
Computers & Graphics 27 (2003) 605–615
*Fax: +1-785

E-mail addre

0097-8493/03/$ -

doi:10.1016/S009
Technical section

The remote application controller

James R. Miller*

Electrical Engineering and Computer Science, University of Kansas, 415 Snow Hall, Lawrence, KS 66045, USA

Accepted 15 April 2003
Abstract

Many modern design, visualization, and decision support systems involve interdisciplinary working groups. Common

requirements to support the efforts of such groups include shared graphical displays and the ability for all involved to

interact with the visualizations. Much effort has been expended on the visualization side; somewhat less has been

reported on the interactive control side. In this paper, we describe the ‘‘remote application controller’’ (RAC), a Java

application running on a personal device that can locate and establish communication with other applications running

on the network. The RAC serves two related purposes in this context. When running on personal handheld devices, it

allows a group of individuals sharing the same display space to also share control of the applications running in that

space. When running either on such devices or on standalone workstations, it allows remote collaborators—in

conjunction with another distributed tool we mention—to have separate input and output ports to a visualization

application running at a remote location. This effort was initiated before the Jini toolkit from Sun was widely available.

Jini provides support for some of the capabilities built into our prototype RAC, hence we are currently reworking those

portions to exploit the Jini toolkit and other interactive control and configuration paradigms enabled by this newer

technology. Finally, a nice side benefit has been that the RAC architecture provides one easy way to develop effective

cross-platform GUIs for arbitrary non-Java-based visualization applications, including the ones originally developed to

be run by a single user in a non-collaborative context.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Distributed interaction techniques; Collaborative work environments
1. Introduction

Collaborative computer-based visual work environ-

ments require a mechanism for several cooperating users

to control a shared set of applications in a shared

context in a convenient and comfortable fashion. On the

output side, this requires a large display so that users can

be comfortable in the environment instead of being

forced to huddle around a single display station. The

input side is equally important; a single mouse, or tablet,

or keyboard simply does not work well in a collabora-

tive environment. Everyone wants to point somewhere

and alter something at the same time. To begin to

address this need, users in the environment must have
-864-3226.

ss: jrmiller@ku.edu (J.R. Miller).

see front matter r 2003 Elsevier Ltd. All rights rese

7-8493(03)00104-3
their own personal devices to allow them to interact with

objects on the shared display without having to fight

over ‘‘who gets the mouse’’.

In this paper, we describe the collaborative visualiza-

tion room (CVR), an environment we have created which

serves as a part of a testbed for these and other

collaborative visualization and interactive techniques.

Specifically, we describe the use of a wireless persona-

lized input device which allows multiple users to interact

with a shared set of applications in a multi-language

(C, C++, and Java), multi-computer, and multi-display

environment. We also mention some ongoing projects

that are exploiting various portions of this environment.

While our primary motivation was to facilitate the

group interactions required in a collaborative decision-

making environment, a secondary benefit arose in the

context of adopting a common approach for the
rved.



J.R. Miller / Computers & Graphics 27 (2003) 605–615606
development of useful GUIs for general applications.

OpenGL [1] has emerged as a cross-platform standard

for graphics programming for complex modeling and

visualization applications. The OpenGL API is domi-

nated by output graphics capabilities; however, the

input side tends to be more platform-dependent with

several competing APIs built on top of OpenGL. The

Swing utilities associated with Java 2 provide an

interesting alternative useful not only for collaborative

applications, but for single-user ones as well. Using the

approach described in this paper, we can deliver effective

user interfaces for single or multiple user applications

that are as platform-independent as OpenGL. Our

Swing-based remote application controller (RAC) learns

the capabilities of a program and presents an appro-

priate GUI, either on a personal input device (PID1) or

simply in a window that can be dragged next to the

OpenGL application itself.
2. The collaborative visualization room

The CVR contains a wall-sized display using a curved

screen 25 ft wide� 6 ft height (Fig. 1). It provides a 120�

field of view when viewed from a distance of 12 ft. Three

overhead projectors, each of which is driven by a Silicon

Graphics InfiniteReality 2 display subsystem, produce a

combined display resolution of 5760� 1200 pixels.
Ongoing projects in this room have regularly involved

8–12 active participants. More could be accommodated

if necessary. The application illustrated in Fig. 1 is a

climatology-based decision support system. It was to

support the needs of applications like this that we

launched the efforts described here.
3. Related work

To support concurrent collaborative interaction with

a group of users, personalized input devices are required.

Handheld personal devices are certainly common.

Moreover, their use in collaborative work environments

is not new. For example, the NoteLook system [2] allows

users in meetings to use wireless technology to import

slides used by the presenter, add annotations to them,

import video, and take conventional notes. The primary

data flow is one-way, however, and no attempt is made

to alter the collaborative environment based on input

generated by the personal devices.

The Interactive Workroom (iRoom) is a multi-display

collaborative environment in which PDAs represent one

of several ways users can collaborate and interact with a

variety of shared applications [3]. An event heap
1 In this paper, we use ‘‘PID’’ as a generic description of a

Personal Input Device, one specific type of which is a PDA.
manages the communication among the various system

components, allowing client applications to broadcast

messages as well as query for and/or subscribe to various

events of interest. Their system architecture ‘‘favors

platform-neutral languages and development environ-

ments’’, hence they seem to favor Java applications over,

for example, C++. By contrast, the vast majority of the

applications and tools we use have been developed in

C++, and we could not afford to recode those

components. Hence we choose to develop an architec-

ture that explicitly handles a mixture of languages,

including C, C++, and Java.

Brewer et al. [4] describe a collaborative visualization

environment for use in the geosciences for applications

very similar to one of our primary motivating applica-

tions. They followed a well-established development

approach based on various levels of user evaluation and

feedback [5]. While their work focused on collaborative

interactions, apparently no personalized input devices

were used. Instead, all participants were assumed to be

in front of workstations when interacting. One interest-

ing part of their user interviews related to the issue of

individual control. While acknowledging the potential

use, the participants seemed to be worried about conflict

arising from this joint control. Two went so far as to

assert that having one person in control is preferable [4].

Our own experiences have been different. We frequently

deal with the awkwardness of individuals needing to

swap seats to get to the mouse to make a point.

The goal of the Pebbles Project is the development of

multi-machine user interfaces [6,7]. This work involves a

variety of PDAs connected to PCs. Several demonstra-

tion applications have been developed. The one closest

to what we are doing is their ‘‘Remote Commander’’

application that allows multiple users to share control of

a PC application by taking control of the mouse and

keyboard. Three different ways of accomplishing this

are provided. Each user can take turns controlling the

mouse and keyboard; each user can have their own

personalized cursor that ‘‘floats above’’ all application

windows; or each user can have a custom cursor, but

only for custom applications. This approach seems to be

closely tied to a PC application architecture and is in any

event too low level for our purposes. We wish to export

the entire user interface to the PDA, and let users’ input

devices communicate at a higher level, rather than

having them simulate mouse and keyboard input.
4. High-level approach

We assume a PID based on a wireless handheld

computer supporting a Java virtual machine and the

Swing GUI toolkit. An early prototype used a Xyber-

naut [8] for this purpose (Fig. 2(a)). As implied above,

the RAC software itself is platform-independent, hence



Fig. 1. The CVR, illustrating one of the applications mentioned in this paper.

J.R. Miller / Computers & Graphics 27 (2003) 605–615 607
we also run it on various laptop computers and

workstations. More recently, we have ported it to the

Compaq iPAQ which has become the preferred PID

device (Fig. 2(b)).

The RAC itself is a Java-Swing program. Currently,

the user interface is identical on all platforms (modulo

platform-dependent window dressing). To initiate re-

mote control of an application, the RAC first obtains a

specification of the program’s control protocol, includ-

ing menus and basic 3D dynamic transformation control

requirements. The RAC has certain hard-wired

control panels that it instantiates as needed based on

the control protocol specifications it receives. Care was

taken to make sure that the panels always appear in

their entirety regardless of device. For many basic

applications, this has proven to be satisfactory. It is not

ideal, however, and some of our more advanced

applications are in fact difficult to control due to the

small screen space on the handheld and more sophisti-

cated requirements for control protocols. Current effort

is targeted at developing a higher-level XML-based

description of the control protocol for an application

which is then parsed at the handheld device. We expand

more on this in Section 8.

The mechanism we adopted to get a handheld device

to talk to a remote application involves a directory

server that maintains a registry of running programs

supporting a common external control interface. When

such a program starts, it registers itself with this
directory server. When an RAC enters an environment,

it knows where to look for this directory server and how

to ask it for a list of candidate programs to be

controlled. Once a program is selected, direct commu-

nication between the program and the RAC takes place.

The first communication from the selected program to

the RAC is the specification of the program’s specific

control protocol.

The user need not know anything about servers or

how to run programs. They simply execute the RAC

program on their device, select an application from a list

presented by the RAC, and go about their work.

Moreover, an arbitrary number of users in the environ-

ment can each have their own such device and thereby

share control of a common set of applications running in

the environment. We use the low-level socket mechan-

ism to prevent two users from simultaneously control-

ling the same application. In our experience to date, the

sociology of the situation tends to make this sort of

sharing work. Individuals relinquish control to allow

other people to have a chance. We are currently investi-

gating more flexible approaches to mutual exclusion that

could allow multiple users to simultaneously control the

same application in a ‘‘non-destructive’’ fashion by

having the application place collections of controls into

groups such that those in one group will not interfere

with those in another. We return to this in Section 8.

Our application registration and discovery process is

very similar in spirit to what is now available in Jini



Fig. 2. (a) A xybernaut running the RAC; and (b) the RAC

running on an iPAQ.

2For convenience in generating screen shots of the RAC, we

captured its images running on a Macintosh computer.

J.R. Miller / Computers & Graphics 27 (2003) 605–615608
[9,10]. The Jini architecture recently developed for Java

applications provides a powerful superstructure on top

of the Java Remote Method Invocation (RMI) API.

Using Jini, Java service providers can discover network

lookup services with whom they can register the services

they provide. Java clients also know how to discover the

lookup services and query them for providers of desired

services. Once a client learns about an appropriate

service provider, direct communication between the

client and the server is established via special service

proxy objects using RMI.

As we learned about Jini, we decided to rearchitect

those portions of the system to use it since Jini not only

provided standard technology for a critical piece of our

system, but also we could see several additional

advantages that could be realized by incorporating this
technology. The major stumbling block was that the Jini

architecture was designed for pure Java environments.

Our environment is multi-language, primarily C and

C++ with some Fortran and Java. By combining the

approaches of our current RAC with the distributed Jini

tools, we believe we can achieve the best of both worlds.

In the remainder of this paper, we discuss the RAC,

first from the perspective of the user, then at the

implementation level. The implementation discussion

includes not only how the RAC was implemented, but

also what users have to do to allow their applications

(either legacy or new) to be controlled by an RAC.
5. User’s perspective

5.1. Startup and application selection

Interactive applications written to allow external

control by RACs are started in the usual way. In our

case, this frequently involves running them on the large

shared screen in our CVR as illustrated in Fig. 1. Other

options include running the application on a traditional

workstation with the RAC either running in an adjacent

window, on a personal computer, or on a PID.

When running in the CVR, collaborators in the

environment launch a copy of the RAC on their

personal devices. As an RAC starts, it scans the

environment and obtains a list of all interactive

applications willing to be externally controlled. It then

presents a welcome screen that has a series of tabs

corresponding to the various applications detected

(Fig. 32). Periodic polling keeps the list current as new

applications are launched and/or current ones terminate.

Users click the tab for the program they wish to control.

Only one user at a time can be using the controls

associated with a particular tab. We will define

more precisely what we mean and how this works in

Section 5.3.

5.2. Controlling an application

The example of Fig. 3 shows tabs for some simple

OpenGL programs running in the environment. The

samples in that figure are programs used in classes here

to illustrate various concepts in curve and surface

modeling as well as how shadows can be simulated in

OpenGL. Upon selecting one of these tabs, the RAC

establishes communication with the corresponding

program (actually with a particular control context

within the program—we will return to this distinction

shortly). It then presents the user with a lower-level

tabbed pane, each tab providing a different type of



Fig. 4. A rotation pad in an RAC.

Fig. 5. Slider bars for rotation, scale, and translation.Fig. 3. The RAC welcome screen.

J.R. Miller / Computers & Graphics 27 (2003) 605–615 609
control allowed by the program. Figs. 4 and 5 show

different control panels available after the user selects

the ‘‘shadows’’ application to control.

The ‘‘shadows’’ program itself is illustrated in

Fig. 6(a). This program allows dynamic affine transfor-

mations of the scene, hence the RAC controls for this

program include the pad-based rotation scheme of Fig. 4

as well as the explicit slider-bar transformation control
mechanism illustrated in Fig. 5. As the user moves the

cursor around the rotation pad, the movements are

translated into rotations about the x and y screen axes.

The light sources in the shadows program can be

selected and dragged. The RAC provides a pick inter-

face to access this capability. When that tab is selected, a

grid pad is presented (Fig. 6(b)) which causes cross-hairs

to be drawn on the screen as in Fig. 6(c). Once selected,

the light can be dragged to a new position by the RAC

as indicated in Fig. 6(d).

Fig. 7(a) illustrates the ‘‘surfaces’’ rendering context

of the ‘‘freeform’’ program. This program demonstrates

basic manipulations on Bezier and Rational Bezier

surfaces such as degree raising, subdivision, piecewise

construction, and so forth. It allows the same dynamic

screen rotations as does the ‘‘shadows’’ program, and,

like the light sources in the ‘‘shadows’’ program, surface

control points can be picked and dragged to modify the

surface shape. In addition, the surfaces program defines

a menu hierarchy for accessing the various operations.

Fig. 7(b) shows a user working with the corresponding

control context on the RAC to request that the degree in

the u parametric direction of the current surface patch

be raised.

5.3. Mutual exclusion issues

While multiple users can each be controlling a shared

set of applications simultaneously, some mutual exclu-

sion is required to avoid destructive interference among

the various users. We define a control context as the

basic unit of mutual exclusion. In the current imple-



Fig. 6. (a) The ‘‘shadows’’ OpenGL demonstration program; (b) a picking pad in an RAC; (c) selecting a positional light to be moved

using the RAC picking pad; and (d) the scene after the light has been dragged to a new location via the RAC.

J.R. Miller / Computers & Graphics 27 (2003) 605–615610
mentation, we create one control context for each

OpenGL rendering context. That is, there can be one

control context for each window created by an OpenGL

application. The ‘‘Curves’’ and ‘‘Surfaces’’ control

contexts shown in Fig. 7(b), for example, actually

belong to a single OpenGL program.
Only one user at a time can be interacting with any

control context of a given application. A user relin-

quishes control of a control context, either by selecting a

different control context, or by returning to the welcome

screen of Fig. 3. In Section 8, we discuss our plans to

relax this restriction.



Fig. 7. (a) The Surfaces rendering context in the freeform

program; and (b) the control context for the Surfaces rendering

context.

J.R. Miller / Computers & Graphics 27 (2003) 605–615 611
6. Implementation

Our approach requires that programs be shared in the

collaborative space register themselves with a directory

server and describe the means by which they are willing
to be externally controlled. That is, they describe their

menu structure, supported 3D interaction controls, and

so forth. The RAC running on each user’s PID knows

how to find the directory server, search for such

programs and control specifications, and establish direct

communication on demand. As we will see below, the

demands placed on the applications themselves are

minimal. A C++ class (one instance of which is

instantiated for each control context) hides all but the

most application-specific of the tasks from the pro-

grammer.

There are three major components to the system: the

RAC itself, which is a standalone Java application; an

interface mediating communication between an RAC

and (a control context of) an application; and the pro-

gram registry. The interface is largely specified and

implemented by a C++ abstract base class called

ExternalIF. Concrete subclasses of ExternalIF are defi-

ned for various window interfaces. At this time, we sup-

port two:GlutExternalIF is created by OpenGL programs

using the GLUT window system interface; SdkExternalIF

is used by programs requiring the OpenGL SDK multi-

pipe development environment [11]. The examples in

Section 5 used the former; our climatology application

discussed in Section 7 uses the latter.

Once created, an instance of the ExternalIF object is

associated with a control context, manages a shared

memory area, interfaces with RACs over socket

connections, presents a common interface to modifiable

program data in the shared memory area, and provides

tools to help a program follow the conventions required

in order to be a part of this framework. The remainder

of this section discusses these conventions and the use of

the ExternalIF class hierarchy.

The overall process works as follows. An application

willing to be controlled by our RAC first uses the

ExternalIF object to register itself with the program

registry (Fig. 8). When an RAC starts, it asks the

program registry for a list of all currently executing

programs that are using the ExternalIF conventions for

remote control. Based on the response it receives, it

creates tabbed panels for selection by the user as

illustrated in the welcome screen of Fig. 3. A user

indicates they want to use a particular control context

(for example, the shadows control context of Fig. 6) by

selecting the corresponding tab. This leads to the lower-

level tab pane as discussed above which is then used to

control the selected application.

All communication between the RAC and a given

control context is performed through sockets. Our

socket protocol running on the RAC was derived from

a set of Java classes presented in Morelli [12]. The

applications we are using in the collaborative environ-

ment are generally written in C++ and run in a unix

environment. Our socket interface on the C++ side is

based on a set of utilities presented in [13].



Handheld personal device
running an instance of the

RAC

Remote unix machine

ExternalIF on
a thread

shared
memory

program
being

controlled

web-accessible
program registry

Fig. 8. The RAC architecture.

J.R. Miller / Computers & Graphics 27 (2003) 605–615612
The interactive application being controlled must be

multi-threaded. One thread is dedicated to each control

context so that it can listen for communication from an

RAC (Fig. 9); the application itself then runs on one or

more other threads. The ExternalIF object serves as a

bridge between these two execution contexts. When

something is received from the socket, the listener in the

ExternalIF object processes the data received, writes

appropriate information into the shared memory loca-

tion associated with the corresponding control context,

and signals the main part of the application (by setting a

flag in the shared data area) that new data is available

for it to process.

An application can request that a control context be

terminated at any time. When an application being

controlled terminates, the ExternalIF object removes

each control context description from the web-accessible

program registry. The next time an RAC parses the list,

it will know to remove the tab for the terminated
ExternalIF

Registration/
Deregistration

Convenience
Methods

Spec. of
Interactive

Controls (e.g.,
menus,pick)

Listener

Mutex
Access to

Shared Data

to program registry

to RAC

from RAC

Fig. 9. The architecture of
application while adding new ones for others which may

have started since the last time the registry was queried.

Another abstract base class—Pickable—is used to

specify how the ExternalIF handles pick attempts

arriving from an RAC. Code in class Pickable manages

the low-level OpenGL pick process, hiding the render

mode transitions and the parsing of the hit array

returned. It identifies selected pick identifiers and uses

pure virtual methods to handle the application-specific

portion of the pick processing. Typically, programmers

create their own Pickable subclass which would then

take over pick processing once pick IDs have been

determined.

Summarizing the conventions which must be followed

by an interactive application willing to be controlled

by an RAC, we note that the application must (refer to

Fig. 9):
* register and deregister each desired control context

(deregistration is automatic at program termination;

earlier deregistration is at the discretion of the

application);
* agree to place shared control data in a common

location;
* agree to use the mutual exclusion services of the

ExternalIF class whenever this data is set or used;
* use the interaction control interface of the ExternalIF

when specifying interactive controls. This interface

handles both the specification of the interface to the

RAC as well as to the local underlying window

manager;
application

local window
manager

(GUI controls on
remote machine)

the external interface.



J.R. Miller / Computers & Graphics 27 (2003) 605–615 613
* if picking is desired, define a subclass of Pickable and

register an instantiated instance with the ExternalIF.

Different instances can be registered and deregistered

at any time during program execution.

The ExternalIF class functionality facilitates imple-

mentation of these conventions. For example, if an

OpenGL application wants to allow itself to be

controlled in this way, it does the following operations,

typically at initialization time:

* It creates one instance of a concrete subclass of

ExternalIF for each control context it is allowing to

be externally controlled (in our case, either a

GlutExternalIF or an SdkExternalIF).
* It invokes the start method of each external interface

object when it is ready to allow external control

through the corresponding control context. The start

method creates the thread on which the external

interface will run and registers the control context

with the registry server.
* Using an ExternalIF class method, the program

periodically polls for commands and/or data that

may have arrived from an RAC destined for any

currently active control context in the program. If it

finds any, it processes them and signals the corre-

sponding context in the main part of the application

that new control data has arrived.

Finally, we point out that the use of Java for the RAC

implementation language has proven to be helpful in a

number of ways. For example, we have been able to

overcome development problems due to insufficient

number of the handheld devices by simply running the

RAC in a window on some other workstation or

personal computer. This has allowed us to verify issues

related to contention and mutual exclusion without

having to obtain large number of PID devices.

6.1. Defining the user interface

Like Fox et al. [3], we focused first on integrating this

approach into our extensive base of existing legacy

applications rather than immediately developing new

PID-specific techniques. We wanted to be able to

demonstrate quickly the effectiveness of the concept,

verify that the approach would be well received by our

collaborators, and identify any limiting factors. The

design of the ExternalIF abstract base class was

motivated in part so that legacy applications could

simply replace window-manager-dependent function

calls with method calls to the appropriate ExternalIF

subclass. The good news about this approach is that

legacy applications required no additional user interface

design over and above that already performed, and the

level of conversion effort was quite minimal. The bad

news of course is that, while the application could then
be remotely controlled, no novel PID-specific interface

techniques were enabled. We return to this in Section 8.

When designing the user interface to applications, the

programmer does not work with Swing or Java at all. In

our environment, most applications are written in C++

and use some form of OpenGL for graphics output. To

write such an application using the current RAC

conventions, one uses the C++ interface presented by

the ExternalIF abstract base class. At this time, that

interface is fairly limited. One can define a hierarchical

menu structure and request 3D transformation controls.

There is a generic ‘‘one size fits all’’ approach for

rendering these GUI controls on the RAC via hard-

wired control panels. As discussed in Section 8, now that

we have verified the utility of this general approach, we

have turned our attention to a more generic interface.
7. Current applications

Among the current research projects employing this

environment in the CVR is a scientific visualization

application being used for collaborative decision sup-

port applications [14]. This application was shown in

Fig. 1 in which the area of study was India. The

photograph in Fig. 10 illustrates the system being used

to examine climatology data for a large part of North

America.

The interface between science and decision-making is

one of the greatest challenges in information technology

research today. Political decision-makers need sound

scientific data when making decisions that may have, for

example, significant impacts on the environment.

Sophisticated computer models can be used to establish

scenarios and investigate options, but these simulations

are beyond the understanding of most legislators. The

collaborative decision support environment we have

created allows political decision-makers, members of

their staffs, and domain experts to collaborate in an

attempt to develop good public policy. During the

evaluation of the prototype system, we facilitated several

such meetings with groups of varying size and back-

grounds [14]. We had politicians, members of their

staffs, and various other individuals that could bring

different types of expertise to bear. We found that

people had to occasionally switch seats so that they

could get access to the mouse to make a point.

Sometimes people walked up to the screen itself to

physically point at some region. Unfortunately, the

RAC was not available for use during the evaluations

described in [14]. While we have not yet performed as

rigorous of a user evaluation as that described in [14],

our preliminary experience suggests that this approach is

being well received.

A related, but independent effort [15] has led to the

development of a technique to distribute 3D scene



Fig. 10. A collaborative climatology scenario analysis application.

J.R. Miller / Computers & Graphics 27 (2003) 605–615614
descriptions to remote visualization clients. We plan to

leverage the RAC and this remote display capability

together as a starting point to extend our research in

collaborative visualization for decision-making from

purely ‘‘same time, same place’’ to ‘‘same time, different

place’’ applications. It is our experience that many of the

political decision-making contexts of interest to us

require such a capability, given that decision-makers

and their staffs are frequently not at the same place

when they need to confer on some matter.
8. Limitations and future directions

Our initial goal was to develop technology that we

could use to evaluate the effectiveness and viability of

remotely controlling a shared set of applications using a

handheld device. A number of issues were intentionally

omitted during this initial evaluation process. For

example, menu items that require additional informa-

tion to be specified (for example, those with ‘‘y’’ on the

menu name) are not well supported. When selected on

the RAC, dialog boxes or simple prompts simply appear

on the remote machine. Obviously this is inadequate,

but the problem will be eliminated as we pursue our

general future plans discussed in the remainder of this

section.

Current effort is targeted at developing a higher-level

XML-based description of the control protocol for an

application which is then parsed at the handheld device.
At the same time, a new interface will be developed for

the C++ graphics applications that will cater more

towards enabling flexible structured GUI design for new

program development as opposed to making it easier to

support legacy applications.

On the handheld side, we are developing a smarter

RAC that will largely forgo the use of pre-fabricated

GUI panels in favor of being able to better understand

the control requirements of an application. It can then

present realizations of GUI controls specifically de-

signed to minimize required screen space. We are also

investigating more flexible approaches to mutual exclu-

sion that will allow a finer level of control than that

afforded by a control context.

Ongoing user evaluation will of course be required as

we develop these new GUI presentation and control

strategies. In our experience to date, we have found

remote control of applications via the RAC to be fairly

easy, and the turn taking required by the mutual

exclusion requirements has not been a significant

problem. Nevertheless, we wish to try this out on larger

and more diverse groups to see if this experience is more

universal.
9. Summary

We have described our CVR and have presented the

motivation for a general design of an RAC. Use of an

RAC provides one approach for allowing multiple users



J.R. Miller / Computers & Graphics 27 (2003) 605–615 615
in a collaborative environment to share control of a set

of concurrently executing applications by using their

own personal devices running a copy of the RAC. It also

provides a way to achieve platform-independent GUIs

for arbitrary applications, collaborative or not. We are

currently reworking core pieces of the architecture to

exploit the Jini toolkit which promises to improve

several management aspects of the RAC architecture.

We are also developing more flexible and general

application-to-RAC communication strategies that will

both allow more generalized control paradigms as well

as give responsibility to the RAC to determine the best

way to present and monitor user interface components.
Acknowledgements

The work described here was performed in Design-

Lab, a multi-disciplinary research laboratory at the

University of Kansas funded in part by NSF Grant

CDA-94-01021.
References

[1] Woo M, Neider J, Davis T, Shreiner D. OpenGL

programming guide, Third ed. Reading, MA: Addison-

Wesley; 1999.

[2] Chiu P, Kapuskar A, Reitmeier S, Wilcox L. NoteLook:

taking notes in meetings with digital video and ink. In:

Proceedings of the ACM Multimedia ’99, Orlando, FL,

October–November 1999, New York: ACM Press;

p. 149–58.
[3] Fox A, Johanson B, Hanrahan P, Winograd T. Integrating

information appliances into an interactive workspace.

IEEE Computer Graphics and Applications, 2000;20(3):

54–65.

[4] Brewer I, MacEachren AM, Abdo H, Gundrum J, Otto G.

Collaborative geographic visualization: enabling shared

understanding of environmental processes. Proceedings

of the IEEE Symposium on Information Visualization

(InfoVis ’00), Salt Lake City, UT, October 2000. p. 137–41.

[5] Gabbard JL, Hix D, Swan JE. User-centered design and

evaluation of virtual environments. IEEE Computer

Graphics and Applications 1999;19(6):51–9.

[6] Myers B. Using handhelds and PCs together. Commu-

nications of the ACM 2001;44(11):34–41.

[7] Myers B, Lie K, Yang B-C. Two-handed input using a

PDA and a mouse. Proceedings of the Human Factors in

Computing Systems (CHI ’00), New York: ACM Press;

p. 41–8.

[8] Xybernaut. Xybernaut MA IV user’s guide. Fairfax, VA,

North America: Xybernaut; 1999.

[9] Jini, http://www.jini.org.

[10] Sun, http://www.sun.com/jinni.

[11] Silicon graphics, http://www.sgi.com/software/multipipe/

sdk/.

[12] Morelli R. Java, Java, Java! object-oriented problem

solving. Upper Saddle River, NJ: Prentice-Hall, 2000

[chapter 15].

[13] Chan T. Unix system programming using C++. Upper

Saddle River, NJ: Prentice-Hall, 1997 [chapter 11].

[14] Cliburn D, Feddema JJ, Miller JR, Slocum TA. Design

and evaluation of a decision support system in a water

balance application. Computers and Graphics 2002;26(6):

931–49.

[15] Tabash J. Towards a framework for distributed scientific

visualization. MS thesis, Electrical Engineering and

Computer Science, University of Kansas, May 2002.

http://www.jini.org
http://www.sun.com/jinni
http://www.sgi.com/software/multipipe/sdk/
http://www.sgi.com/software/multipipe/sdk/

	The remote application controller
	Introduction
	The collaborative visualization room
	Related work
	High-level approach
	User’s perspective
	Startup and application selection
	Controlling an application
	Mutual exclusion issues

	Implementation
	Defining the user interface

	Current applications
	Limitations and future directions
	Summary
	Acknowledgements
	References


