the quadric whose 
planar intersection we seek. We then drop all terms involving z 
in the transformed quadric representation. The resulting sec- 
ond degree equation in x and y describes the conic intersection 
in the transformed coordinate system.2 Levin applies further 
transformations to bring the conic into canonical position in the 
x-y plane.* 

There are at least two possible ways to represent this conic in 
the database, and it is not clear which, if either, Levin or Sarraga 
actually employed. You can store (1) the coefficients of the 
resulting second degree equation in x and y, and (2) the trans- 
formations that relate the local coordinate system to the world 
coordinate system. Alternatively, you can determine the type 
(ellipse, hyperbola, parabola) of the conic as well as its defining 
parameters (center, axes, dimensions) numerically. To calcu- 
late these geometric parameters in general position, you can 
then apply the inverse of the transformations used to bring the 
sectioning plane to the x-y plane. 

The first approach is awkward since we would need addi- 
tional coordinate system transformations every time we wished 
to use the representation. To test if a point lies on the conic, for 
example, we must first apply the transformations to the point. If 
the transformed z coordinate is 0 and the transformed x and y 
coordinates satisfy the conic’s implicit equation, then the origi- 
nal point lies on the conic. Moreover, when we wish to draw the 
conic, we must generate a series of points in the local coordinate 
system and then transform each point to world coordinates by 
using the inverse of the stored transformations. The second 
approach doesn’t require as many transformations, but it de- 
mands a considerable amount of computation as well as numer- 
ically sensitive tests to derive the type and geometric parameters 
describing the conic. 

The primary advantage of the algebraic approach lies in its 
generality. You can compute plane sections of arbitrary quadric 
surfaces (not just the natural quadrics) using the algorithm de- 
scribed above without case-by-case analysis. This is precisely 
the disadvantage of our approach, since we develop a separate 
algorithm for each natural quadric. In our opinion, the advan- 
tages inherent in the geometric approach outweigh this disad- 
vantage. From geometric considerations we derive the type of 
the conic as well as its defining parameters; hence we need no 
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Figure 1. Geometric definitions of the conic sections. 

numerical classification mechanism to determine the type of 
the conic from its algebraic coefficients. Furthermore, we need 
no transformations whatsoever, so we require far fewer calcu- 
lations to arrive at a complete description of the conic sections. 
Fewer computations mean greater speed and improved numer- 
ical reliability. When expressions must be tested for equality, 
they are readily related to spatial quantities, making it easier to 
establish meaningful tolerances. Moreover, while our deriva- 
tions are occasionally long, the algorithms we present are short. 
Therefore, the computer code required to implement these 
techniques is inexpensive. 

Descriptions of geometric constructions for computing plane 
sections are as rare in the literature as those for the algebraic 
method. Rogers and Adams described special techniques for 
certain types of plane-sphere sectioning operations.’ Miller de- 
scribed how to intersect planes and spheres in the general case 
using geometric constructions,” but he didn’t discuss the com- 
putation of plane sections for other types of quadrics. The 
plane-sphere algorithm Miller presented” is the same as that 
given under “Plane-sphere intersection” below. 

To the best of our knowledge, no one has published descrip- 
tions of plane-section algorithms specialized for quadrics repre- 

conic section. However, these methods work for 
arbitrary rational surfaces and are therefore not 
specialized or optimized for quadrics. We assume 
that the surface is represented as 

-es, 0 
x=w(s,t)‘y= w(s,t)’ , 

Y!a z=E (1) 

where we can express the polynomials x(s, t), 
y(s, t), Z(S, t), and w(s, t) in monomial, Bezier, B- 
spline, or any other convenient polynomial or 
piecewise polynomial basis. 

The first method for rational polynomial sur- 
faces begins as did the algebraic approach. We 
determine a series of transformations that map 
the sectioning plane onto the x-y plane. We then 
apply these transformations to Equation 1 to get 

The equation z*(s, t) =0 then represents the 
plane section in the parameter space of the ratio- 
nal surface. If the rational surface is a quadric, 
then the equation z*(s, t) = 0 represents the conic 

in the parameter space of the quadric. 
The second method substitutes the parametric equations of 

the surface into the implicit equation of the sectioning plane in 
general position. Given the implicit plane equation 

ax+by+cz+d=O 

we substitute the expressions in Equation 1 for x, y, and z to 
again get a representation of the conic in the parameter space 
of the quadric: 

ax@, t) + by@, t) + cz(s, t) + dw(s, t) = 0 

But representations of intersection curves as implicit equa- 
tions in parameter space (such as we get from either of the 
methods outlined above) are inconvenient. We must often in- 
tersect curves obtained from surface intersections with other 
curves or surfaces, and the intersection operation is more com- 
plex than necessary when we represent curves like tonics in this 
way. In the boundary evaluation algorithm of solid modeling, 
we must be able to compare two curves for equality. When we 
represent them with implicit equations in the parameter space 

sented by rational polynomial 
parameterizations. -We briefly 
mention here two possible ap- 
proaches for finding plane sec- Line (base point, direction vector) (B> w) 
tions of rational parametric 
surfaces. If the surfaces happen Circle (center, normal to the plane containing the circle, radius) CC, w, r) 

to represent quadrics, then you Ellipse (center, major axis, minor axis, major radius, minor radius) (C, u, v, ru, r”> 

can use these methods to get a Parabola (vertex, directrix vector, focus vector, focal length) (V, w v, f) 
description of the resulting Hyperbola (center, major axis, minor axis, major radius, minor radius) CC, u, v, rut r,> 
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^ . ^ ot rational surtaces, this test is extremely complex. Finally, 
many design and manufacturing applications are especially 
easy to perform and reliable in operation when supplied with 
direct representations of curves such as circles. Representing 
tonics as implicit equations in parameter space complicates 
these operations and ultimately makes them less reliable. 

In this article, we develop geometric constructions for com- 
puting plane sections of the natural quadric surfaces that oper- 
ate on planes and natural quadrics in general position and 
orientation. These procedures generate geometric descriptions 
of the resulting conic sections. Our algorithms are extremely 
fast, numerically robust, and do not employ coordinate system 
transformations of any sort. 

Geometric notation and tools 
Geometric representations of tonics and quadrics are gener- 

ally characterized by a local coordinate system with associated 
scalar parameters. The local coordinate system is defined by 

1. Three mutually perpendicular unit vectors (II, v, w) that 
describe the orientation of the conic or quadric and 

2. A base point 0 that fixes the position of the curve or 
surface in space. The scalar parameters determine the 
size of the conic or quadric. 

We adopt certain conventions on the use of the vectors (u, v, 
w). We use the vectors (II, v), for example, to specify 2D orien- 
tations in a plane (for example, the major and minor axis vec- 
tors for an ellipse). We use the vector w for line directions, plane 
normals, and cylinder and cone axis vectors. 

Obviously there is redundant information in the complete 
coordinate system, and we need to specify only portions of it to 
determine uniquely the position and orientation of a particular 
conic or quadric. We summarize the geometric parameters that 
uniquely define lines and tonics in Table 1 and illustrate them 
in Figure 1. We list those defining planes and natural quadrics 
in Table 2 and illustrate them in Figure 2. Throughout this 
article, we assume that the vectors associated with the geomet- 
ric representations are unit vectors. 

Using vector techniques, we can easily derive both paramet- 
ric and implicit representations of these second degree curves 
and surfaces from their geometric representations. For exam- 
ple, a rational polynomial parameterization for the ellipse is 
given by 

W 

/. 

’ B 

Figure 2. Geometric definitions of the natural quadric surfaces. 

and an implicit equation for the cylinder is simply 

where P is an arbitrary point in 3-space. 
An advantage of the geometric representation is this flexibil- 

ity; we can robustly derive these other two common representa- 
tions. Moreover, all the data in the geometric representation 
has a clear-cut physical meaning. This is not true for, say, the 
coefficients of the implicit polynomial representation. 

In the sequel, we assume that certain primitive functions cre- 
ate and manipulate scalars, points, vectors, curves, and sur- 
faces. We briefly summarize some of them below. 

The function Line(Q, v) returns a line whose base point and 
unit direction vector are as specified. The function Normal- 
ize(v) returns a unit vector whose direction is the same as that 
of v. The function Signed-distance-from-plane(Q, P) calcu- 
lates the signed distance as 

Table 2. Geometric descriptions of planes and natural quadric surfaces. 

Surface Description of geometric parameters Notation 

Plane (base point, normal vector) 0% w) 
Sphere (center. radius) 

Cylinder (base point, axis vector, radius) 

Cone (vertex, axis vector, half-angle) 

((Q - PB) P.w) 

Based on the Signed-dis- 
tance-from-plane(Q, P) function, we 
assume we can test reliably (that is, to 
within some prespecified tolerance) 
whether a point is on a plane by check- 
ing for a zero-signed distance. 
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Figure 3. The plane intersects the sphere in a circle. 

Plane-quadric intersections 
When planes intersect quadrics, the result is either a (possibly 

degenerate) conic section or a single point. In this section we 
describe algorithms for intersecting planes with spheres, cylin- 
ders, and cones. 

As described in Table 2, the input to the algorithms presented 
in this section is the geometric parameters of a plane and a 
natural quadric. The output is the defining geometric parame- 
ters of the (possibly degenerate) conic as described in Table 1 
or the coordinates of the single point of intersection. 

There are many ways to compute plane-quadric intersections 
geometrically. Any simplification, enhancement, or improve- 
ment to these algorithms automatically improves the operation 
of routines that depend on them (such as those described in our 
other article’). 

First we treat the simplest case, namely plane-sphere intersec- 
tions. While we won’t need the tangent ball technique on which 
the rest of this article is based, we observe an analogous result 
that serves as a preview of how we’ll use the tangent ball tech- 
nique for cylinders and cones. Next we present algorithms for 
plane-cylinder intersections. We begin by introducing the tan- 
gent ball theorem for plane sections of cylinders. We then dem- 
onstrate how to apply the theorem to derive a robust 
plane-cylinder intersection algorithm based on geometric con- 
structions. Finally we treat the plane-cone case. Again we begin 
by stating the tangent ball theorem for cones, then demonstrate 
how we can use it to derive a plane-cone intersection algorithm 
based purely on geometric constructions. 

We summarize the derivations of each section with pseudo- 
code implementations of intersection algorithms. These algo- 
rithms occasionally require equality tests which, for clarity of 
exposition, are written as “if x = y then. . . .” In practice you test 
for equality within some tolerance, the value of which depends 
on the quantities being examined. In our algorithms, the quan- 
tities are always either distances or angles; hence, you can com- 

Figure 4. Two inscribed tangent spheres touching at the center 
of the circle. 

pute reasonable tolerances based on, for example, the overall 
size of the model. 

Plane-sphere intersection 
When a plane intersects a sphere, the result is either a single 

tangent point or a circle. The distance from the sphere center to 
the plane is the determining factor. The following algorithm 
suffices (see Figure 3): 

input: P: plane; S: sphere 
d : = signed-distance-from-plane(S.C,P) 
if abs(d) = S.r then 

output: tangent point : = S.C - d * P.w 
else ifabs(d) > S.r then 

output: no intersection 
else 
output: circle: C : = S.C - d * P.w 

r: = sqrt(S.rz - d2) 
w: = P.w 

Notice that the two spheres tangent to both P and S are 
tangent to P at the center of the circle of intersection (Figure 4). 
As we see later, an analogous result holds for plane-cylinder 
and plane-cone intersections. That is, we can construct a pair of 
spheres, each tangent to the cylinder or cone in a circle and 
tangent to the plane at a point. The tangent points on the plane 
are the foci of the conic of intersection, and we use this fact to 
derive algorithms for constructing the geometric parameters of 
the intersection conic. 

Plane-cylinder intersection 
The intersection of a plane and a cylinder is either empty, a 

single tangent line, two lines, an ellipse, or a circle. We call the 
acute angle between the cylinder axis and the plane normal 8. 
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Figure 5. (a) The plane intersects the cylinder in an ellipse. (h) Off-axis view ofthe geometry of (a). 

One or two lines can occur only if 8 = n/2. In this case, the 
distance between the cylinder axis and the plane (equivalently. 
the distance between the cylinder base point and the plane) 
determines whether the intersection is empty or one or two 
lines. 

The intersection cannot be empty when I3 + x/2. It will then, 
in general, be an ellipse. If 8 = 0, the intersection is actually a 
circle. We can detect this after computing the ellipse parame- 
ters by testing for equality of the major and minor radii. It is 
more efficient and numerically reliable, however, to test for this 
configuration at the start of the algorithm and to treat the circle 
intersection as a special case. The parameters of the circle are 
easy to compute. We use this approach in the algorithm below. 

If we did not treat this as a special case, not only is Y,, = r,>, but 
also II and v as calculated below are zero vectors. Since these 
vectors are not required for circles (see Table l), this is not a 
serious problem. But note that this means we have redundant 
conditions signalling a circle intersection: 

1. r,, = rI, 
2. II = (0, 0, 0), and 
3. v = (0, 0,O). 

Redundancy invites inconsistency, especially in numerical 
computations. For example, the vagaries of floating-point arith- 
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metic can lead to a situation where the first two equations are 
deemed to be false. but the third is true. 

When El does not equal 0 or 90 degrees, the intersection is an 
ellipse. We derive an efficient and robust algorithm for this case 
by applying the following theorem from solid geometry. 

The Tangent Ball Theorem for Cylinders: When the intersec- 
tion of a plane and a cylinder is an ellipse, there are precisely 
two spheres that are tangent to the cylinder in a circle and 
tangent to the plane at a point. The two points on the plane at 
which these spheres are tangent are the foci of the ellipse. Fur- 
thermore, the distance along a cylinder ruling between the two 
tangent circles is twice the major radius of the ellipse. 

Sketch of Proof: Though this result is well-known in solid 
geometry,8 for completeness we sketch a proof. Consider the 
geometry of Figure 5, in which a plane cuts a cylinder in an 
ellipse. For any point Q on the ellipse, we define x+ as the 
distance along a ruling between Q and the circle centered at 
C+. Similarly we define x- as the distance along a ruling between 
Q and the circle centered at Cm. (The significance of the “+” and 
*I-” subscripts becomes clear shortly.) Since the distance along 
a cylinder ruling between the two circles is a constant, the sum 
(x+ + L) is this constant distance and is therefore independent 
of Q. But note that the line passing through Q and F+ is also 
tangent to the sphere; hence the distance between Q and F+ 
must be x+. Similarly, the distance between Q and F- must be 
XL Since Q is an arbitrary point on the ellipse, we see that the 
ellipse can be characterized as the set of points on the plane, the 
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Figure 6. (a) The plane is tangent to the cylinder along a line. (b) 
The plane cuts the cylinder in two distinct lines. 

sum of whose distances from F+ and F- is a constant. But this 
means that F+ and F- must be the foci of the ellipse, and the 
constant (x+ +x-) must be twice the major radius. This con- 
cludes the proof. 

We can apply this theorem to derive explicit expressions for 
the foci. We can further use these expressions to derive the 
various geometric parameters, describing the ellipse in general 
position and orientation. We assume the cylinder is defined by 
(&I, wcyl, I), and the plane is defined by (Bplane, wplme). 

The centers of the two tangent spheres must he on the cylin- 
der axis, and their radii must of course be 1. Clearly the two 
spheres lie on opposite sides of the plane (see Figure 5). If the 
center of a sphere is C, then the point of tangency on the plane 
is C f rwptane. The signed distances along the axis line from the 
base point of the cylinder to these two centers is denoted d+ and 
dm. Thus 

C+ = Bcyi + d+wc,l 
C- = Bcyl + d-wc,l 

For each center point, we construct the resulting tangent 
point on the plane (that is, a focus of the ellipse) as 

74 

F+ = Bcy~ + d+wyl + mp~ane 

F- = Bcyi + d-wcyl - wp~ane 

To determine d+ and d-, we substitute these expressions 
for the foci into the implicit equation of the plane: 

(@,I + c&w,, + rwp~ane) - Bp~ane) ’ wplane = 0 
((&,I + d-wcyl - mp~ane) - Bp~ane) . wplane = 0 

Solving these equations ford, and d-, 

d+ = (B+‘“e - &I) wplane - r 
Wyl Wplane 

d- = (Bplme - Bcyd . wplane + r 

Wyl Wplane 

Notice that when (w,,t wptane) > 0, d_ > d+, and when (wcYt 
wplane) < 0, d- < d+. 

Since the center of the ellipse is the midpoint of the foci, we 
have 

&++F- ~ = Bcyl + ? 
d++d- 

1 Wcyl 
L 

= Bcyl + &me - B,d WPLWE wcy, 

wcyl . Wplane 

Examining this formula, we clearly see that the ellipse’s 
center lies on the axis of the cylinder, and hence the center 
is the intersection of the axis line with the plane. We can 
then find the direction of the major axis vector as 

F+ - F- = (d+ - d-)w,,, + 2rwplane = 
-2r 

%,I . Wplme 
myI+ 2mpkine 

For now we are only interested in the direction, so we can 
write 

Wcy’;~me(F+ - F-) = Wcyl - (Wcyl Wplane)Wplane 

Therefore, we get the major axis direction from the compo- 
nent of wcyt perpendicular to wptane. By the Tangent Ball Theo- 
rem, the distance along a ruling from one tangent circle to the 
other is twice the major radius. Clearly from Figure 5 this dis- 
tance is I& - d+l. Hence 

Id - d+l r 
r 

u 
= ~ = lWcyl . Wplanel 2 

Finally, to compute the minor radius, we find the distance c 
between the center and a focus and then compute the minor 
radius r, as 7. (2 - c ) . Smce c is also half the distance between 
the foci, we first calculate the square of the distance between 
the foci. 
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4c*=IF+-F-1*=4? 
( 

’ 7-l 
(Wcyl Wplane) 

Since (w,~I wpiane) = cos 8, we simplify this expression to 
get 

2c=IF+-F-I= 4 

Then we compute rv as 

Figure 7. The plane intersects the cylinder in a circle. 

-(r tan 0)’ = qxi- r ~~- = r 
cos2 e 

Thus the minor radius of the ellipse is the same as the 
cylinder radius r. 

The following algorithm summarizes the treatment of 
plane-cylinder intersections. Note that we never actually com- 
pute the foci in the algorithm. We simply used the formulas 
describing them to derive compact expressions for the ellipse 
parameters summarized in Table 1. Though our derivation was 
a bit long and tedious, notice how compact the final code be- 
comes. 

Plane-cone intersection 
A plane and a cone always intersect, even if just at the vertex 

of the cone. Any conic section is possible depending on the 
angle between the cone axis and the plane normal. Before we 
derive the algorithms, let’s look at the theorem on which we 
based our approach.” 

input: P: plane; C: cylinder 
d : = signed-distance-from-plane(C.B,P) 
Projection-of-B : = C.B - d * P.w 
cos-theta = C.w P.w 
abs-cos-theta = abs(cos-theta) 
if cos-theta = 0 then 

i 
intersection is empty or consists of one or two lines; see Figure 6 
I 
if abs(d) = C.r then 

output: tangent line: B : = Projection-of-B 
w : = c.w 

else if abs(d) > C.r then 
output: no intersection 

else { two lines ) 
offset-in-plane : = C.w x P.w 
e : = sqrt(C.r* - d2) 
output: line 1: B := Projection-of-B - e * offset-in-plane 

w : = c.w 

The Tangent Ball Theorem for Cones: When the intersection 
of a plane and a cone is a nondegenerate conic section, there are 
precisely one or two spheres that are tangent to the cone in a 
circle and tangent to the plane at a point. If there is only one 
such sphere. the intersection is a parabola, and the point on the 
plane at which the sphere is tangent is the focus of the parabola. 
If there are two such spheres, the intersection is an ellipse or a 
hyperbola, and the two points on the plane at which the spheres 
are tangent are the foci. The distance along a cone ruling be- 
tween the two tangent circles is twice the major radius of the 
ellipse or hyperbola. 

Sketch of Proof: Again, this result is well-known in solid ge- 
ometry,x but for completeness we sketch a proof. The proof is 
analogous to that for the cylinder version of the theorem. We 
sketch the proof of this version assuming an ellipse intersection. 

line 2: B : = Projection-of-B + e * offset-in-plane 
w : = c.w 

else ( ellipse or circle ) 
if abs-cos-theta = 1 then ( See Figure 7 ) 

output: circle: C : = Projection-of-B 
w: = P.w 
r: = C.r 

else ( refer to Figure 5 ) 
output: ellipse: C : = C.B - (d / cos-theta)*C.w 

u: = normalize(C.w - cos-theta * P.w) 
v: = P.w x u 
ru: = C.r / abs-cos-theta 
rv: = C.r 

Consider the geometry of Figure 9, in which a plane cuts a 
cone in an ellipse. For any point Q on the ellipse, we definexi as 
the distance along a ruling between Q and the tangent circle 
determined by the sphere centered at Cl. Similarly, we define 
x2 as the distance along a ruling between Q and the tangent 
circle determined by the sphere centered at CZ. Since the dis- 
tance along a cone ruling between the two circles is a constant, 
the sum (xi +x2) is this constant distance and is therefore inde- 
pendent of Q. But note that the line passing through Q and FI is 
also tangent to the sphere centered at CI. Hence the distance 
between Q and FI must be xi. Similarly, the distance between 
Q and F2 must be x2. Since Q is an arbitrary point on the ellipse, 
we see that the ellipse can be characterized as the set of points 
on the plane. the sum of whose distances from FI and F2 is a 
constant. But this means that F1 and F2 must be the foci of the 
ellipse. and the constant (xi +x2) must be twice the major ra- 
dius. This concludes the proof. 
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We assume that (V, a, wcone) defines the cone, and (B, wprane) 
defines the plane. We can apply this theorem to derive explicit 
expressions for the foci, and we can then use these expressions 
to derive the various geometric parameters describing the conic 
in general position and orientation. As with plane-cylinder in- 
tersections, we never need to compute the foci in the final 
computer code. Instead, we use the expressions defining them 
to derive compact formulas for the defining geometric parame- 
ters of the conic, as summarized in Table 1. 

We distinguish here two primary cases according to whether 
or not the vertex of the cone lies on the plane. If the cone vertex 
lies on the plane, then there are no spheres such as those de- 
scribed in the Tangent Ball Theorem For Cones. We must com- 
pute the intersection for this case (vertex only, one tangent line, 
or two distinct lines) by another method. First let’s consider the 
case in which the vertex of the cone doesn’t lie on the plane. We 
then show how to treat the configuration in which the vertex lies 
on the plane as a limiting case. 

When the cone vertex is not on the plane 

If the cone vertex doesn’t lie on the plane, then the intersec- 
tion is a nondegenerate conic section, and we can pursue the 
tangent ball approach. Without loss of generality, we make the 
following simplifying assumptions: 

((V - B) wplane) < 0 (if not, replace wplane with -wplane) 
wcone wpiane) > 0 (if not, replace wcone with -wcone) (1) 

We call the angle between the cone axis vector and the plane 
normal 8. Therefore cos 8 = wcone wplane. 

The condition for a sphere (C, r) to be tangent to the cone in 
a circle is’ 

c= v+&pm (2) 

We take some liberty with r in Equation 2, letting it be nega- 
tive. We understand the radius of the sphere to be Irl, and we let 
the sign of r place the sphere on a particular half of the cone. 
The condition for a sphere to be tangent to the plane is 

I(C - B) . w,~,,,l = Irl 
:. ((C - B) . wphe)* = r* (3) 

Substituting the expression for C from Equation 2 into Equa- 
tion 3, we find 

(L (V - B) + fJcone 1 1 Wplane 2=$ 

When we expand and gather terms of like powers in r, we get 

rz 
i 

Wco”.! Wpla”e)2 _ 1 + r 2((V - B) Wplane)(Wcone Wplane) 

sin’ a 1 i 
sin a 1 

+ ((V- B) Wplane)* =o (4) 
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Observe that the discriminant of Equation 4 is a perfect 
square: 

disc= 4((V- B) Wpla"e)2ho"e . Wplane12 
sin* a 

-4 
l 

wcone wPlane)2 _ 1 
sin* a 1 

((V - B) Wpla”e)* 

= 4((V-B) Wplane)* 

:. I/disc= 2((V - B) Wplane) 

We can therefore write expressions for the two possible val- 
uesofr: 

-av - B) . Wpla”e)hme Wplane) _ 2((v _ B) . w 

sin a pane 
1 ) 

rl = 
2( 

l 

Wcone . Wpla”e)* _ 1 

sin* a 1 

= ((V - B wp~ane) sin cWcone wp~ane) + sin a) 

sin2 a - (wcone wphd2 

((V - B) . wplane) sin a = 
sin a - (wane wphne) 

= ((V - B wplane) sin a 
sina-cos0 (5) 

Similarly 

r2 = _ ((V - B) wphne) sin a 
sin a + cos 0 (6) 

Since our cones are nondegenerate (that is, a > 0) and since 
by assumption cos 8 = (wcone wpiane) 2 0, r2 is always well de- 
fined. The denominator of Equation 5 will be zero, however, if 
the acute angle between the cone axis line and the plane is a. 

We consider three primary subcases according to whether 
cos e = (W,,“, wpiane) is equal to, greater than, or less than 
sin a. These cases lead respectively to parabola, ellipse, and 
hyperbola intersections. 

Parabola: cos0 =sinct 

If cos 0 = sin a, then 8 + a = rc /2, the acute angle between the 
cone axis line and the plane is a, and the plane intersects one 
half of the cone in a parabola (see Figure 8a). Only one tangent 
ball exists, because the denominator of Equation 5 is zero in this 
case. We drop the subscript “2” from r2 and refer to the radius 
of this sphere as r. This ball is tangent to the plane at the focus 
of the parabola (see Figure 8). Now we can find the vertex of the 
parabola directly. 

Since cos 6 = sin a, r = - ((V - B) wplane) / 2 = d / 2 where d is 
the distance from the vertex of the cone to the plane. Referring 
to Figure 8a, we see that l3 = 0 - a = rr /2 - 2a. Therefore the 
distance 
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Figure 8. (a) The plane intersects the cone in a parabola. Only one tangent sphere exists. (b) Off-axis view of the geometry of 8a. 

e=dtan t-2a =dcot(2a)=dcot(7[.-228) 
( 1 

=-dcof(2~)=d:fanB;CUfR) 

and the distance 

h=Gk=T& 

By symmetry the vertex and focus of the parabola must lie in 
the plane containing the cone vertex, wconc, and wplanr. The unit 
focal direction vector v of the parabola must lie in this plane as 
well. and it must be perpendicular to wplane. The focal direction 
is therefore the component of wcone perpendicular to wplane. 

v = Normalize(w,,,, - (wcone wp~anc)~p~anr) 

= Normalize(w,,,, - cos ewplanc) (7) 

We can thus construct the vertex and focus of the parabola as 

Vparat,,,la = Vc,,,c + dwplane + ev 
Focus = Vcm + hwcone + y,~ans 

Observe that the vector (Focus - Vparabola) must be parallel to 
v. Furthermore, its length is, by definition, the focal length of 
the parabola. We now use these facts to derive a compact for- 
mula for the focal length of the parabola. First 
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(Focus - Vparabola) = hwcm + (T’ - d)wplane - ev 

d 1 

-[ 
- 

2 cos 8 (Wconr - cos ewplanc) + (cot 8 - tan e)v 1 
But clearly 

lwconc - cos ewplancl = 4 1 - 2 (30s’ 8 + co? 8 = sin t3 

Thus, from Equation 7 we see that wconr - cos t3wplane = sin 8v, 
and we can write 

(Focus - Vpardhola) = $[tan ev + (cot 8 - tan 0)v] = $ cot Bv 

Therefore the focal length of the parabola is (d cot 0) /2. We 
summarize these results in the following algorithm (see Figure 
8). We assume here that the conditionsin Equation 1 aresatisfied. 

input: P: plane; C: cone 
d : = (P.B - CV) P.w 
cos-theta : = P.w C.w 
sin-theta : = sqrt( 1.0 - cos-theta * cos-theta) 
tan-theta : = sin-theta / cos-theta 
cot-theta : = 1.0 /tan-theta 
e : = 0.5 * d * (tan-theta-cot-theta) 
focus-vector : = normalize(C.w - cos-theta * P.w) 
output: parabola: V: = C.V + d * P.w + e * focus-vector 
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Figure 9. (a) The plane intersects the cone in an ellipse. (b) Off-axis view of the geometry of 9a. 

u: = focus-vector x P.w 
v: = focus-vector 
f = 0.5 * d * cot-theta 

Ellipse: case > sina 

Recalling the assumptions stated in Equation 1, we see clearly 
from Equations 5 and 6 that both rl and r2 are positive with 
rt > rz, and that the tangent spheres lie on opposite sides of the 
plane (see Figure 9). We can therefore express the foci of the 
ellipse as 

FI = V + &wcone - revplane 

F2 = V + &wcone + rmplane 
The center is the midpoint of the foci: 

C=_ FI+Fz=~+ n+n rl - r2 
~WaW”“” - -Wplane 2 

But from Equations 5 and 6, we get 

rl + r2 = 2NV - B) wplme) sin a ~0s e = 2h sin a cos 8 
sin* a - cos* 0 

(8) 

and 

rI - r2 = 
2((V - B) wplane) sin* a = 2h sin* a 

sin* a - cos* 9 
(9) 

where 

h=$ 
t = (B - v) Wplane 
b = COS* 8 - sin* a 

Therefore the center of the ellipse is expressed as 

C = V + h cos Owcone - h sin* awplane 

The major axis vector u is parallel to (Fl - F2). However, it 
really depends only on the relative orientation of the plane and 
cone. This is fortunate, since calculating u as normalize 
(FI - F2) involves considerable computation and will likely be 
numerically unstable as the foci get very close. Since we are 
interested only in the direction of u, it suffices to consider any 
scalar multiple of (Fl - F2). 

(11) 

Thus we need only the ratio rh. From Equations 5 and 6, 
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n cos 0 + sin a ~- 
r-2 - cos e - sin a (12) 

t sin adcos’ 0 - sin’ a tsina r, = 
608~ 0 - sin2 a -4% 

Substituting Equation 12 into Equation 11, we write 

;(F, - F2) = sin 

We summarize these results in the following algorithm. Again 
we assume that the conditions in Equation 1 are satisfied. 
Though our derivation was again long and tedious, note how 
compact the final code becomes. 

Again, since any scalar multiple of (F1 - F2) suffices, we can input: P: plane; C: cone 
conclude that u is parallel to cos-theta : = C.w P.w 

‘OS e2--2sin a(F~ - Fz) = wcone - cos ewplane 
cos-sqr-theta : = cos-theta * costheta 
sin-alpha : = sin(C.a) 

The direction of the major axis vector is therefore the compo- 
nent of wcone perpendicular to wplane. The direction of the minor 
axis vector is perpendicular to the major axis vector and the 
plane normal vector. Therefore, as indicated in the algorithm 
below, we can easily compute it by a cross product. 

All that remains is to find the major and minor radii. But from 
the Tangent Ball Theorem, we know that the distance along a 
cone ruling from one tangent circle to the other is twice the 
major radius. Hence, 

sin-sqr-alpha : = sin-alpha * sin-alpha 
cos-alpha : = sqrt(l.O - sin-sqr-alpha) 
t : = (P.B - C.V) P.w 
b : = cos-sqr-theta - sin-sqr-alpha 
h:=t/b 
output: ellipse: 

C: = C.V + h * cos-theta * C.w - h * sin-sqr-alpha * P.w 
u: = normalize(C.w - cos-theta * P.w) 
v: = P.w x u 

ru: = h * sin-alpha * cos-alpha 
rv: = t * sin-alpha / sqrt(b) 

ru=f[&-&)=z=hsinacosa (13) ifWcone, If the plane normal and cone axis vector are parallel (that is, 
wplane = l), the plane section is a circle. The discussion 

Let d be the distance between the center and the focus of the 
under “Plane-cylinder intersection” with respect to detecting 

ellipse. Then we can compute the minor radius as 
after the fact when an ellipse is actually a circle applies here as 
well. We therefore test explicitly for this special case. We use 

r,=A&Z 

Since d is also half the distance between the foci of the ellipse, 
we can write 

d2 = +(F, - F2) (F1 - F2) 

(14) 
the following algorithm if cos 0 as calculated above is deter- 
mined to be 1 (see Figure 10). 

input: P: plane; C: cone 
h : = signed-distance-from-plane(C.V,P) 
output: circle: C: = C.V - h * P.w 

w: = P.w 
r: = abs(h) * tan(C.a) 

1 rI - r2 * =-{(-) -2cosR(r1-~?(r~+r2)+(rl+r2)2 
4 sin a I 

(15) 

Substituting Equations 8 and 9 into Equation 15, we get 

d2 = $(2h sin a)2 - 2 cos 8(2h sin* a)(2h cos 0) 

+ (2h sin a cos e)*) 

= h2 sin2 a(1 - 2 cos2 8 + cos* 0) 
= h2 sin* a sin2 0 (16) 

Substituting Equations 13 and 16 into Equation 14, we get 

r, = .\jh* sin* a co? a - h2 sin* a sin* 0 
= h sin adcos2 a - sin2 8 

= h sin adcos2 8 - sin* a 

Finally, using the definition of h in Equation 10, we write 

Hyperbola: cos0 < sina 

By using a slight variation of the algorithm we just developed 
for the ellipse, we can handle the hyperbola and the ellipse with 
a common algorithm. 

Recalling the assumptions stated in Equation 1, we can 
clearly see from Equations 5 and 6 that rI is negative and r2 is 
positive. The tangent spheres in this case lie on the same side of 
the plane (see Figure 11). We can therefore construct the foci of 
the hyperbola as 

FI = V + &wcone - rmplanc 

F2 = V + a,,,,, + rmplanc 

Notice that these are the same formulas as those derived for 
the ellipse. Therefore we can use the same formulas for the 
center and axis directions as we did for the ellipse. All that 
remains is to find the major and minor radii. We write the major 
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Figure 10. (a) The plane intersects the cone in a circle. (b) Off-axis view of the geometry of 10a. 

a b 

Figure 11. (a) The plane intersects the cone in a hyperbola n -C 0. (b) Off-axis view of the geometry of lla. 

radius as half the distance along a cone ruling from one tangent This differs from the formula for r,, derived for the ellipse 
circle to the other: since here we have (12 - rl) instead of (q - rz). Since 11 > r2 for 

the ellipse whereas r2 > rl for the hyperbola, both formulas de- 

ru=t(&-&)=E 
scribe positive numbers. 

Now if d is the distance between the center and the focus of 
the hyperbola, the minor radius is 
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r, =m limit of the ratio (r,/r,,) that also depends only on this relative 
orientation. Such a formula exists. since both r,, and rV depend 

This differs from the formula for rV derived for the ellipse linearly on the distance of the vertex from the plane. From our 
since here we have (d* - r$ instead of (rf, - d’). For both the earlier analysis, we know that when the intersection is a hyper- 
ellipse and the hyperbola, we consider a right triangle whose bola, 
sides have lengths r,,, r,, and d. The hypotenuse in the ellipse has 
length Ye,, while that for the hyperbola has length d. Therefore. 
again both formulas describe positive numbers. 

Exploiting these observations, we add two absolute value 
operations to the ellipse algorithm (one in the computation of 
rl, and the other in the computation of r,) to get a common 
algorithm for both the ellipse and the hyperbola. Again we 
assume that the conditions stated in Equation 1 are satisfied. 

input: P: plane; C: cone 
cos-theta : = C.w P.w 
cos_sqrrtheta : = cos_theta * cos-theta 
sin-alpha : = sin(C.w) 
sin-sqr-alpha : = sin-alpha * sin-alpha 
cos-alpha : = sqrt( 1 .O - sin-sqr-alpha) 
t : = (P.B - C.V) P.w 
b : = cos-sqr-theta - sin-sqr-alpha 
h:=t/b 
output: ellipse (if cos-theta > sin-alpha) or hyperbola 

(if cos-theta < sin-alpha): 
C: = C.V + h * cos-theta * C.w - h * sin-sqr-alpha * P.w 
u: = normalize(C.w - cos-theta * P.w) 
v: = P.w x u 
ru: = abs(h) * sin-alpha * cos-alpha 
TV: = t * sin-alpha / sqrt(abs(b)) 

When the cone vertex is on the plane 

If the vertex of the cone is on the plane. then the intersection 
is either a single point (if cos 0 > sin a), one line (if cos 8 = 
sin a), or two lines (if cos (3 < o). We cannot employ the tangent 
ball approach directly since in this case no spheres are tangent 
to both the plane and the cone. However, since lines are possi- 
ble only when cos 8 5 sin a. we can proceed by considering a 
limiting case of hyperbola intersections. 

Consider a plane P’ parallel to P at a distance E from P, and 
suppose P’ intersects the cone in a hyperbola. The asymptotes 
of the hyperbola are Line(C, ~1) and Line(C, wz). The point C 
is the center of the hyperbola as computed by the algorithm 
described in the previous section. The vectors WI and WI are 
defined by WI = Normalize(u + (r,,Ir,,)v) and 149 = Normalize(u- 
(rV/rll)v) where u, v. rt,, and rV are the remaining geometric 
parameters of the hyperbola. In the limit as E + 0. the asymp- 
totes of the hyperbola converge to the lines of intersection of P 
with the cone. and the center C of the hyperbola converges to 
the vertex V of the cone. We discovered in the previous section 
that the axis vectors u and v of the conic depend only on the 
relative orientation of the plane normal and the cone axis vec- 
tors; u and v did not depend on the position of the vertex rela- 
tive to the plane. Therefore we need only find a formula for the 

r,, = ((B - v) sin7;y;o;y (y. cos a 

rV = ((B - v) wphe) sin a 
4sin2 ci - cos’ 8 

Therefore the ratio we seek is 

L = sin’ a - cos’ 8 = +jGGZT 
r,, cos a 1 -sin’ 0. 

(17) 

Using this formula for the ratio. we can now express the lines 
of intersection when the vertex of the cone lies on the plane as 

Line(V,u+zv) and Line(V.u-zv) (18) 

where u and v are the hyperbola axis directions, and V is the 
vertex of the cone. When cos 0 > sin ~1, we cannot compute the 
ratio in Equation 17. But since this is the case of a degenerate 
ellipse (described earlier). the intersection is just the vertex of 
the cone. When cos 0 = sin a, the ratio in Equation 17 is zero. 
This is a degenerate parabola, and hence the intersection is a 
single tangent line whose direction is u. Finally, when 
cos 0 < sin a, the ratio in Equation 17 is a positive number. This 
is the degenerate hyperbola, and the intersection is the two lines 
described in Equation 18. 

We summarize the handling of plane-cone intersections when 
the vertex of the cone is on the plane in the following algorithm. 
This algorithm doesn’t require that w,,,, wplanc be nonnega- 
tive. Figure 12 illustrates the possible results. 

input: P: plane: C: cone 
cos-theta : = C.w P.w 
sin-alpha : = sin(C.w) 
sin-sqr_alpha : = sin-alpha * sin-alpha 
diff : = sin-sqr_alpha - cos-theta * cos-theta 
if (diff < 0) then 

output: point: C.V 
else 

u : = normalize(C.w - cos-theta * P.w) 
if (diff = 0) then 

output: line: B: = C.V 
w: = u 

else 
v : = P.w x u 
ratio : = sqrt(diff / (1 -sin_sqr-alpha)) 
output: line 1: B: = C.V 

w: = normalize(u + ratio * v) 
line2: B: = C.V 

w: = normalize(u - ratio * v) 
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Figure 12. Intersection possibilities when the vertex lies on the 
sectioning plane: (a) vertex only, (b) single tangent line, and (c) 
two distinct lines. 

Conclusions 
Using geometric constructions, we developed algorithms for 

computing plane sections of natural quadric surfaces. We pres- 
ent the plane and natural quadric to the algorithms in general 
position and orientation defined in terms of the geometric data 
shown in Table 2. The intersection (a conic, one or two lines, or 
a point) is returned in general position and orientation in terms 
of the geometric data shown in Table 1. We derived explicit 
formulas in terms of the plane and quadric parameters for all 
the geometric parameters of the tonics. The algorithms operate 
entirely in world coordinates and do not employ coordinate 
system transformations of any sort. 

We implemented our algorithms in a solid modeling system 
being developed at the University of Kansas. Experience has 
shown them to be extremely reliable, efficient. and fast. cl 
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