
An n-dimensional space, where n is larger
than 3, naturally describes many inter-

esting phenomena studied by scientists and mathe-
maticians. Exploiting visualization to understand these
systems’ structure is an active area of research. In this
article, we describe a new method for visualizing data
structure or models defined in higher-dimensional

spaces. This technique is suitable for
applications in which a scalar func-
tion, defined mathematically or
procedurally, depends on n vari-
ables or parameters. Scientists must
understand this function’s struc-
ture, or procedural model, thereby
gaining insight into the underlying
physical or mathematical system.
The function’s values essentially
describe a set of points in n-dimen-
sional space. To visualize these sets,
we fix all but three of the parame-
ters and then sample the resulting
4D set (the three parameters and
the function’s resulting value) on
several discrete grids located on
planes in the 3D space. We compose
the image by using color to repre-
sent the fourth dimension (the
function’s value) at discrete loca-
tions on these grids. Interactive con-

trol over the way the parameters are fixed results in a
highly dynamic system that researchers can easily use
to explore the n-dimensional space’s structure.

An alternative approach would be to fix all but two
parameters and then display a simple surface in 3D.
However, for the data sets of interest to us, fixing all but
three works better for two main reasons. First, the sur-
faces we encounter are by no means simple. They tend
to be highly irregular—even chaotic; hence, some sort
of discrete sampling is necessary anyway. Second, the
model definitions are continuous throughout the n-
dimensional space (and hence continuous throughout
all lower-dimensional subsets). A 3D surface represen-

tation doesn’t convey this situation nearly as well as our
room, which can give the impression of a solid block of
material carved out of the surrounding area.

The current prototype of our immersive visualization
probe (IVP) uses two dynamically linked types of navi-
gational control. First, the user manipulates visual rep-
resentations of a set of embedded coordinate systems
to define how to fix the values of the n – 4 variables.
(This navigational tool’s design was inspired by the n-
Vision system that Feiner and Beshers described.1,2)
Once the user establishes values for the variables, we
employ a set of discrete sampling grids to view the result-
ing 4D data subset. Hence, with the second type of con-
trol, we give the user the illusion of being inside a room,
where the walls define the locations of the discrete grids.
By studying the wall displays, the user can determine
potentially interesting directions to explore in the space
and then move the room (and hence the discrete sam-
pling grids) in that direction.

An important design constraint was the need to be
able to explore these multidimensional data sets in real
time. It’s important to let users control model parame-
ters and other data selection operations with an inter-
active device, while the resulting visualization changes
continuously in response. This goal was a primary con-
sideration when designing the type of visualization as
well as the interactive viewing and data set traversal
operations supported.

This work demonstrates that the IVP probe is effec-
tive for displaying continuous 4D subsets of n-dimen-
sional data, shows how users can interactively adjust
the hyperplanes to slice down through several dimen-
sions, and illustrates how the combination of an embed-
ded coordinate system and the resulting 4D slice
representation contributes to an understanding of the
underlying physical or mathematical process involved.
For both computational and visual reasons, we chose
sampling on a set of planes rather than a volumetric dis-
play for the final 4D slice. Computation times for volu-
metric displays were orders of magnitude beyond what
was needed to achieve interactive exploration, and the
resulting displays were difficult to comprehend.
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We use two different systems to illustrate the use of
our method. First, we study the filled-in Julia set in two
complex variables. We can view this set as a 9D object
that defines an escape rate as a function of eight para-
meters. Next, we visualize the stability of orbital trajec-
tories of satellites launched between two planetary
objects. We use a simple model, essentially a 10D object
in which the satellite’s trajectory fits into one of several
categories. The assignment is based on the values of
nine parameters describing such quantities as the satel-
lite’s initial position and velocity and the planetary
objects’ masses. We model the former using an explicit
closed-form iterated function system, and we describe
the latter using a numerical simulation.

The only operation that the IVP requires internally to
support a specific model or data set is the ability to com-
pute a functional value for a point in an n-dimensional
space. The IVP engine then maps this value to a color
through a user-defined function mapping to encode the
fourth dimension. The “Related Work” sidebar com-
pares our approach to other recent approaches.

System architecture and operation
We developed the IVP in C++ using OpenGL. We ini-

tially developed a single-threaded prototype version dis-
playing only the IVP’s interior on a Windows-based PC.

Our current production IVP is multithreaded and employs
the embedded coordinate-system display and manipula-
tion mechanisms. This version runs an SGI workstation,
and it is the version we used to produce the images in this
article. In addition to conventional workstations in the
lab, the system was particularly effective in the Collabo-
rative Visualization Room (CVR) at the University of
Kansas. This room houses a (25 × 6)-foot, wall-sized dis-
play, driven by three overhead projectors; and a six-
processor SGI Origin 2000 server, with three pipes and
InfiniteReality2 graphics. Not surprisingly, this environ-
ment provided the most effective sense of immersion.

We divided the work of generating the wall textures
across an arbitrary number of threads. Running in the
CVR on the Origin server, we typically allocated one
thread per wall and achieved the ability to move coor-
dinate systems, watching the texture on the wall change
continuously (although we had to move a coordinate
system somewhat slowly for the Origin to keep up).

We used two different strategies to improve interac-
tivity. While dragging a selected coordinate system, we
generated low-resolution wall textures so that the
response was relatively fast, thereby letting us move
more rapidly through the space. When an input manip-
ulation ended, we regenerated the wall textures at the
higher resolution.
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Related Work
Viewing n-dimensional data requires performing a series

of slices or projections to arrive at a 3D set that is viewable
through traditional schemes. Taking successive slices
involves fixing the values of corresponding independent
variables. A more information-rich 3D display is possible by
preserving a visual representation of the slices performed.
Feiner and Beshers first introduced the notion of using
embedded coordinate systems for this purpose.1,2 In their n-
Vision system, they place coordinate system β at some point
(a, b, c) in coordinate system α. This placement signifies
that the three independent variables corresponding to the
axes in α are fixed at a, b, and c. If the resulting data set’s
dimension is no greater than 3, it can be directly displayed.
Otherwise, the nesting of coordinate systems can be
repeated—for example, coordinate system γ is placed at (d,
e, f) in β, and so forth—until such a displayable data set is
obtained. The visual display of the various nested
coordinate systems then illustrates which independent
variables were fixed and the values to which they were set
to arrive at the final displayed slice. The first stage of our
visualization scheme stems from this approach.

Another interesting scheme for visualizing high-
dimensional data and the effects of various fixed
independent variables employs the display of hierarchically
nested axes.3 This scheme samples an independent
variable’s successive values across a fixed range. For each
sampled value, the scheme analogously samples another
independent variable. The scheme scales down the axis
displays and stacks them to make the relationship between
the independent variables visually apparent. This approach
seems best suited for functions having fairly smooth

derivatives. For models and data sets, such as ours, that are
not smooth, the approach described in the previous
paragraph seems better.

After fixing sufficient independent variables to obtain a
data set that is displayable using three spatial dimensions
and color, we need a visualization tool to make this data set
viewable. In our applications, this set has a complex
structure, and is in fact frequently a fractal or an object with
a chaotic boundary. There has been considerable research
regarding the display of such objects.

Norton introduced the notion of boundary tracking for
fractal surfaces.4 The approach rests on the ability to classify
points as being inside or outside of a fractal; the decision
depends on an escape-time characterization similar to that
described in our Henon map example in the main text.
Norton defines a regular 3D grid and classifies the points in
the grid. A point is a boundary point if it is in the interior of
the fractal and has at least one neighbor in the grid that is
outside the fractal. His algorithm then shades each point
using a z-buffer algorithm from the viewpoint of an
assumed light source, and then renders the points directly
into the frame buffer using again a z-buffer algorithm, this
time from the viewpoint of an assumed observer. The
boundary-tracking process begins with one or more seed
points determined to be on the boundary. This method uses
grid adjacency information to traverse the space, looking
for adjacent boundary points. To ensure that the algorithm
eventually terminates, it’s necessary to keep track of all
boundary points previously discovered, leading to large
storage requirements for reasonably sized grids.

Researchers have examined variations to this approach.
continued on p. 78



We also developed a distributed version of the system
that uses another SGI Origin 2000 with 64 processors.
The main visualization runs in the CVR and uses sockets
and the common object request broker architecture
(Corba) to communicate with a computation server run-
ning on the remote Origin 2000. When running on this
server, the program is highly multithreaded and can feed
the display engine in the CVR at far higher frame rates.3

Using the IVP-based system
Navigating and visualizing n-dimensional data sets

using our IVP-based system involves three interrelated
steps: 

1. specifying and visualizing the n – 4 slices taken
through the original n-dimensional data set to
obtain a displayable 4D subset,

2. visualizing the 4D subset obtained, and
3. interactively exploring the n-dimensional set

through subsequent interactive adjustments of the
slicing planes.

Our primary focus here is to illustrate how to view 4D
data sets with complex structures using our IVP probe
and auxiliary display tools (step 2), and how to trans-
form Feiner and Beshers’ nested-coordinate-system visu-
alization technique into an interactive exploratory tool to
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For example, Wyvill et al. generate a polygonal
approximation instead of simply projecting points.5 This
makes conceptually easier the computation of surface
normal approximations and avoids the need to project
individual points onto several pixels as in Norton’s method.
Zahlten employs a chain-of-cubes algorithm while
generating a surface polygonal approximation.6 An
important contribution of this approach is that it requires
less storage than Norton’s boundary-tracking algorithm.

Others have used ray tracing to render fractals. In any
ray-tracing algorithm, the ray-surface intersection operation
is the performance bottleneck. Using so-called unbounding
volumes,7 Hart et al. describe an efficient ray-fractal
intersection algorithm that produces high-quality images
fairly quickly. Because ray tracing produces a frame buffer
image, storage requirements are negligible in their
approach, thereby overcoming a major problem with
algorithms based on boundary tracking. We’ve
experimented with ray tracing and other visualization
approaches for the Henon map as well.8,9

We can roughly characterize the tradeoffs in the two
major rendering schemes as follows. Boundary-based
algorithms create an approximate boundary at a given
resolution and after a nontrivial (and noninteractive)
consumption of time and storage resources. Users can then
rotate and view this boundary representation at interactive
rates on conventional graphics workstations. Thus,
although users can dynamically rotate the resulting fractal
image, the major difficulties are storage requirements and
the inability to see additional detail when zooming.

By contrast, ray-tracing algorithms use negligible storage
and generate detail adequate for a given field of view.
However, they require considerable computation (even one
like that described by Hart et al.,7 which is reasonably fast
by ray-tracing standards); hence, they aren’t suitable for the
real-time explorations we hope to facilitate.

We’re attempting to bridge the detail/interactivity chasm
by providing high resolution in certain areas and low
resolution in others, and by trying to optimize the
generation to get as close to interactive rates as possible for
the entire process. The problem is that fractal boundaries
have infinite detail, and any approximation by geometric
primitives whose projection covers more than one pixel risks
making the image appear smoother than the surface
actually is. Such inappropriate smoothness can also stem

from the use of normal vectors in lighting models if the
computation and use of the normal vectors is either too
simplistic or involves artificial Gouraud-like shading
interpolation. We don’t attempt to shade the function
surfaces themselves, but rather just the planes on which the
sampling grids are defined.

But, clearly, it isn’t possible to render the entire surface at
pixel resolution and achieve real-time rendering speeds, let
alone analyze every point in a volumetric region at a
comparable pixel-sized resolution. Our approach is based
on the premise that we can render at high resolutions in
some areas and provide low-resolution visual cues in
between the areas of high resolution. By structuring the
placement of high-resolution data into a familiar 3D shape,
we can produce visualizations that provide an alternative
way to understand complex model structure.
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allow real-time generation of these
4D subsets of an n-dimensional data
set (step 3).

Initially specifying and
displaying a 4D subset

Several parameters determine
the characteristics of the systems
we’re studying. Viewing these para-
meters as positions on the axes of an
n-dimensional coordinate frame
means specifying a value for each
determines a slicing plane perpen-
dicular to the axis at the given point.
As we employ the concept of Feiner
and Beshers’ nested coordinate sys-
tems to visualize the exact sequence
of slicing operations performed, we
can use each nested coordinate sys-
tem to fix one, two, or three para-
meters. Specifically, the position at
which the ith coordinate system (i ≥ 1) goes inside the
(i – 1)th coordinate system illustrates the one, two, or
three parameter values fixed by that placement,
depending on the dimensionality of the (i – 1)th coor-
dinate system.

In our first example (visualizing a 9D fractal), it’s con-
venient to use a coordinate system to fix each of two inde-
pendent parameter pairs. A third nested system then
fixes a fifth parameter, giving the 4D slice for display. In
Figure 1a, the green coordinate system is the base (0th)
system, inside of which we place the blue axis system.
The two coordinates corresponding to the position of the
blue origin with respect to the green system fix the first
two parameters. The position of the single brown axis
with respect to the blue axes fixes another pair of para-
meters. Finally, the position of the red coordinate system
along the brown axis fixes a fifth parameter, giving a 4D
slice, a portion of which is visible in Figure 1b. Imagine
the cube in Figure 1b as carved out of solid fractal mate-
rial defined continuously throughout the space described
by the final red coordinate system.

Our system employs a simple configuration file to
specify how parameters are mapped to axes, initial val-
ues for n – 4 parameters, and the subset of the final coor-
dinate system to be displayed (for example, the blue
textured cube of Figure 1b). A general CoordinateSys-
tem object, defined as an affine point and three linear-
ly independent vectors, represents each nested
coordinate system. The system assigns a Coordi-

nateSystemRenderer object to each CoordinateSystem
object to maintain information such as which axes are in
use and hence are to be drawn. Allowing each nested
coordinate system to fix one, two, or three independent
variables lets the user ensure that the display of the nest-
ed coordinate systems—and thus the presentation of
the navigational tools discussed later—matches well
with the specifics of the data set under study.

The orientations of the various coordinate systems
relative to one another are irrelevant. The only signifi-
cant fact is that the origin of each remains fixed at the
proper point in the containing coordinate system. For
all but the final 4D slice to be displayed, this fact isn’t
relevant. However, it’s useful for interactively rotating
the 4D slice to view it from all sides. The IVP interaction
tools permit either rotating (and zooming) the entire
set of nested coordinate systems as a unit or, as illus-
trated in Figure 1c, rotating just the 4D slice while keep-
ing the display of the other systems fixed.

Displaying the 4D subset using the IVP
We originally imagined the IVP as a room with glass

walls where we could fly through a 4D space, much like
being in a glass-bottom boat observing fish and other
underwater life (see Figure 2).4 As we fly through the
space, we can shrink or expand the room. As the room
moves or changes size and shape, the system computes,
at high resolution, 2D slices of our original n-dimen-
sional data set corresponding to the walls, ceiling, and
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floor and places them as texture maps onto the corre-
sponding polygons in real time.

Of course, the model definitions are continuous
throughout this space; hence, an alternative display
technique would be to use a volumetric rendering strat-
egy. However, doing so would completely sacrifice inter-
activity for obtaining sufficient detail to adequately
convey the structure. Our goal from the start was to
develop a tool that allowed interactive exploration of
high-dimensional spaces, so we realized we needed an
alternative. After some experimentation, we discovered
that an effective technique was to display very high res-
olution in some areas (on polygons corresponding to
our room’s walls) and nothing in between. This
approach let us interactively adjust the slicing parame-
ters—as well as the room’s size, shape, and position—
and see the results immediately.

Although displaying high-resolution data on the walls
conveys complex structure well, visualizing how struc-
ture on one wall transforms into structure on adjacent
walls can be difficult. We discovered a relatively fast way
to address this issue by generating and displaying low-
resolution point clouds inside the room. This approach
partly affected our ability to keep displays current dur-
ing parameter changes, but the additional data often
significantly improved the clarity of the data set’s struc-
ture in the room’s interior. The resulting displays fre-
quently clarified how major features on one wall connect
to features on other walls. A fairly small number of such
points often suffices.

Figure 3a illustrates the interior of a room without
this point cloud; Figure 3b shows the same room con-
taining a cloud of points. Notice how the point cloud
reveals how the structure represented by the four major
white spots on the far wall connect to that represented
by the two white spots on the floor. The effect resembles
a waterfall. Exactly how (or even if) these pieces con-
nect is unclear without the benefit of this point cloud.

Interactively exploring a data set
The primary means of interactive exploration is to

interactively drag the embedded coordinate systems of
Figure 1. As the user clicks and drags a coordinate sys-
tem, the selected system (and all others nested inside
it) move. Because the dragged system’s position with

respect to its parent system fixes one, two, or three para-
meters, the IVP continuously updates these parameter
values and regenerates the resulting images on the walls
(as well as any other auxiliary display, such as point
clouds).

Some of the more complex data sets for which we’ve
used the IVP require so much computation that keeping
up with a dragged coordinate system isn’t always pos-
sible. We adopted two approaches to address this prob-
lem. The first was to let the user specify how hard the
system should try to keep images current. We adopted
a three-state image regeneration model for this purpose.
In decreasing order of CPU intensity, these three states
are as follows:

� Users can require that the 4D slice remain continu-
ously current as they drag the coordinate system. The
system spawns several threads (at least one per wall)
and assigns each thread a specific area of a wall to
recompute. The threads run continuously, updating
the display of the slice as often as possible. The sys-
tem periodically synchronizes the threads to simul-
taneously update the display of all walls.

� Users can tell the system to update the 4D slice’s dis-
play at the end of each coordinate-system manipula-
tion. In this case, the system continuously updates the
coordinate systems’ display and any simple related
displays as the user drags the coordinate system, but
the system doesn’t recompute the 4D slice itself until
the manipulation ends (for example, until the user
releases a mouse button).

� Users can tell the system not to update the 4D slice
until they specifically request it. This mode is most
useful when users wish to change a series of parame-
ter settings and the intervening displays aren’t of par-
ticular interest.

Our second approach involves sending the computa-
tion to a larger server and then retrieving the remotely
computed texture data. This approach uses Corba to
communicate between our display system and the
remote supercomputer. We discussed additional
specifics of this technique in the “System architecture
and operation” section. By tapping the availability of
faster processors on the remote server, we can provide
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far higher frame rates for interactive coordinate-system
manipulations.

The user can also interactively vary the parameters
by directly entering them in response to system prompts,
although of course this is not as demanding computa-
tionally. This approach is not exciting from a graphics
and computational perspective, but it does prove useful
for quickly reaching specific areas of the data set known
to be of interest.

Visualizing fractals in higher dimensions
Our first example illustrates the use of our system in

the study of fractals and their parameters. Specifically,
we consider the so-called filled-in Julia set in two com-
plex dimensions. The basic Julia set is a set of complex
numbers that depends on one complex parameter. Visu-
alizing this set has led to amazing images and many new
theoretical developments. The filled-in Julia set is
defined by quadratic polynomial Pc(z) = z2 + c, where
z and c are complex numbers. It is the set of all points in
the complex plane such that the n-fold application of
function Pc(z) to an initial point, z, doesn’t go to infini-
ty. Specifically, if the initial point is z0, then z1 = Pc(z0)
= z0

2 + c, and zn = Pc(zn−1). The initial point z0 is in the
filled-in Julia set if zn doesn’t become arbitrarily large
when n is arbitrarily large. We can generate images of
this set as simple raster images in which each pixel cor-
responds to a point z and is assigned a color according
to how fast the corresponding zn approaches infinity. A
common way of visualizing this mapping and its
dependency on the parameters is with side-by-side win-
dows—one representing parameter space c, another
representing the resulting raster image. Because users
can dynamically adjust the values of the parameters dis-
played in the one window, they can then watch as the
other window displays the corresponding Julia set.

Hence, such a visualization approach lets us study
three important related concepts:

� the filled-in Julia set’s geometry,
� the geometry of the sets in the parameter space, and
� the relationship between the parameters and the

dynamic space represented by the filled-in Julia set.

We can generalize the Julia set to higher dimensions
in two basic ways. One is by considering the set to be
defined on the field of the quaternions,5 and the other
is through the Henon map.6 The latter appears in the
study of dynamic systems and chaos theory. It’s one of
the simplest maps that allows modeling of complicated
chaotic behavior, and researchers have used it exten-
sively in experimental simulations.7,8 In addition, study-
ing the properties of the complex Henon map has
recently attained important theoretical interest.9,10

The Henon map is defined by the ordered pair 
(Pc(z) + dw, dz), where z, w, c, and d are complex num-
bers. If d is 0, this becomes (Pc(z), 0), the simple initial
example just described. We can view the filled-in Julia
set as a 9D data set. Specifically, the functional mapping
depends on two complex constants (c and d) and two
complex spatial variables (z and w), for a total of eight
real variables. (Each of c, d, z, and w has both a real and

an imaginary component.) We then compute an escape
rate, m, based on these eight values as a measure of how
fast an initial point escapes to infinity under this map-
ping. We can generate this generalized filled-in Julia set
similarly to the way we described the Julia set earlier.
Our starting point is now a pair of complex numbers,
(z0, w0). The n-fold application of Pc then yields (zn, wn).
The original pair of complex numbers, (z0, w0), is in the
filled-in Julia set if (zn, wn) doesn’t grow arbitrarily large
when n is large.

Initially specifying and displaying a 4D subset
for the Julia set

To visualize the Julia set in two complex variables, we
first need to fix the two complex parameters (four real
coordinates). Because case d = (0, 0) corresponds to the
one-variable filled-in Julia set, we’ve found it most use-
ful to specify its value first to allow easy comparisons
with d = (0, 0). Therefore, we use a 2D coordinate sys-
tem (the green axes of Figure 1) to fix the real and imag-
inary components of complex parameter d. (Placing the
origin of the blue coordinate system at a specific loca-
tion within the green one specifies the value of d.) Once
we’ve determined d in this manner, we use the now-fixed
blue coordinate system to fix the value of complex para-
meter c by placing the brown axis at a specific location
inside of it. Fixing c and d determines a specific Julia set
mapping. Those values are then constant throughout
the application of the map.

Fixing the values of c and d reduces our original prob-
lem from nine to five dimensions. We use the third 1D
coordinate system (the brown axis of Figure 1) to fix one
more parameter by placing the origin of the red coordi-
nate system of Figure 1 along the brown axis. (We gen-
erally choose the imaginary component, wim, of w to be
fixed in this manner.) This leaves us with a 4D data set,
which we can view using color on the walls of the IVP.

Figure 1 illustrates the coordinate-system place-
ments corresponding to d = (0.41017, 0.267917), 
c = (–1.02003, 0.123774), and wim = 0.0247274. The
green axes and the yellow plane represent the d coordi-
nate system; the blue axes and the cyan plane represent
the c coordinate system. The single brown axis represents
the coordinate system used to fix wim. Finally, the red axes
themselves represent the coordinate system of the data’s
3D slice in which color encodes the fourth dimension.

Displaying the 4D subset using the IVP
The IVP displays the three remaining coordinates for

ranges of the variables, using a 3D ramp in which color
denotes the escape rate. Particularly useful is the loca-
tion of the z-plane in the horizontal position. This z-
plane 2D slice corresponds to the one-variable Julia set,
which is now even clearer because the IVP permits easy
visualization of it in the context of its higher-dimen-
sional structure. That is, the third dimension and the
immersive display convey how the higher dimensions
relate to the 2D slice’s structure.

Interactively exploring the Julia set
In addition to seeing how the higher-dimensional

structure relates to the familiar 2D Julia set, we can
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interactively explore how the filled-in Julia set changes
with parameter changes. In particular, starting with d
= (0, 0) and moving in different directions in the d-
plane, we can see how the geometric characteristics of
higher-dimensional sets appear. For d = (0, 0), the filled-
in Julia set is an infinite cylinder with a wall with dif-
ferent shapes and a section that corresponds to the
one-variable set. As soon as we change the value of d,
the set becomes an infinite tree with infinite branches,
as Figure 4a shows. This tree trunk’s size decreases as d
gets farther from (0, 0) until it loses all the tree struc-
ture, and the set becomes intricate, as Figure 4b shows.

Other visualization approaches
We can use other approaches to visualize complex sets

such as the filled-in Julia set. We’ve experimented with
some of these alternatives, but because of their limita-
tions, we decided not to use them. Here we briefly review
our experiences and the difficulties we encountered.

Ray tracing. We used a locally modified version of
the Persistence of Vision Ray Tracer (POV-Ray) to visu-
alize this data set.11 For some values of parameters c and
d, obtaining useful high-quality pictures (as in Figure
4a) was relatively simple. The filled-in Julia set’s bound-
ary appeared to be well behaved, so a ray-traced image
with its use of surface normal vector approximations
didn’t produce an artificially smooth image. However,
for most c and d values, ray tracing wasn’t very useful.
Because the boundary of most data sets is quite chaot-
ic, ray-traced images such as those in Figure 4b, while
perhaps more visually appealing, don’t reliably present

the fractal’s structure. First, the sam-
pling inherent in ray tracing is far
less reliable for such objects. Sec-
ond, using approximated normal
vectors to support the lighting
model can actually hinder attempts
to understand the object’s structure
by making it appear far smoother
than it actually is.

Volume rendering and blend-

ed transparency. We also experi-
mented with visualizing the set
using volume rendering and blended
transparency in IRIS Explorer.12 We
found transparency to be a useful
visualization technique, especially
for presenting detailed structure in
static images. However, we encoun-
tered problems while investigating
the tradeoffs between generating
lots of points (thus achieving better
visualizations) and maintaining
interactive responses to dynamic
rotations. Specifically, when we kept
the data set sufficiently small so that
interactive 3D viewing manipula-
tions were reasonably responsive,
there was no longer sufficient detail
to visualize the data set’s structure.

Table 1 presents a coarse quantification of this problem.
Along with Figure 5, it illustrates the tradeoffs we
observed, ranging from good interactive response but
poor visualization to poor interactive response but good
visualization. Our goal in this work was to develop a tech-
nique that would provide good interactive response and
high resolution imagery, at least in select regions.

Immersive parameter space paradigm
While the IVP itself is quite general in terms of how

to define and use coordinate systems, it’s sometimes use-
ful to overlay additional information specific to the sys-
tem under study. Our implementation lets users add
such additional problem-specific information to the oth-
erwise problem-independent coordinate-system dis-
play. Here we describe how we’ve used this functionality
in the filled-in Julia set example.

In the study of Julia sets, it’s essential to understand
the system’s dependence on the fixed complex parame-
ters (c and d). A dynamic system can be stable for some
parameter values but chaotic for others. The interesting
set to study in parameter space is the one analogous to
the Mandelbrot set for a single complex variable. We
don’t include this set in our model because it’s compu-
tationally intensive in two complex dimensions. Instead,
we include two curves (C1 and C2) that define the main
regions in parameter space. Fornaess and Gavosto pro-
vide technical definitions and derivations of the closed-
form expressions for these curves.13

The idea is that when c is in the interior of one of these
boundary curves, the dynamics are fairly stable. By con-
trast, when c is on or close to the boundary curves, the
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4 (a) Smooth
object. 
(b) Object with
a chaotic
boundary.

5 Visualizing a
set using vol-
ume rendering
and transparen-
cy: (a) 128,731
points; 
(b) 224,618
points; and 
(c) 463,442
points.

(a) (b)

(a) (b) (c)



dynamics are far less stable. Figure 6 displays these
curves for d = (0.41017, 0.267917). (We suppressed the
display of the 3D slice coordinate system for clarity.) We
produced the image in Figure 6 using the same para-
meter settings illustrated in Figure 1: c = (–1.02003,
0.123774). The object in Figure 7 is an example with c
fixed on one of the curves. The object in Figure 8 has c
close to, but just outside, both boundary curves.

Visualizing the stability of satellite orbits
Our second example involves the study of paths that

satellites follow when launched between two neigh-
boring planetary bodies. The original motivation for
this research was to study the paths that satellites would
take when launched somewhere between the earth and
the moon.14 Such satellites would travel in reasonable
orbits for a while and deliver useful information. Even-
tually, however, their trajectories would become more
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Table 1. Visualization quality and interactive response based on the number of points observed for
visualization using volume rendering and transparency.

Figure Number of Points Visualization Quality Interactive Response

5a 128,731 Poor Good
5b 224,618 Fair Adequate
5c 463,442 Good Poor

6 Boundary curves for the slice depicted in Figures 1
and 2.

(a) (b) (c)

7  (a) View inside the IVP for c on the boundary curves in Figure 6. (b) Coordinate-system view. (c) Same as (b), but with the wall
displays off.

(a) (b)

8 (a) View inside the IVP for a value of c just outside the boundary curve. (b) Coordinate-system view.



erratic, and they would escape the gravitational attrac-
tion of the two bodies and fly away. Moreover, depend-
ing on such quantities as their starting position and
their velocity, the paths taken before escaping could be
quite erratic.

Some of the important goals of Andrade’s work were
to illustrate the inherent chaotic behavior of such a satel-
lite system and to provide guidance for deciding where
and how to launch multiple satellites between the earth
and the moon that wouldn’t collide with one another.
The particular model we illustrate corresponds to a clas-
sical three-body restricted problem, in which one mass
(the earth) is far heavier than the other (the moon).14

Andrade’s model performed the computations in the
vicinity of one of the unstable equilibrium points. The
parameters assigned to the coordinate-system axis con-
trols are the

� masses of the two planetary bodies,
� coordinates of the satellite’s initial position,
� satellite’s initial velocity,
� angular frequency, and
� time interval considered.

We use one of Andrade’s algorithms, which simulates
a satellite’s path. The current version tracks the path in
the plane determined by the two bodies and the satellite.
When the satellite eventually escapes, the algorithm
records the quadrant into which it escapes. We use the
three spatial dimensions to encode the satellite’s initial x
and y location and the frequency. As in the filled-in Julia
set example, the IVP once again uses color to encode the
fourth dimension—in this case, the quadrant into which
the satellite eventually escapes. The nearby starting
points in Figure 9 have different colors, forming a com-
plicated pattern. Satellites launched close to one anoth-
er eventually escape into different quadrants. The IVP
uses red, yellow, blue, and black to encode the quadrants
into which the satellite escapes. This simulation and visu-
alization illustrates that the satellite’s basins of attraction
are fractals, and it highlights the inherent uncertainty
about the final destination of a satellite launched at a par-
ticular location with a given initial velocity. (A basin of
attraction is the set of points that, under the mapping of

the current model, will map to a particular point called
an attractor. In simple systems, such basins would be rel-
atively large homogeneous areas. In cases such as this,
the basins are complex fractals.) An additional useful
related visualization would be to color our space accord-
ing to how long it takes the satellite to escape from a
region around the starting point.

Figure 9 illustrates this satellite system’s inherent
chaotic behavior. Indeed, if we zoomed in on various
areas, including those exhibiting solid color in Figure 9,
we would see more fractal boundaries emerging. These
images let us visualize, and thus better understand, this
known chaotic behavior.

Future work
Our goal in designing the IVP was to develop a tool

capable of real-time exploration of multidimensional data
sets. Both the Henon map example and the satellite
motion example revealed the elaborate structure that
users could effectively visualize on the IVP’s walls. We
plan to direct part of our future work toward increasing
system performance. That is, we wish to further optimize
distributed processing using highly parallel multiproces-
sor systems to effectively eliminate delays during inter-
active parameter adjustment. We also hope to build more
interactive configuration tools so that users can more
readily assign parameters to axes as well as modify those
assignments during interactive sessions. Finally, we’d like
to develop tools that, within certain well-defined limits,
will let a user define a new system to the IVP interactive-
ly without having to write C++ code. �
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9 (a) Four-color
display of the
satellite motion
model. (b)
Same as (a), but
from the other
side of the cube
slice.

(a) (b)
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