Incremental Boundary Evaluation
Using Inference of Edge Classifications

e —

James R. Miller

==

—

:

University of Kansas

An incremental algorithm
exploits the simultane-
ous availability of CSG

\

and boundary represen-

i

tations of solids to avoid
most explicit edge
/ classifications.

With the many different representations for solid mod-
els, placing the representations into simple categories
is difficult. Nevertheless, two basic types of representation are
most prevalent in systems: an implicit constructive scheme
called constructive solid geometry and an explicit boundary-
based scheme called boundary representation. CSG defines
solids in terms of Boolean combinations of primitive solid vol-
umes. The CSG representation of a solid is often called a CSG
tree, because this representation can use a binary tree whose
terminal nodes are the primitive solids and whose nonterminal
nodes are the regularized Boolean set operations.1

The data structure in the explicit scheme is a graph describ-
ing the subsets of surfaces and curves that form the outer
boundary of the solid. The elements of this representation—
called a boundary representation, or B-rep—form a hierarchy
of higher dimensional to lower dimensional forms. The
boundary of a solid object consists of one or more shells (a
single connected “skin”). Each shell is defined by an enumer-
ation of one or more faces. A face is a portion of a surface
bounded by one or more loops on the surface. A loop is a
closed, connected set of edges, and an edge is a portion of a
curve. (A loop may instead be defined by a single vertex. For
example, a solid defined by a bounded portion of one half of a
right circular cone would have a single vertex loop at the
cone’s vertex.) Finally, an edge is bounded by two vertices. In

January 1993

addition to these lists, B-reps record specific adjacency rela-
tionships. Adjacency relationships describe how the elements
of an object’s boundary are connected.”

Solid modeling systems commonly support construction of
the solid that results from applying a Boolean operation be-
tween two other solids. The computation of the B-rep describ-
ing the result is called boundary merging if the input solids are
described only by B-reps; it is termed boundary evaluation if
there are CSG descriptions of the given solids.” Boundary
evaluation is nonincremental if we have only CSG descriptions;
it is incremental if we have redundant CSG and B-rep descrip-
tions of the solids and appeal to both in the algorithm.3 It is
also common to insist that the B-rep describe a regular solid:
No dangling faces, edges, or vertices are allowed in the B-rep.l

In this article I focus on incremental boundary evaluation,
although much of the presentation applies as well to boundary
merging. The algorithm I describe has been implemented and
evaluated in cryph, a geometric modeling system with both
CSG and B-rep descriptions of solids, which is being devel-
oped and used as a research and teaching tool at the Univer-
sity of Kansas. The B-rep in cryph is based on Weiler’s radial
edge data structure.” Among other things, this data structure
explicitly separates the concept of a use of a topological ele-
ment from the element itself. As we shall see, this separation is
a natural match to the way we think about boundary evalua-

0272-17-16/93/0100-0071$03.00 © 1993 IEEE 71

Computer-Aided Geometric Design

tion, and it lets us simplify the logic in critical sections of the
algorithm. The data structure maintains ownership relations
between different types of uses. For example, a vertex use
knows the unique edge use on which it lies, and conversely the
edge use knows the vertex use at which it starts.

For the boundary-evaluation algorithm to generate the B-
rep corresponding to a CSG representation of a solid, a nec-
essary condition is that the set of objects representable in
CSG be a subset of the set representable with a B-rep. In par-
ticular, I call attention to the distinction between two possible
domains: manifold objects and regular sets."” Loosely speak-
ing, regular sets are objects, all of whose faces separate solid
material from air and all of whose edges form part of the
boundary of a face. Manifolds are a more restrictive class in
that, for example, an edge can belong to only two faces. Non-
manifold solid objects are easily represented in CSG and arise
quite naturally in modeling operations. Therefore, our data
structures and algorithms should support nonmanifold B-
reps. Weiler designed his radial edge data structure for non-
manifold models.* However, the algorithmic processing
required for nonmanifold objects in the boundary-evaluation
algorithm is beyond the scope of this article. Here I simply
point out those portions of the algorithm affected by the exis-
tence of nonmanifold input or output. I tackle the former in
another article (submitted for publication under the title “In-
cremental Boundary Evaluation for Nonmanifold Partially
Bounded Solids”).

An important part of my approach involves exploiting adja-
cency information in the B-reps to simplify and accelerate
critical parts of the algorithm. While the basic idea is not new
(Requicha and Voelcker mentioned the possibility of infer-
ring information in this fashion3), it has not been described in
the literature, and I am not aware of systems that operate in
this fashion. The concept is simple, but subtle issues arise.

The boundary-evaluation algorithm depends on standard
curve and surface utilities:

o The computation of intersections between curves and
surfaces.

o Determination of coincidence relationships between
points, curves, and surfaces.

o The computation of differential quantities at a point on a
curve or surface.

An appropriate interface to a set of such utilities lets the
boundary-evaluation algorithm operate without knowledge of
internal representations of curves and surfaces or of the spe-
cific algorithms used to support these operations. We can
therefore push all uncertainty due to numerical inaccuracies
into black-box geometry-specific routines. I constructed the

72

boundary-evaluation algorithm in cryph in this fashion, so I do
not discuss the extensive literature describing these utilities.
References to descriptions of the representations and many of
the cryph intersection algorithms can be found elsewhere.”’

Previous work

Requicha and Voelcker® provided one of the earliest and
clearest descriptions of theoretical and computational issues
in boundary evaluation. They established a framework for
classifying algorithms and surveyed several algorithms known
at the time. My approach differs from theirs in a couple of
significant areas. I generate connected instead of maximal
faces. More significantly, I actively use the adjacency informa-
tion in the B-reps to minimize required computation. They
make no use of adjacency information, noting instead the
point in their algorithm at which it could be generated if re-
quired by other algorithms.

Several authors provide extensive descriptions of boundary
merging algorithms for polyhedral objects.s’g’11 Details vary,
but a common approach is based on computation and analysis
of vertices and explicit vertex neighborhoods.'’ These algo-
rithms often do not extend directly to the curved-surface do-
main.’ By comparison, I designed my approach for models
with nonlinear boundaries, and it uses edge and face neighbor-
hoods instead of vertex neighborhoods, which are very diffi-
cult to represent and manipulate in curved-surface domains.’

Requicha and Voelcker’ and Méintyléis’10 established some
mathematical characterizations and theoretical concepts that
space does not allow me to review. Here I include only what
is necessary for my description.

Crocker and Reinke'” describe a nonincremental boundary-
evaluation algorithm for solids whose boundaries can be rep-
resented or approximated with piecewise polygons and
quadrics. Their algorithm is built on the PADL-2 boundary
evaluator.” More recently, they developed methods enabled by
advances in nonmanifold data structure representations, which
dramatically improve the performance of editing operations.]3

High-level approach

Classification of a candidate set E with respect to a subject
set § is the process of partitioning E into subsets that lie en-
tirely inside, outside, or on the boundary of 8. It is common
to use the notation inS, outS, or onS to denote the subsets of £
that are respectively inside, outside, or on the boundary of S.

We say a face on the boundary of a solid is connected if be-
tween any two points in the face interior there is a path that
lies entirely in the face interior. If a face on a B-rep consists of
all subsets of a surface that lie on the solid’s boundary, the
face is said to be maximal. My algorithm generates connected
faces. Connected faces make the detection of multiple shell

IEEE Computer Graphics & Applications

e s e e]
An important part of

my approach
involves exploiting
adjacency information
in the B-reps to simplify
and accelerate critical

connected faces on the parts of the algorithm-
same surface. T R R R R

We say two loops on a surface are compatible if, on the sur-

results easier, and it is
often necessary to at-
tach different at-
tributes to different

face, there is a path from an edge on one loop into its local
neighborhood that arrives at an edge of the other loop on the
side of its local neighborhood, and the path does not cross any
edge in either loop. On surfaces of topological genus zero,
two compatible loops will always form a well-defined (but
possibly unbounded) connected face. Though symmetrical,
compatibility is not a transitive relationship.

An edge lying on one of the solids input to the boundary-
evaluation algorithm is called a self edge. A new edge arising
from the intersection of a face on one operand with a face of
the other is called a cross edge. If a cross edge is also a self
edge, we call it a CESE (cross edge self edge).

Consider evaluating the boundary of a solid C defined as
the result of applying a Boolean operation ° between solids A
and B (C < A ° B). We can greatly simplify an implementa-
tion of the boundary-evaluation algorithm by using the
identities

A-B=An-B
AUB=~(-AN-~B)

where ~ denotes the unary complement operator. That is, with
appropriate preprocessing and postprocessing, we need to im-
plement only the intersection operation. Since we use the ra-
dial edge data structure,’ the complement operation requires
only pointer modification; hence this adds little overhead to
the overall algorithm. I therefore present the algorithm assum-
ing only intersections are performed, but for clarity I use all
three operations when showing sample geometry in figures.

The standard approach is based on the generate-and-test
paradigm: Generate sets of faces, edges, and vertices known
to contain all those of C, then test each member of the three
sets to determine which ones belong to the boundary of e
The faces of C are a subset of the faces of A and B. To deter-
mine the subset, faces generally must be partitioned. That
is, for each face f from either A or B, f will survive in its en-
tirety on C, f will not exist at all on C, or some subset of f will
exist on C.

Similar remarks apply for edges. The edges of C are a sub-
set of the self edges of A, the self edges of B, and the cross
edges arising from intersections between the faces of A and B.
Again, to determine the subset, we must first partition the
edges. Aside from the one exception discussed in the next

January 1993

Incremental Boundary Evaluation

section, we partition the self edges of one operand at their
discrete points of contact with faces on the other operand.

The vertices of C are a subset of the vertices of A, the ver-
tices of B, and new vertices created during the edge partition-
ing and cross-edge generation steps. We can base the subset
determination on point classification.

The interior of the partitioned faces and edges will have a
constant classification with respect to C. Therefore, we can
determine which partitions comprise the boundary of C by
classifying an arbitrary point in the interior of each partition.
However, it suffices to compute the edge classifications, from
which we can deduce the faces of C. The vertices of C are
simply those on the surviving edges (and surviving single ver-
tex loops).

Recalling our earlier characterization of regular sets, we
can decide whether an edge lies on the boundary of C (that is,
classify the edge with respect to C) by studying its neighbor-
hood. If an edge is completely surrounded either by solid ma-
terial or by air, then it is not on the boundary; otherwise it is.
Different classification approaches are appropriate for the
three types of edges mentioned earlier: cross edges, self
edges, and CESEs.

We first consider cross edges. Any cross edge arising from
the transverse intersection of a face of A with one from B will
be partly surrounded by material and partly surrounded by
air (and hence will lie on C), regardless of the orientations of
the two faces involved. Cross edges surviving on C that lie on
tangential curves of intersection between surfaces of A and B
must have been CESEs. (If either the input or output is non-
manifold, this assertion might not hold.)

We classify self edges that do not lie on the boundary of the
other solid by simply classifying a point in the interior of the
edge with respect to the other solid. This classification will be
either inX or outX (X being the other solid—either A or B).
If the classification is inX, then the neighborhood of the edge
on C will be the same as it was on the input solid (that is,
partly surrounded by air, partly surrounded by material).
Hence the classification must be onC. If instead the classifica-
tion is outX, then the edge is completely surrounded by air;
hence its classification with respect to C must be outC.

Summarizing, we can conclude without any explicit compu-
tation that pure cross edges must lie on C, and we can deter-
mine whether a pure self edge lies on C simply by classifying a
point with respect to the other solid. It is only when classify-
ing CESEs that we must resort to some explicit determination
and analysis of edge neighborhoods. My approach is similar
to that described by Requicha and Voelcker® for all edges,
and I describe it in the next section.

My algorithm actually performs far fewer explicit edge clas-
sifications than has been implied. By taking direct advantage

73

Computer-Aided Geometric Design

if p is a vertex of the edge then
if p is a vertex of the face then
merge the vertices
endif
else if p is in the interior of the edge then
if p is a vertex of the face then
split the edge at the vertex
else if p is on or in the face then
create a vertex at p and use it to split the edge
endif
a

for each curve, ¢, on A do
for each surface, s, on B do
intersect(c,s) to get a list of points
for each point, p, in the list do
<logic shown above using an edge on c and a face on s>

b

Figure 1. Self-edge partitioning: (a) classifications, (b) logic.

of adjacency information among the self edges, it can infer
virtually all self-edge classifications without point classifica-
tion or other numerical computation. Moreover, it can deter-
mine the resulting connected faces simply and directly.

The algorithm

The algorithm proceeds as follows:

1.If A or B is the empty solid, then generate C trivially and
exit.

2. Partition self edges of A at their points of intersection
with faces of B.

3. Partition self edges of B at their points of intersection
with faces of A.

4. Compute and partition cross edges, associating uses with
surfaces on A and B.

5. Classify CESE uses discovered during step 4.

6. Infer self-edge classifications, splitting and merging faces
as appropriate.

7. Check for split and merged shells.

Self-edge partitioning (steps 2 and 3)

Each edge on one operand must be compared with each
face on the other. We first intersect the curve underlying the
edge with the surface underlying the face. If the curve lies on
the surface, we do nothing at this stage. The edge may be a
CESE, but this will be discovered in step 4. We classify each
discrete intersection point p with respect to both the edge and
the face. Figure la describes the use of the classifications. Fre-
quently, multiple edges lie on a curve, and multiple faces lie
on a surface. To minimize computations, we organize the par-
titioning logic as shown in Figure 1b.

74

Cross-edge generation (step 4)

Each face of A must be intersected with each face of B.
Again, because multiple faces frequently lie on a surface, we
organize the process by looping over all surfaces s, in A and
sp in B. Cross edges are then those portions of a curve of in-
tersection between s, and s, that lie in the interiors of a face
on s, and a face on sp. If we find an s, and s, to be identical,
then we throw away one surface, forcing all faces that for-
merly referenced it to refer to the other surface. We haven’t
sufficient information at this stage to do anything further; we
will discover any faces that must get merged during step 6.

We have an additional motivation for proceeding surface by
surface. Distinct connected faces on the input may be merged
into a single connected face on the result. This affects the clas-
sification inference process of step 6, since we need to consider
at once all faces lying on a given surface. As a result, it is con-
venient to organize cross-edge uses as well as the classification
inference process of step 6 on a surface-by-surface basis.

Assuming s, and s intersect, our first task is to determine
the proper orientation of a cross edge on each face. We define
the orientation of an edge use on a face so that the face inte-
rior is locally to the left as we look in the direction deter-
mined by the edge use. Curves on which edges lie are
oriented. Hence uses of edges need only a flag that states
whether the orientation of the use is the same as or opposite
that of the underlying edge. Uses of edges on adjacent faces
have opposite orientations, so we need only establish the ori-
entation of one use. We use an arbitrary point P on the curve
to test whether the orientation of a use on a face of s, should
agree with the curve orientation. We compute the unit tan-
gent vector u to the intersection curve at P, and the unit out-
ward-pointing normal vectors n, and ny to faces on surfaces
s, and sy also at P. If the orientation should be recorded as
“agree,” then the vector from P into the face on s, should
point away from ng. That is,

if (ny X u) - ng) < 0.0 then
orientationFlag = AGREE
else
orientationFlag = DISAGREE

If n, is parallel to mg, then ((n, X u) - ng) will be precisely
zero. This can occur at one or more isolated points on the
curve. If P is such a point, we can simply choose another and
proceed. If the curve is a tangent curve of intersection, how-
ever, then n,, is parallel to ny throughout. Assuming the input
and output are manifold, there can be no new edges on such a
curve. We proceed with the remainder of the logic here, how-
ever, because there may be CESEs lying on this curve (for ex-
ample, when creating a fillet).

IEEE Computer Graphics & Applications

Incremental Boundary Evaluation

@4

=

VA

£

S s

a]

>

Nl

on one of the surfaces. We
could query the face vertices
directly, but we proceed in

c this fashion so that we can

Figure 2. (a) Union of a block and a bounded cylinder. (b) Positioning another bounded cylinder. (c) The
original elliptical self edge is partitioned while generating and partitioning cross edges arising between the

solid and the second cylinder.

Next we partition the curve. The naive approach for parti-
tioning the cross curves is to do an edge partitioning operation
as outlined above, using all faces adjacent to a face lying on s,
or sg. This is undesirable for a number of reasons. It requires
unnecessary curve-surface intersection operations and point-
face classifications. Furthermore, it usually creates more parti-
tions than necessary. Because of the self-edge partitioning of
steps 2 and 3, all points at which the curve must be partitioned
are either vertices on the boundary of faces lying on s, and sp
or isolated points of tangency between s, and sz. This means
we can find partitioning points simply by performing point-on-
curve tests using the vertices adjacent to the faces.

Because cross edges must be partitioned at points of tan-
gency between s, and s, four cross edges are generated, for
example, if two bounded cylinders intersect in a pair of el-
lipses. Similar situations force the additional self-edge parti-
tioning mentioned in the previous section. Consider the
geometry of Figure 2a. If we add the second cylindrical primi-
tive as shown in Figure 2b, we need to partition the original
self edge lying on the ellipse to connect it properly with the
new cross edge lying on the other ellipse, but we do not dis-
cover this until generating the cross edges.

If the two surfaces have one or more isolated points of in-
tersection that lie in the interior of a face on A and one on B,
then we must classify the isolated points in addition to inter-
section curve partitions. Points that classify as onC are added
as single vertex loops on the containing faces. The presence of
single vertex loops usually indicates the existence of a non-
manifold condition, but it will occasionally arise in manifold
situations, such as when the vertex of a cone is a part of the
boundary of a model.

We search for the vertices that partition a cross edge by ex-
amining the lead vertex on each self edge on each face lying

look for CESEs in the pro-
cess. At each self edge, we
check to see whether the un-
derlying curve is coincident
with the current cross edge. If so and if the edge is also on or
in a face on the other operand, then we record this cross-edge
partition as a CESE. We must tag each partition since some
cross-curve partitions may be CESEs, while others are pure
cross edges (Figure 3). i

CESE classification (step 5)

During step 4, we associated cross-edge uses with surfaces.
In step 6 we look at these uses to infer classifications of the
self edges on faces lying on those surfaces. We also detected
CESE:s during step 4. As we explicitly classify these CESEs,
we decide face by face which uses we need and which we must
delete. The low-level Euler operators delete an edge if and
when all its uses are deleted.

The geometric computations are basically the same as those
that Requicha and Voelcker describe.” We slice both solids
with a plane perpendicular to and passing through the middle
of the CESE. This generates two curvilinear wedges on the
plane, one from each solid. If the wedge interiors are disjoint,
then the neighborhood of the edge with respect to the result-
ing solid is empty, and all uses of the CESE are deleted. If the
interiors overlap and the boundaries are all distinct, then we
decide the fate of CESE uses on a straightforward face-by-
face basis. If the sectors share a boundary that is a boundary
of the result, then we have overlapping faces that must get
merged. We arbitrarily choose one face to survive, and all the
self edges and CESEs of the other that lie on the boundary of
the result are transferred to the surviving face as if they were
cross edges.

If the conclusion of this analysis is that a use of the CESE
must survive on a face that did not already have a use (that is,
if the CESE was a self edge only on the other operand), then
we create a new use and add it to the face as if it were a pure

Figure 3. (a) A simple solid.
(b) A bounded cylinder in-
duces a CESE and a pure
cross edge on the same
curve of intersection. (c)
The solid that results from
subtracting the bounded

c cylinder.

January 1993

75

Computer-Aided Geometric Design

o

T
el

SEX. ¥
~
SE,

Y4 eu,
|-
Lol A

»
7]

Figure 4. (Above) When stitching in the open cross-edge string (bold), we infer that the
self-edge uses marked with a circle are to be deleted and the others retained.
Figure 5. (Right) Satisfying the second requirement results
in CE, being connected to SE, instead of SE,.

cross edge. If instead the CESE was a self edge on both
operands, then we delete one edge at this stage and transfer
ownership of its uses to the other.

CESEs must satisfy one further requirement before being
allowed to survive on the result: They must delimit faces lying
on different surfaces.

Inference of self-edge
classifications (step 6)

There are two distinct stages of self-edge classification in-
ference. The first and more complex is the classification infer-
ence for self edges in loops touched by cross edges. The
second stage handles those loops (and faces and shells) not
touched by cross edges.

By the time we reach this step of the algorithm, those
CESE uses that should survive on the result have been “pro-
moted” to pure cross-edge status on the appropriate surfaces.
Therefore, with one very minor exception during the second
stage, we no longer need to distinguish CESEs from cross
edges. For the remainder of this section (unless explicitly
stated otherwise), the term cross edge includes CESEs added
to a surface as a cross edge during step 5.

We first form connected strings of cross-edge uses on each
surface. Because of our earlier processing, this requires no nu-
merical computations or comparisons, rather only pointer-
based logic. That is, we simply connect cross edge i to cross
edge j if i stops at the same vertex at which j starts. For mani-
fold faces, any vertex will determine exactly one such (i, j)
pair. After we have connected all cross-edge uses in this fash-
ion, some strings will form closed connected loops, and others
will be open. We consider the open strings first.

For each open string we identify the two distinct vertices v,
and v, at which the string starts and stops. On a face lying on the
current surface, there will be two self-edge uses that start at v,
and v,, which we call eu; and eu, (Figure 4). These self-edge uses
may lie on a common face or on two distinct connected faces.
The last cross-edge use in the string will connect before ew,, and
the first in the string will connect after ew,’s predecessor.

76

We deduce self-edge classifications from how these open
strings connect into the boundary. For example, if there are
only one face and one such string of cross-edge uses on the
surface, then we must delete all self-edge uses starting with
eu; and stopping with ew,’s predecessor. All other self-edge
uses on the face survive (Figure 4). In general, there will be
multiple strings of cross-edge uses and multiple connected
faces on a surface. Therefore, when processing a given string,
we don’t have sufficient information to delete self-edge uses
immediately. Instead we mark the vertex use of the first cross-
edge use in each string, mark the vertex use of each eu,, and
remember each eu;. After all open cross-edge strings on a sur-
face have been processed, we take each remembered eu; in
turn and delete it and its successors until we reach an edge
use whose vertex use has been marked.

Determining the proper eu; and eu, is crucial. To find eu,
and eu,, we search for uses of the vertices v, and v, instead of
looking for all edges on all faces on the surface that start at
the vertices. The number of vertex uses is generally much
smaller than the number of edges, and the desired vertex use
vu must satisfy only two simple conditions:

1. Face(vu) lies on the current surface.
2. Face(vu) has the same orientation as the face on which
the current cross edge was discovered.

Additional conditions must be satisfied if faces may be non-
manifold.

Figure 5 illustrates why we need the second test. CE| is a
cross edge lying on the top surface of the block. Both self
edges SE; and SE, lie on faces on that surface, but only SE,
lies on a face with the correct orientation.

After adding all open cross-edge strings to the boundary
and deleting self edges as appropriate, we add those cross-
edge strings that formed closed loops. For each such loop, we
search for a face on the current surface that contains (a point
on) the loop. If there is none, we create a new face for the
loop; otherwise, we add the loop to the containing face.

IEEE Computer Graphics & Applications

Figure 6. Recursive procedures for detecting split and merged shells:
(a) test_shell, (b) mark_adjacent_faces.

As we add cross-edge strings (open or closed) to the
boundary, faces may get split or merged. Two connected faces
are merged if a loop from each is bridged by an open cross-
edge string or if they share a CESE. Faces can get split as we
stitch cross edges into the boundary or add new closed cross-
edge loops to faces. If attaching a cross-edge loop into the
boundary and the subsequent deletion of intervening self
edges cause a loop to split in two, we create a new loop from
one piece and add it to the face as if it were a new cross-edge
loop. We detect this condition while deleting the self edges
between marked vertices, so we know all newly formed loops.
When we add a new closed cross-edge loop to a face, we de-
termine whether it splits the face, using the notion of compati-
ble loops described in the section entitled “High-level
approach.” We assume that the face is initially defined by a
set of compatible loops. If the newly added loop is compatible
with all the existing ones, we can simply add it to the face.
Otherwise, we must take the new loop and all the existing
ones, and determine the connected faces by partitioning the
set of loops into the smallest number of sets, so all loops
within a set are compatible with each other.

The second and final stage of self-edge classification infer-
ence is straightforward. While we cannot infer directly the
classifications of self edges in loops untouched by cross edges,
all self edges in such a loop will have the same classification.
Therefore, it suffices to classify a single point on the loop. If
the loop contains a CESE use, then the classification of the
CESE use determined during step 5 is the entire loop’s classi-
fication. Otherwise, we generate an arbitrary point in the inte-
rior of a self edge in the loop, classify it with respect to the
other solid, use the classification as described in the section
entitled “High-level approach,” and propagate the result to
all self-edge uses in the loop. If an entire face or shell was un-
touched by cross edges, then the loop result propagates
throughout the face or shell.

Incremental Boundary Evaluation

test_shell(s):
f = first face in the unordered list of faces bounding s
if f is marked then
{two shells have merged; this one can be deleted}
delete_shell(s)
else
mark_adjacent_faces(f)
if any face in s's list of faces is still unmarked then
{s has been split}
create a new shell, s’, containing the unmarked face
test_shell(s”)
endif

a

mark_adjacent_faces(f):
mark f
for each edge use, eu, on f do
raf = radially_adjacent_face(eu)
if raf is unmarked then
mark_adjacent_faces(raf)

successive edge uses around a face and query the faces radi-
ally adjacent to a given edge use. We begin by assuming all
faces are unmarked and proceed as follows:

for each input shell, s, on each operand do
test_shell(s)

Figure 6a shows the recursive procedure test_shell. Figure 6b
shows the final recursive procedure mark_adjacent_faces.

Implementation

The algorithm, implementéd in cryph, runs on a variety of
systems, including Silicon Graphics Iris workstations and
DEC servers. I have implemented no global optimization
techniques of any sort. When determining cross edges, for ex-
ample, the algorithm intersects all surfaces of A with all sur-
faces of B. It uses no initial culling based on, for example,
spatial extents. I plan to evaluate some appropriate methods,
but their absence now should be considered when examining
the execution times in Table 1.

Checking for split and Table 1. The algorithm’s performance in evaluating the parts shown in Figures 7 and 8.
merged shells (step ?) . L Nuribar
Our approach for detecting Time to of ,OT Lonoest rns
split and merged shells assumes Number Evaluate Individual Individual Res %nse Respor%se
connected faces were generated Model o from Boolean Boolean Tiene Time
R e Primitives Scratch Ops Ops with d
Ve e (seconds) P Subsecond | (seconds) | (seconds)
ability to traverse the elements Requested Response
of a B-rep in two fundamental
ways: by querying the lower di- L-bracket 11 2.33 17 174 0.48 0.14
mensional boundary of a higher (Fig. 7)
dimensional form (in this case,
the faces bounding a shell), and ANC101 79 67 59 10 0.55
by following adjacencies in edge (Fig. 8)
uses. In particular, we traverse
January 1993 917/

Computer-Aided Geometric Design

Figure 8. CAM-I testbed part ANC101.

Figure 7. An L bracket.

The algorithm evaluated the B-reps for
the two parts shown in Figures 7 and 8.
Table 1 shows the time required to evalu-
ate the B-rep from the CSG tree. It also
gives the incremental response time for

individual Boolean operations. Since this

is what a designer actually sees while designing the part, it is a
more meaningful measure. The table gives the total number of
such requests (cryph allows Boolean operations to be specified
between n operands) and the number satisfied in less than a
second. For the ANCI101, six of the eight operations requiring
more than one second were satisfied in less than four seconds.
The one requiring 10 seconds was a Boolean applied to five
children; hence it was like four traditional Boolean operations.
The other operation requiring more than four seconds was a
Boolean applied to three children. All times were measured
on a Silicon Graphics Iris 4D/220 workstation.

Summary

An incremental boundary-evaluation algorithm exploits ad-
jacency information in B-reps to minimize the number of ex-
plicit edge classifications required. Evaluations of the
implemented algorithm show that it performs reliably and
well. Global optimization schemes could increase perfor-
mance significantly. I have submitted for publication another
article that describes extensions to this algorithm supporting
nonmanifold and semi-infinite solids. a

Acknowledgments

I am indebted to Kevin Weiler for his willingness during the early
stages of this work to discuss at length various aspects of his radial edge
data structure. This work was supported in part by the University of
Kansas general research allocation #3760-X0-0038.

References

1. A.A.G. Requicha, “Representations for Rigid Solids: Theory, Meth-
ods, and Systems,” ACM Computing Surveys, Vol. 12, No. 4, Dec.
1980, pp. 437-464.

2. K.J. Weiler, “Edge-Based Data Structures for Solid Modeling in
Curved-Surface Environments,” IEEE CG&A, Vol. 5, No. 1, Jan.
1985, pp. 21-40.

78

3. A.A.G. Requicha and H.B. Voelcker, “Boolean Operations in Solid
Modeling: Boundary Evaluation and Merging Algorithms,” Proc.
IEEE, Vol. 73, No. 1, Jan. 1985, pp. 30-44.

4. K.J. Weiler, Topological Structures for Geometric Modeling, doctoral
dissertation, Rensselaer Polytechnic Inst., Troy, N.Y., 1986.

5. M. Miintyld, An Introduction to Solid Modeling, Computer Science
Press, Rockville, Md., 1988.

6. J.R. Miller, “Geometric Approaches to Nonplanar Quadric Surface
Intersection Curves,” ACM Trans. Graphics, Vol. 6, No. 4, Oct. 1987,
pp. 274-307.

7. J.R. Miller and R.N. Goldman, “Using Tangent Balls to Find Plane
Sections of Natural Quadrics,” IEEE CG&A, Vol. 12, No. 2, Mar.
1992, pp. 68-82.

8. H. Chiyokura, Solid Modelling with DESIGNBASE: Theory and Im-
plementation, Addison-Wesley, Reading, Mass., 1988.

9. C.M. Hoffmann, Geometric and Solid Modeling: An Introduction,
Morgan Kaufmann, San Mateo, Calif., 1989.

10. M. Mintyld, “Boolean Operations of 2-Manifolds Through Vertex
Neighborhood Classification,” ACM Trans. Graphics, Vol. 5, No. 1,
Jan. 1986, pp. 1-29.

11. C.M. Hoffmann, J.E. Hopcroft, and M.S. Karasick, “Robust Set Op-
erations on Polyhedral Solids,” IEEE CG&A, Vol. 9, No. 6, Nov.
1989, pp. 50-59.

12. G.A. Crocker and W.F. Reinke, “Boundary Evaluation of Non-Con-
vex Primitives to Produce Parametric Trimmed Surfaces,” Computer
Graphics (Proc. Siggraph), Vol. 21, No. 4, July 1987, pp. 129-136.

13. G.A. Crocker and W.F. Reinke, “An Editable Nonmanifold Bound-
ary Representation,” IEEE CG&A, Vol. 11, No. 2, Mar. 1991, pp. 39-
51

14. RB. Tilove, “Set Membership Classification: A Unified Approach to
Geometric Intersection Problems,” IEEE Trans. Computers, Vol. C-
29, No. 10, Oct. 1980, pp. 874-883.

James R. Miller is an associate professor of
computer science at the University of Kansas.
His research interests are computer graphics
and geometrical modeling for mechanical
CAD/CAM.

Miller received his BS in computer science
from Iowa State University and his MS and
PhD in computer science from Purdue Univer-
sity. He is a member of ACM Siggraph.

Miller can be reached at the University of Kansas, Dept. of Com-
puter Science, 415 Snow Hall, Lawrence, KS 66045-2192.

IEEE Computer Graphics & Applications

