
Published by the IEEE Computer Society 0272-1716/07/$25.00 © 2007 IEEE IEEE Computer Graphics and Applications 57

Feature Article

V isualization of multiple attributes across
a region is a complex problem for which

several experimental tools have been developed. In
some cases, the attributes correspond to events occur-
ring at discrete locations; in others, the data are phe-
nomena that vary continuously across a region. In the
discrete case, the focus is often on using maps for
geospatial referencing. For example, events might be
bunched together in some spaces and sparse in others.
Much of the research effort therefore seeks methods
that adjust the physical presentation of the space to

make it more amenable to visualiz-
ing all the events and their relative
geographical locations. This might
include, for example, distorting
space to enlarge areas with dense
concentrations of events while
shrinking others with relatively few
events. In the continuously varying
case, space distortion isn’t appro-
priate. Instead, the emphasis is
on visualizing multiple attribute
values at all points throughout
the space.

This article describes a new technique based on
attribute blocks, a dynamically configurable array of
lenses through which users can visualize specific
attribute values at given locations throughout a region.
Users can exploit this ability to dynamically adjust the
array’s configuration as well as the attribute blocks’ size
and origin in this new exploratory tool for discovering
patterns of interest in multivariate data sets.

Attribute blocks
I use the technique described in this article to visual-

ize n attributes defined continuously across a region on
a single map. Coloring each pixel using some multivari-
ate function of the attribute values at that location is
ineffective; as I note in the sidebar, approaches such as
multivariate choropleth maps haven’t proved effective
for more than two or three variables.

I instead arrange all or an interactively selected sub-
set of the n attributes into a dynamically configurable kr

� kc array of visual representations called an attribute
block. Each element of the attribute block array encodes
a single attribute value. All attributes are defined every-
where; the attribute block array simply acts as a “screen
door” of lenses, each allowing a single attribute value
to be seen at the specific location. The dimensions of
each lens—denoted br � bc—are also dynamically
adjustable. I then tile the current kr � kc array of br � bc

lenses across the entire map. Figure 1 illustrates a basic

Attribute blocks are a technique
for visualizing continuously
varying attributes across a
region, letting you quickly
locate patterns in large data
sets. Attribute blocks can be
displayed in a flat 2D projection
without needing constant 3D
dynamic rotations.

James R. Miller
University of Kansas

Attribute Blocks:
Visualizing Multiple
Continuously
Defined Attributes

Previous Work
Phenomena of interest from a visualization

viewpoint are either discrete objects or events
whose locations are one of the attributes that
must be visualized or continuous functions that
are defined everywhere. Examples of the former
include sightings of endangered species, voting
results, and windmill locations. These might be
rendered using glyphs or icons whose attributes
(color, shape, topology, and so on) are
determined by associated attributes. Examples
of continuous attributes include average
temperature or height above sea level.
Continuous phenomena like these have values
everywhere, even when they’re only captured
at discrete locations.

Keim et al.’s PixelMaps is a technique for
displaying values for a single attribute whose
geolocation must be visualized.1 They address
problems such as ensuring that distinct points
are mapped to distinct pixels, and that
absolute and relative positions of points in the
input set are preserved as much as possible.
Addressing these goals can cause map scales to

Continued on page 58

Feature Article

58 May/June 2007

become distorted. I focus on application domains in
which many attributes are defined continuously
throughout the model space and in which nonlinear
distortions of model space aren’t allowed.

When focusing on the visualization of multiple
attributes defined continuously throughout a geographic
region, one obvious approach is to simply display one 3D
surface z � fi(x, y) for each attribute i. The vertical scales
are generally unrelated, however�for example, we
might wish to visualize how temperature, precipitation,
and air pressure vary throughout a region�hence, there
would be no significance whatsoever to the fact that one
surface was above another or that two surfaces
intersected. Yet, for example, a surface intersection
region might draw an observer’s attention, and the
observer might unconsciously try to assign some
significance to this visual manifestation. In earlier work,
my colleagues and I used multiple surfaces for attribute
display, but only when the attributes were closely related
and used the same units.2 However, the display required
constant dynamic rotations to enable interpretation, and
even then it was effective for only fairly small geographic
regions.

Another obvious issue with this approach is that
functions such as fi(x, y) are rarely, if ever, explicitly
known. Instead, the user often employs some sort of
(regular or irregular) discrete data sampling followed by
an interpolation process to create an approximation to
functions such as fi(x, y). A common approach is based on
interpolating the data onto a regular grid indexed by
discrete geospatial (x, y) coordinates at some appropriate
resolution. Such data gathering and interpolation
schemes are beyond this article’s scope. (Slocum et al.
and references cited therein discuss a few methods.)3

Once this interpolation process is complete, you
essentially have a 2D array for each attribute, which
represents a discrete approximation to fi(x, y) across some
finite domain. Each element of the array corresponds to
one grid cell within the domain, and you can use
subsequent interpolation to further approximate how the
attribute value might vary across the region
corresponding to a given grid cell.

A complete survey of multidimensional visualization
techniques is beyond this article’s scope; however, I
highlight a few relevant techniques and relate them to the
attribute blocks approach.

Beddow used a technique somewhat similar to ours to
visualize atmospheric data sets generated by the NASA
Goddard Space Flight Center.4 He recorded hourly
averages for various attributes (such as magnetic strength,
plasma temperature, and ion density) over many days. In
his visualization, the horizontal axis represented the hour
and the vertical axis encoded the day. Each resulting grid
cell (indexed by [day, hour]) contained an array of patches
in which an attribute’s value determined the
corresponding patch’s color. The display captured the data
set’s resolution completely, and the position of the colored

patches within the grid cell were irrelevant because there
was no need to visualize how that value might change
across the area represented by the display cell.

Although similar in appearance, my application differs in
several respects. Most notably, I wanted to decouple
attribute-value display resolution from the resolution at
which the attribute data is stored, and to do so with
minimal computational overhead. For example, I wanted
to avoid having to regenerate and resample polygonal
descriptions and attribute values at each interaction during
an exploratory process. So, I defined the geometry and all
attributes once at the resolution of the original data set,
and then arranged for a low-level scan-conversion process
to determine which attribute value to display on a pixel-by-
pixel basis.

Slocum classifies techniques for displaying multivariate
attributes in geospatial applications based on whether the
user compares multiple maps visually or combines all
attributes on a single map.3 In the former case, the user
typically encodes one attribute per map. This multiple
map approach requires visually integrating the distinct
maps to visualize all of the attributes at a given location.
By contrast, when you use a single map for the attributes,
you need a scheme to encode all the attributes at
locations throughout that map. Researchers have explored
several such techniques, most of which rely on color
and/or texture mixtures. Alternatively, characteristics (for
example, color, shape, size, and topology) of special
symbols can encode a collection of attributes at the
symbols’ location.

MacEachren et al. used GeoVista Studio to develop
techniques for visualizing geospatially referenced objects
with multiple attributes.5 Their multiform bivariate matrix
correlates a statistic of interest (cancer mortality rates, in
their example) to pairs of possible risk factors
(environmental factors, health care access, and so on).
Their matrix uses side-by-side displays. They use the map in
position (i, j), for example, to visualize the extent to which
risk factors i and j lead to increased mortality rates
throughout the region of study (the US, in their case).
Their displays present data that’s both continuously
defined (for example, presence of atmospheric emissions)
and discretely defined (such as mortality statistics). Each
map in the matrix displays only a single pair of attributes,
however. The data is binned for each bivariate map, and
they use one of four colors to visualize the resulting data.

Choropleth maps use attributes to determine the
shading of a region on a map. Frequently the regions have
geopolitical significance independent of the data�for
example, they might represent counties, states, or
countries.3 Univariate choropleth maps are probably the
most common; however, researchers have used bivariate
and even trivariate choropleth maps. The bivariate
technique maps two independent attributes into two
distinct color scales, combines the resulting colors, and
uses them in the corresponding map region.

Rather than mixing three distinct color scales,

Continued from page 57

IEEE Computer Graphics and Applications 59

approaches that use trivariate choropleth maps frequently
employ texture in lieu of one or two of the colors.3 You can
theoretically extend this technique to n attributes, but even
the trivariate case can be difficult to grasp, and you
generally need relatively large geographic regions when
using textures to encode attribute values.

Multivariate dot mapping is an alternative to color and
texture mixing for single map visualization of multiple
attributes. Attribute values are rarely constant throughout a
region, hence drawing the entire region in a single color
can be deceiving. Dot mapping originated as a technique
to better visualize discrete phenomena when additional
information could be exploited to illustrate how the
phenomena varied throughout a region on a map.3 For
example, instead of visualizing a state’s population by
drawing the entire state using a color selected from a range
according to the state’s total population, you can display
dots throughout the state, concentrating the dots locally to
reflect the population’s actual nonuniform distribution
throughout the state.

For multiple discrete attributes, multivariate dot mapping
uses differently colored dots for each attribute in an
analogous fashion. User testing indicates that this approach
is slightly more effective than an approach using multiple
individual attribute maps when three attributes are being
visualized.6 However, it might not be at all effective for
larger numbers of attributes. Our interest is in visualizing an
arbitrary number of continuously varying attributes, so this
approach isn’t directly applicable. Nevertheless, our
attribute block technique might be viewed as an analog of
multivariate dot mapping in the continuous domain,
particularly when our attribute block size is 1 pixel.

A completely different approach to displaying
multivariate attribute data involves generating symbols
located at points of interest, with their color, size, shape,
and topology encoding quantities of interest. This
technique was first developed for visualizing multiple
attribute values at specific locations.7 This scheme
involved families of stick figure icons in which one
reference leg was fixed, with other legs branching away
from the fixed leg. A specific topology characterized each
family. For a given visualization application, the user
selected a specific family and placed instances of the
family throughout the field of view. The geometric
characteristics of each n-legged instance encoded n � 1
attribute values at the instance’s position. An nth attribute
value could be represented if the stick figure’s overall
orientation was allowed to vary. With a sufficiently dense
placement of stick figures, the resulting texture in the
display could reveal interesting aspects of the data.7

Researchers have also successfully used stick figure icons
to compare different but related data sets. For example,
Keller uses these icons to locate hot spots in pairs of
magnetic resonance imaging images. Neither MRI image is
itself displayed; instead, the display consists of an array of
stick figure icons. The values at location (i, j) in each of the
two MRI images determine the shape and size of the icon at

location (i, j) in the display.8 In Keller’s example, a hot spot
appears as a bright region in the display.

Chernoff faces is another variation on this general idea.
The icons placed in the field of view are faces, and the size,
shape, and color of various facial features (eyes, nose,
mouth, and so on) are generated from corresponding
attribute values.3

More recently, Healey and Enns extended the basic idea
of icon-based representation of multiple attributes using
perceptual texture elements.9 A pexel is a polygon of fixed
width whose height and color can be used to encode
attribute values at a given location. Healey and Enns use
pexel density and regularity to encode additional attributes.
They identified three levels of regularity: regular, irregular,
and random. Given sufficient numbers of pexels, you can
perceive changes in pexel placement density, independent
of regularity.9

Healey and Enns report on extensive user studies using
pexels in two visualization applications: an oceanographic
study involving plankton densities and a severe weather
application studying typhoon activity in the Pacific. Their
studies confirm that pexels effectively visualize four
attributes at given locations, each mapped to one of height,
color, density, and regularity of pexels in a region. They
hypothesize that you can use motion and orientation to
increase the number of attributes that can be presented in
dynamic displays.9

References
1. D.A. Keim et al., “Pixel-Based Visual Data Mining of Geo-spatial

Data,” Computers and Graphics, vol. 28, no. 3, June 2004, pp.
327-344.

2. D.C. Cliburn et al., “Design and Evaluation of a Decision Support
System in a Water Balance Application,” Computers and Graphics,
vol. 26, no. 6, Dec. 2002, pp. 931-949.

3. T.A. Slocum et al., Thematic Cartography and Geographic Visual-
ization, 2nd ed., Pearson Prentice Hall, 2005.

4. J. Beddow, “Shape Coding of Multidimensional Data on a Micro-
computer Display,” Proc. IEEE Conf. Visualization, IEEE CS Press,
1990, pp. 238-246.

5. A.M. MacEachren et al., “Geovisualization for Knowledge Con-
struction and Decision Support,” IEEE Computer Graphics and
Applications, vol. 24, no. 1, Jan./Feb. 2004, pp. 13-17.

6. J.E. Rogers and R.E. Groop, “Regional Portrayal with Multi-Pat-
tern Color Dot Maps,” Cartographica, vol. 18, no. 4, winter 1981,
pp. 51-64.

7. R.M. Pickett and G.G. Grinstein, “Iconographic Displays for Visu-
alizing Multidimensional Data,” Proc. 1988 IEEE Int’l Conf. Sys-
tems, Man, and Cybernetics, 1988, pp. 514-519.

8. P.R. Keller and M.M. Keller, Visual Cues: Practical Data Visualization,
IEEE CS Press, 1993.

9. C.G. Healey and J.T. Enns, “Large Datasets at a Glance: Combin-
ing Textures and Colors in Scientific Visualization,” IEEE Trans.
Visualization and Computer Graphics, vol. 5, no. 2, Apr.-June 1999,
pp. 145-167.

Feature Article

60 May/June 2007

diagram of the attribute blocks used to create Figure 2.
Although the four cells of the attribute block in Figure 1
exhibit constant shading, the shading generally varies
across a cell.

A secondary goal of this effort was to explore the
extent to which it was possible to visualize multiple
attributes using a single planar projection without
requiring dynamic 3D rotations. Obviously, I don’t
advocate throwing dynamic rotations out of the tool-
box, but some visualization approaches require con-
stant or at least frequent rotations to be effective (see
the sidebar). I’m simply interested in investigating tools
that might be useful without needing such dynamic
rotations.

Climatology application
A region’s climate affects issues ranging from the abil-

ity to grow certain crops to the effective use of land
resources in general. Many public policy decisions are
inextricably linked to current and potential future cli-
matology measures because each can affect the other.
Water balance gives a relatively simple yet effective mea-
sure of climatology. Conceptually, this is a simple bud-
geting issue: water enters the system and is consumed
by the system. A water balance model is one way to sim-
ulate that process and determine a measure of a region’s
water balance (and hence climatology). Several such
models exist. For purposes of the demonstration here, I
use a relatively simple model whose primary inputs are
precipitation, temperature, and soil moisture-holding
capacity.1 Depending on the specific region of the world,
you can also compute the potential evapotranspiration

(the amount of water that would be lost due to evapo-
ration and plant transpiration, if available) and the actu-
al evapotranspiration (the amount actually lost to those
processes).

The data set I use includes 12 monthly averages and
an annual average for temperature, precipitation, and
soil moisture-holding capacity at a 1/2 � 1/2-degree
(approximately 50 km at the equator) resolution.
I obtained data sets describing the averages from
30 years’ worth of data gathered at stations scattered
around the world. This data represents the world’s cli-
matology today. In earlier work, my colleagues and I
applied global circulation data to model global climate
change’s effects in terms of how these averages are like-
ly to change 30 years from now.1 I chose not to include
visualizations of those climate change predictions in this
article.

Using the raw data and some intermediate results, I
use attribute blocks to display (subsets of) n � 8 attrib-
utes. Figure 2 shows a collection of kr � kc � 2 � 2
attribute blocks tiled across a map of the United States.
The blocks encode four of the eight attributes: precipi-
tation, temperature, soil moisture-holding capacity, and
potential evapotranspiration. The attributes’ color scales
are dynamically configurable. For the example in Fig-
ure 2, they vary from the background color for low
attribute values, ramping up to blue (for precipitation),
red (for temperature), green (for soil moisture-holding
capacity), and cyan (for potential evapotranspiration)
for high attribute values. These color assignments are
the ones my colleagues and I used in earlier work,1 and
aren’t uncommon in climatology applications. Figure 3
shows the legend dynamically generated for each kr �
kc arrangement, showing both the color scales and the
current kr � kc structure.

Adjusting the color scales this way makes sense in this
application because Figure 2’s input attributes tend to
drive the water balance away from 0 (that is, from per-
fect balance) as their values increase. For example, as
temperature increases, more water is needed, and the
balance decreases. As precipitation increases, more
water is available, and the balance increases. By using
the background color for areas where such an attribute
has a low value and a more distinct color when the
attribute’s value is larger, the areas where a given

10 pixels10 pixels

10 pixels

1 A basic diagram of an attribute block with kr � kc = 2 �
2 and br � bc = 5 � 5.

2 Attribute blocks in a 2 � 2 arrangement illustrating temperature, precipi-
tation, soil moisture-holding capacity, and potential evapotranspiration.

3 Dynamically generated legend illustrating the color
scale used as well as the current kr � kc structure.

IEEE Computer Graphics and Applications 61

attribute most affects the balance becomes immediate-
ly obvious. By contrast, the attribute doesn’t draw atten-
tion in other areas, where the background color
dominates.

Looking at Figure 2, we can immediately see for the
month of January that precipitation has a strong effect
in the West and Northwest; soil moisture-holding capac-
ity has an especially strong impact in the upper Midwest;
and potential evapotranspiration plays a relatively small
role only in the South, most notably in Florida, Mexico,
and the Baja.

Setting kr � kc to be 1 � 1 lets us see a single attribute.
For example, the result of the water balance model as
generated using the parameters shown in Figure 2 (but
for the month of May) is presented in the kr � kc � 1 � 1
attribute block display of Figure 4. The water balance
is the measure computed by the underlying simulation
and is important in the context of my example applica-
tion because, more than any of the raw input or other
intermediate variables, it represents a measure of a
region’s climatology. The balance might be negative,
indicating a deficit—that is, not enough water is avail-
able to satisfy the need—or it might be positive, indi-
cating more water was available than the environment
needed. To emphasize this dichotomy, the water bal-
ance color scale uses a diverging scale in which nega-
tive values are mapped from red (highest deficit) to
white (no deficit); positive values are then mapped from
white (no surplus) to blue (highest surplus).

Not all kr � kc array positions need be unique. Figure
5, for example, shows a kr � kc � 3 � 3 array. The upper
2 � 2 portion of this array displays the water balance,
while the other five array positions display five of the
remaining seven attributes down the first column and
across the bottom row. The other attributes are mapped
to colors, as described earlier. The superposition of the
attributes in Figure 5 helps us understand why the bal-
ances illustrated in Figure 4 occur. What we see in Fig-
ure 5 is the water balance of Figure 4 with the attributes
laid on top of it. For the month of May, for example, we
can conclude that on average, the large deficit in the
Southwest extending into Mexico is chiefly due to high
temperatures (and hence high potential evapotranspi-
ration), coupled with low precipitation and low soil
moisture-holding capacity. The Midwest has compara-
ble temperatures, but much more precipitation and
(especially in the upper Midwest) better soil moisture-
holding capacity, and hence has a surplus.

If we compare Figures 4 and 5, we see a weakness in
this method. Some isolated patches of surplus in the
Rockies are apparent in Figure 4. Several of these areas
are overlaid by other attribute blocks in Figure 5, so not
only do we fail to see those surpluses in Figure 5, but we
see visual representations of attributes that contributed
to a surplus in the context of a balanced water budget.
Users can employ the interactive data exploration
tools—especially those relating to the periodic attribute
block grid’s characteristics—to ameliorate the effects of
this sampling-related problem. A better and more satis-
fying approach would be to develop automated tools to
help the user determine ideal attribute block sizes and
locate such potential problem areas.

Interactive controls for dynamic data
exploration

Visualization is a process of exploration, and you must
be able to dynamically alter fields of view, attribute block
sizes and positions, configurations, and so on. Respons-
es must be immediate to facilitate the exploration
process. As de Oliveira and Levkowitz argue,2 many pat-
terns and relationships only become obvious as you
dynamically explore the data set. I accomplish this
exploration primarily via several interactive operations
that are only effective if display updates are at least as
fast as user interactions. None of these facilities require
geometric redefinition or attribute resampling, and all
are reflected immediately in the display.

Adjusting attribute block configurations
In the prototype used to generate the images in this

article, supported attribute block configurations were
predefined in a file read by the program at startup. (The
user could interactively specify what single attribute was
displayed for a 1 � 1 configuration or for unsupported kr

� kc configurations.) The current version lets users
define this mapping at runtime.

The periodic attribute block grid
The attribute block grid is simply a periodic function

in two directions whose frequency is controlled by

5 Attribute blocks in a 3 � 3 arrangement illustrating water balance (in the
upper 2 � 2 portion of each 3 � 3 grid), precipitation, temperature, soil
moisture-holding capacity, potential evapotranspiration, and actual evapo-
transpiration.

4 The water balance computed from the model for the month of May.

Feature Article

62 May/June 2007

adjusting cell block sizes and whose phase shift is adjust-
ed by fixing a starting point. Both the size of attribute
block cells and the attribute block grid’s origin are
decoupled from the geometry of the underlying model.
This might seem counterintuitive at first, but it’s a pow-

erful advantage of the method. Because all attributes
are continuously defined everywhere, locking display
resolution to that of the polygons used for display does-
n’t make sense. Instead, letting users dynamically adjust
these two parameters of the periodic function gives
them explicit control over where attribute grid cells
appear in the display and how big their visual represen-
tation will be. An attribute block cell will, in general,
overlap more than one model space polygon.

From the model space polygons’ perspective, I define
the geometry to the underlying graphics API in a con-
ventional fashion using arbitrary polygons and specify-
ing all n attribute values at each vertex. During low-level
polygon scan conversion, the graphics system deter-
mines the attribute block cell containing each pixel and
uses the corresponding color map for that attribute to
set the pixel color. (See the “Implementation” section
for more details.)

Adjusting attribute block cell sizes. The user
can specify dimensions of cells within attribute blocks
in model or pixel space. If the user requests, for exam-
ple, that attribute blocks always have a fixed pixel size,
zooming in on geometry has a side effect of visualizing
attribute variation at a higher resolution (see Figures
6a and 6b). Alternatively, by specifying attribute block
sizes in model space, users can achieve independent
control over display resolution and attribute variation
resolution (see Figure 6c).

Adjusting attribute block grid starting point.
Dynamically adjusting the attribute block grid’s origin
effectively slides the “screen door of lenses” pixel-by-pixel
across the surface, revealing features that might not be
obvious with the current cell block sizes. For example, I
could ameliorate the problem related to the inability to
see the pockets of surplus in the Rockies in Figure 5 by
sliding the attribute block array in this manner.

Adjusting miscellaneous display attributes
Attribute values are linearly interpolated across the

polygon’s interior, and hence this interpolation contin-
ues across the interior of the attribute blocks them-
selves. The obviously changing colors in the interiors of
several of the attribute blocks demonstrate this. In Fig-
ure 7, for example, such variations are most obvious in
the interiors of precipitation and soil attribute blocks.

At any point in time, attribute blocks can be larger or
smaller than the actual data resolution. Moreover, if

6 Data zooming options: (a) original view, (b) zoomed, attribute blocks
fixed size in pixels; and (c) zoomed, attribute blocks fixed size in model
space.

7 Two results generated with our method using single-pixel-sized neigh-
borhoods.

(a)

(b)

8 Comparing resolution of raw data set with that of attribute block visualizations: (a) grid cell resolution; (b) grid
cells superimposed on attribute blocks; and (c) grid cell lines superimposed on attribute blocks.

(c)

(a) (b) (c)

IEEE Computer Graphics and Applications 63

attribute block sizes are specified in pixel space, this rela-
tionship will change dynamically as the user zooms in or
out. Users therefore need to be able to visualize how the
resolution of the point-sampled data sets compares to
that of the attribute blocks themselves. Figure 8a shows
the data resolution for the display in Figure 6b; Figure
8b shows the two images superimposed; and Figure 8c
shows just the polygon grid lines superimposed on the
attribute block display. (The polygons in the running
example are bounded by latitude and longitude lines,
hence the orientations of the polygons and the attribute
blocks are the same. This is coincidental and is neither
assumed nor exploited anywhere in the application.)

Attribute rows and columns
A special case of note is when exactly one of kr or kc is

1. In that case, the attribute blocks become attribute
rows or attribute columns, respectively (see Figure 9).
The relative advantages and disadvantages of attribute
rows and columns as compared to ordinary attribute
blocks needs more study. For example, in some situa-
tions it might be easier to visualize how an important
attribute varies across an entire field of view using rows
or columns of attributes. Although attribute blocks pro-
vide good local information in terms of how relevant
attributes affect important quantities in a given region,
the block structure can make it difficult to compare
trends for two or more attributes simultaneously in
terms of their impact on composite quantities.

Pointillism
Adjusting the attribute blocks’ pixel sizes can be use-

ful when exploring a data set for unknown patterns in
input data. The display in Figure 10 is the kr � kc � 2 � 2
case of Figure 2, but for the month of May with attribute
block sizes set in pixel space with br � bc � 1 � 1. The
resulting display has the feel of pointillism (a type of
graphical display that uses small colored dots to simu-
late an image composed of a much wider range of col-
ors). It’s immediately clear where various input
parameters have the strongest effect: soil in the upper
Midwest, temperature in the Southwest, and precipita-
tion in the Northwest and much of the East.

The example in Figure 11a (next page) is an attempt
to replicate this feel for the kr � kc � 3 � 3 case of Figure
5 (and again with br � bc � 1 � 1 in pixel space). The
attribute blocks for the principal input parameters tend
to be too small to permit an adequate visualization of
their impact on the computed water balance.

The 10 � 10-pixel attribute blocks in Figure 5 seemed
reasonable. But how small can the blocks be while
remaining effective? The optimal (or minimal) size
seems to depend on the application and the data. Empir-
ically, I’ve found br � bc � 3 � 3 to be a reasonable lower
boundary in many instances. Figure 11b shows the br �
bc � 3 � 3 case with kr � kc � 3 � 3 for our sample data set
in the month of May.

Using attribute blocks for uncertainty
visualization

Scientific models and the physical data that drive
them are subject to errors and uncertainty. Error in this

context is generally understood to describe raw data
incorrectly captured or recorded. By contrast, uncer-
tainty refers to how confident you are in the results of
some physical simulation, either a self-contained appli-
cation or one driven by one or more raw data sets.1

Many techniques exist for modeling, measuring, and
displaying uncertainty arising from scientific computa-
tions.1,3 For the water balance model example, many
interpolated global temperature, precipitation, and soil
data sets are available. These interpolated data sets dif-
fer in what raw physical data the scientists used, how
they interpolated the data, and whether they used var-
ious corrections to known problems (or relevant physi-
cal characteristics such as altitude). Comparing the

9 Two special cases occurring when either kr or kc is 1: (a) attribute
columns and (b) attribute rows.

10 Setting attribute block size to 1 � 1 in pixel space achieves a pointillism
effect.

(a)

(b)

results from using these different data sets provides one
way to measure uncertainty in model results.1

We can use attribute blocks to look for patterns of
agreement or disagreement between raw data sets. For
example, we can assign different temperature data
sources to an attribute block array’s elements and
explore a region. In this case, we use the same color
ramp for all attribute block elements because they all
correspond to temperature. We’d expect to see little or
no block pattern in areas where the data sets are in
agreement. On the other hand, areas where the attribute
blocks are visually obvious suggest appreciable disagree-
ment among the selected data sets.

Figure 12 shows temperature data sets for India and
some surrounding areas. Although there is clearly little
disagreement in the heart of the country, considerable
differences exist in projected average temperatures for
the month of January in the mountainous area of the
Northeast, as well as some disagreement in the North-
west. Specifically, two of the data sets consistently pre-
dict cooler temperatures in these areas. Examining the
corresponding data sources, we learn that one of them
uses an interpolation scheme modified to account for
altitude differences. The other uses fewer raw stations
and limits data to a recent 30-year period.

Similar areas of uncertainty are evident in precipita-
tion data sets. Figure 13a shows considerable differences
in the predicted average precipitation levels for the
month of August. However, little disagreement exists
for the month of December, as Figure 13b indicates.

Some comparisons
I compare some visualizations using attribute blocks

with select techniques from the “Previous Work” side-
bar. As noted, application domains can be characterized
by data with defined values only at discrete locations or
continuously throughout the display region. Display
goals and strategies are different for the two domains,
so I don’t include here those that are primarily applica-
ble to the discrete domain.

We can generate Beddow’s displays(see the sidebar)
as a special case of attribute blocks. Specifically, sup-
pose there are n attributes whose values have been sam-
pled at a spatial resolution of Dx � Dy. We set kr and kc so

Feature Article

64 May/June 2007

(a)

(b)

11 Attribute blocks in a 3 � 3 arrangement as in Figure 5, except with (a)
br � bc � 1 � 1 and (b) br � bc � 3 � 3.

12 Exploring temperature uncertainty in India.

13 Exploring precipitation uncertainty in India: (a) considerable differences exist for the month of August, but (b)
few differences exist for the month of December.

(b)(a)

IEEE Computer Graphics and Applications 65

there is a slot for each of the n attributes (that is, n � kr

� kc). We specify that attribute block sizes are fixed in
model space and set to br � Dy/kr and bc � Dx/kc. Linear
interpolation across the attribute blocks can be enabled
or disabled as desired.

We could easily use stick figure icons (see the side-
bar) for discrete or continuous data. In their original
paper, Pickett and Grinstein identify 12 members of a
stick figure family with four controllable limb angles for
attributes. (We could use a fifth angle for the base limb’s
rotational orientation, but I ignore that here.) Family
members had either one or two limbs extending from
each parent limb. Certainly higher out-degrees are pos-
sible, but our initial experiments didn’t lead to any con-
figuration that appeared to perform better. Choosing a
family member is a trial-and-error process. Members
whose limbs had out-degrees of 1 or 2 were perhaps a bit
easier to master. Those with out-degrees of 2 vary from
being tall and skinny for small attribute values to being
short and bushy for large values (Figure 14a). When all
out-degrees are 1, the icon varies from being straight
for minimum values of all attributes to being closed for
maximum values (see Figure 14c). Family member 5
(Figure 14b) has mixed out-degrees.

Many important configuration considerations relate
to the use of stick figures, including spaces, color, and
angle range. Space limitations prevent me from dis-
cussing them in depth here, however.

Figure 15 (next page) compares attribute blocks with
stick figure icons for the month of May for the entire US
as well as for a small region containing Florida. I gener-
ated the stick figures using colored nonoverlapping stick
figures from family member 12 (all out-degrees are 1)
with attributes mapped into an angle range of 0 to 90
degrees. Choosing a background that maximized visu-
alization of limb colors was an issue. I ultimately chose
a white background.

As the top row of Figure 15 shows, the influence of
soil moisture-holding capacity in the upper Midwest is
more obvious in the attribute block display. Moreover,
the influence of potential evapotranspiration in Flori-
da—apparent in the attribute block display in the
bottom row of Figure 15—is less obvious in the corre-
sponding stick figure display. On close examination, it’s
apparent that the angle between the blue precipitation
leg and the cyan potential evapotranspiration leg
increases as you move south, but it isn’t as immediate-
ly obvious as it is in the attribute block display. Notice,
too, the mini hotspot of high soil moisture-holding
capacity in South Florida apparent in the attribute block
display. This hotspot is also evident in the stick figure
display; in two corresponding stick figures, the soil leg
makes a near 90-degree angle with the potential evap-
otranspiration leg in that area.

Figure 16 focuses on the same southeastern portion
of the US. Figure 16a uses stick figure family member 5
(see also Figure 14) to show water balance (white leg),
temperature (red), precipitation (blue), and soil
(green). The white water balance leg uses a �90 to 90-
degree range, the first half representing a deficit and the
latter half representing a surplus. The soil leg coming
off the icon’s bottom also uses a �90 to 90-degree range,

indicating minimum to maximum soil moisture-hold-
ing capacity. Figure 16b uses attribute blocks to display
the same data. The basic layout is kr � kc � 3 � 3, with
the larger upper right 2 � 2 portion displaying the water
balance, the first column displaying precipitation, the
bottom row displaying temperature, and the lower left
block showing the soil moisture-holding capacity. This
arrangement—and in particular, the way the first col-
umn and first row are defined in a sort of Y-topology—
was meant to mimic the stick figure configuration as
much as possible.

The extreme deficit just to the north of Florida is obvi-
ous in the attribute block display in that all of the larg-
er 2 � 2 blocks are very red. In this area of the stick figure
display, all of the white legs bend to the left to indicate

(a)

14 Illustrating various attribute displays for family
members 1, 5, and 12: (a) members whose limbs had
out-degrees of 2, (b) members whose limbs had out-
degrees of 1, and (c) members whose limbs had mixed
out-degrees.

(b)

(c)

the deficit. Not surprisingly, the temperature’s impact
increases as you go south, as Figures 16a and 16b illus-
trate. In the attribute block display, the bottom row
becomes a deeper red; in the stick figure display, the red
leg approaches a 90-degree angle with the white. Sim-
ilarly, there is little precipitation to the north and consid-
erable precipitation to the south. The first blue column
of the attribute blocks becomes a deeper blue, while the
blue precipitation leg angle increases. Similar remarks
are applicable to the display’s soil portions.

Both visualizations convey the same information. The
water balance result—generally the key quantity of
interest—seems to be more immediately obvious in the

attribute block display than in the stick figure display.
Moreover, the attribute block mechanism lets us display
other information of interest without a significant
impact. For example, Figure 16c shows an attribute
block display in which precipitation and temperature
are combined in the first column, and the potential and
actual evapotranspiration have occupied the vacated
spots in the bottom row. The data described previously
remains readily apparent in this view, and we can addi-
tionally observe that potential and actual evapotranspi-
ration increase significantly as we go south.

Rather than compare perceptual texture elements
(pexel) visualizations of our climatology data and mod-

Feature Article

66 May/June 2007

(a)

15 Comparing (a) attribute blocks with (b) stick figure icons.

(b)

(a) (b) (c)

16 Comparing stick figure icons with attribute blocks in displaying water balance and associated model parameters: (a) stick figure
representation of water balance data, (b) attribute block representation of the data, and (c) adding two additional attributes to the
display in (b).

IEEE Computer Graphics and Applications 67

els, I used attribute blocks to generate visualizations of
the Healey and Enns typhoon example. I obtained the
typhoon season data from the original NOAA Web site
(http://www.ncdc.noaa.gov). This data set consisted
of typhoon season data recorded at various weather
stations throughout the 1987 typhoon season. The
Healey and Enns example focused on a typhoon that
approached Taiwan in late August of that year.4 I extract-
ed the raw scattered data and applied a basic inverse-
distance weighted interpolation algorithm to the data to
interpolate it throughout the region of interest.

Healey and Enns’ visualizations presented three
attributes: wind speed, pressure, and precipitation dur-
ing the typhoon event. I evaluated several attribute
block configurations, and eventually settled on a 3 � 3-
attribute block configuration in which precipitation was
displayed along the diagonal, from upper left to lower
right. Wind speed occupied the remaining lower-left
cells, and I assigned pressure to the upper-right cells.
For Figure 17, I used br � bc � 4 � 4.

Figure 17a shows the Healey and Enns visualization,4

and Figure 17b is the corresponding attribute blocks
visualization. The orientation and field of view are
somewhat different, but it’s reasonably easy to see how
Taiwan in the Healey and Enns figure relates to Taiwan’s
coastline shown in ours. Healey and Enns noted that the
typhoon’s center has virtually no wind, and appears as

an absence of pexels in that view. The attribute block
display shows wind speed as a mapping from the back-
ground color to a shade of green. The same no-wind
area is apparent in the attribute block display because
the attribute block cells assigned to wind are mapped
to (nearly) the background color in that area.

Assigning attributes to cells in the attribute blocks as
I’ve described led to a nice side effect. The right-angle
shape taken on by the wind speed and pressure cells is
readily identifiable in the displays and improves percep-
tion of the corresponding data. For example, an area of
high pressure over Taiwan is apparent in Figure 17b, but
has decreased noticeably in the corresponding display
of Figure 17d. Similarly, the heavy rain apparent in the
Healey and Enns visualization in Figure 17a is also obvi-
ous in the attribute block display of Figure 17d, this time
because the purple in the diagonal precipitation cells is
clearly apparent approaching from the southeast.

The exact locations of features differ somewhat
between the Healey and Enns and attribute block fig-
ures. For example, the area of low wind in the center of
the typhoon is in a slightly different place in Figures 17a
and 17b. Similarly, the rain is on the coast in Figure 17c,
whereas Figure 17d shows it off the coast. This is prob-
ably because of differences in how I extracted and used
the raw NOAA data. Those issues aside, the ability to
visualize critical features—such as high precipitation

17 Comparison of the Healey and Enns visualizations with attribute blocks: (a) Healey and Enns visualization
of the 27 August typhoon; (b) the 27 August attribute block display; (c) Healey and Enns visualization of the
28 August typhoon; and (d) the 28 August attribute block display.

(a)

(b)

(d)

(c)

and absence of wind—is clear. I don’t claim that either
approach is uniformly better, but that they represent dif-
ferent ways to see the data.

Implementation
Our implementation uses the OpenGL programmable

vertex and fragment shader capability.5 Typically, an
application defines a scene’s geometry to the OpenGL
engine during a display callback using geometric forms
and attributes predefined in OpenGL. For example,
OpenGL knows about such rendering-related attributes
as RGB colors and normal vectors. Current values of
these attributes are associated with vertices of primitives
and are sent down the graphics pipeline with them.

In a conventional OpenGL program, the pipeline is a
black box. It contains a vertex
shader, which performs per-ver-
tex operations such as calculat-
ing a lighting model. OpenGL
linearly interpolates the results
of these per-vertex operations
across the interior of the owning
primitive during the primitive
reassembly and scan-conversion
process. It then invokes a frag-
ment shader for each pixel iden-
tified during scan conversion.
This shader is responsible for cal-
culating and setting the pixel
color. Using the OpenGL Shad-
ing Language, I can replace the
standard vertex and fragment shader computations with
arbitrary processing, provided that I follow certain basic
conventions.5

I used this mechanism for my attribute block render-
ings. I associated the eight water-balance attributes with
vertices of the polygon and communicated them to a
specialized vertex shader. That shader mapped the
attribute values into a 0-to-1 range and arranged for
these mapped values to be linearly interpolated across
the primitive.

Our fragment shader is somewhat more complex. It
uses the current kr � kc and br � bc settings to determine
the attribute block cell in which the current pixel lies.
This is actually a two-step process because it first deter-
mines the (i, j) cell index (0 � i � kr; 0 � j � kc) from the
kr, kc, br, and bc values, and then determines the actual
attribute to which that (i, j) position corresponds based
on the current assignment of attributes to cell locations
in the attribute-block array. Once the fragment shader
identifies the appropriate attribute, it accesses the cor-
responding interpolated attribute value and color ramp
and generates the resulting pixel color.

The ability to relegate these operations to the vertex
and especially the fragment shader lets us decouple
attribute block cells from the geometry definition and
was critical to our implementation’s success. Moreover,
the entire C		 program is independent of the actual
data. Our data file begins with a short header describ-
ing the data. The vertex and fragment shaders are then
in separate files and use the variable names identified
in the data file. To use attribute blocks in a different

context, you need only design the data file header
appropriately.

From the fragment shader’s perspective, attribute
block cell sizes are always specified in pixel units. If the
user wants to fix these cell sizes in model space, the
application computes the pixel dimensions based on the
current field of view and viewport dimensions at the
beginning of each display callback. In either event, the
fragment shader simply gets (via uniform variables5)
the current br � bc dimensions in pixel units.

Ongoing and future work
Although my preliminary experiences with attribute

block visualizations are positive, several limitations
and areas of further study are apparent. Most notably,

several questions related to
sampling and its relationship to
determining ideal attribute
block cell sizes merit additional
work. As I discussed in the con-
text of Figures 4 and 5, in the
current system, the user must
detect and deal with undersam-
pling problems by adjusting cell
sizes and origins. Although this
sometimes works, a much bet-
ter approach would be to devel-
op tools that could analyze the
underlying data, suggest cell
sizes, and perhaps even develop
simple animations by automat-

ically cycling through cell size and/or phase shift
adjustments.

Attribute data is linearly interpolated across the inte-
rior of model space polygons, hence also across the inte-
rior of attribute block cells. A better understanding of
this linear interpolation’s limitations is needed. Does
switching between linear interpolation functions in an
attribute block cell’s interior cause visible discontinu-
ities? Should discontinuities be preserved so as to
emphasize the resolution of the underlying data? Are
there advantages to using higher-order interpolation
functions?

My approach currently uses only color to display
attribute values. I could also use texture variations (see
the sidebar). As for the colors themselves, I need a more
systematic study of color ensembles and how users per-
ceive them. Earlier work used color mappings,1 but
because we never displayed mixed data types in that
effort, we avoided potential problems related to color
overloading. For example, a red ramp in Figure 5 indi-
cates temperature; in that same figure, it’s also part of
the diverging color ramp used for the water balance.

The interplay between shapes taken on by attribute
cell assignments in an attribute block and perception
needs more study. As I mentioned when comparing
attribute blocks with pexel displays, the specific shapes
taken on by the wind speed, pressure, and precipitation
cells in the attribute block display played an important
role in bringing out the values of the corresponding
attributes. We need to better understand how to exploit
such shape-related cues. ■

Feature Article

68 May/June 2007

The ability to decouple

attribute block cells

from the geometry

definition was critical

to our implementation’s

success.

Acknowledgments
I thank the reviewers for pointing me to several use-

ful related references and for providing many extreme-
ly helpful suggestions to make the description much
more complete and clear. I also thank Johan Feddema
and Terry Slocum for the data sets used in the running
example here as well as for providing helpful sugges-
tions to improve interactions with the visualizations.

References
1. D.C. Cliburn et al., “Design and Evaluation of a Decision

Support System in a Water Balance Application,” Comput-
ers and Graphics, vol. 26, no. 6, Dec. 2002, pp. 931-949.

2. M.C.F. de Oliveira and H. Levkowitz, “From Visual Data
Exploration to Visual Data Mining: A Survey,” IEEE Trans.
Visualization and Computer Graphics, vol. 9, no. 3, July-
Sept. 2003, pp. 378-394.

3. A. MacEachren, “Visualizing Uncertain Information,” Car-
tographic Perspective, vol. 13, 1992, pp. 10-19.

4. C.G. Healey and J.T. Enns, “Large Datasets at a Glance:
Combining Textures and Colors in Scientific Visualization,”
IEEE Trans. Visualization and Computer Graphics, vol. 5,
no. 2, Apr.-June 1999, pp. 145-167.

5. R.J. Rost, OpenGL Shading Language, Addison-Wesley,
2006.

James R. Miller is an associate pro-
fessor of computer science in the
Department of Electrical Engineering
and Computer Science and codirector
of the eLearning DesignLab at the Uni-
versity of Kansas. His research inter-
ests include computer graphics,
scientific visualization, geometric

modeling, and e-learning. He has a PhD in computer
science from Purdue University. Contact him at jrmiller@
ku.edu.

Article submitted: 9 Feb. 2006; revised: 14 Oct. 2006;

accepted: 18 Nov. 2006.

IEEE Computer Graphics and Applications 69

Get access
to individual IEEE Computer Society

documents online.

More than 100,000 articles and conference papers available!

$9US per article for members

$19US for nonmembers

www.computer.org/publications/dlib

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

