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Quadric surfaces occur frequently in the design of discrete piece parts in mechanical CAD/CAM. 
Solid modeling systems based on quadric surfaces must be able to represent intersection curves 
parametrically and in a fashion that allows the underlying surfaces to be partitioned. An algebraic 
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solutions to fourth-degree polynomial equations. In this paper we develop geometric approaches that 
are robust and efficient, and do not require solutions to polynomials of degree higher than 2. 
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1. INTRODUCTION 

Quadric surfaces occur frequently in the design of discrete piece parts in me- 
chanical CAD/CAM. Several solid modeling systems are based at least in part 
on them [l, 2, 6, 8, 13, 141. When modeling with any type of surface, it is 
important that the intersection of one surface with another be represented 
efficiently and accurately. In solid modeling, the ability to represent such curves 
parametrically is also critical so that a preferred direction can be established and 
an ordered set of points along the intersection generated. 

When two quadric surfaces intersect, the intersection is either a point or a line 
(if they are tangent) or one or two intersection curve branches. The intersection 
curve branches will be either conic sections (including straight lines) or fourth- 
degree nonplanar space curves. It is certainly straightforward to represent conic 
sections exactly and parametrically. Nonplanar quadric surface intersection 
curves can also be represented exactly and parametrically using a method 
pioneered by Levin [g-11] and further developed by Sarraga [14]. 
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Before these methods are discussed, some background remarks on representa- 
tions are needed. Two primary approaches to the representation of quadric 
surfaces have evolved: an algebraic one and a geometric one [4]. The algebraic 
approach is summarized in Section 2 and is characterized by the representation 
of all quadric surfaces in a single form. A single surface-surface intersection 
algorithm suffices in this approach. The geometric approach contrasts with the 
algebraic one primarily in that surfaces are represented as type-dependent 
combinations of scalars, points, and vectors, and algorithms for surface-surface 
intersections are dependent upon the types of surfaces involved [4, 7,121. 

A number of problems exist with the exclusive use of the algebraic approach. 
These are well documented [4, 7, 151. Indeed, the discovery of these problems in 
practice led to the development and use of the geometric approach. The problems 
relate primarily to a lack of numerical robustness, and we amplify on some of 
them in Section 2 after we have developed some requisite background material. 

Although geometric approaches work well when conic sections arise [5, 121, 
adequate methods based on these approaches when nonplanar intersecton curves 
result have not been described in the literature. Therefore, it has been suggested 
that geometric approaches be used to detect and describe conic sections when 
they arise, and that algebraic ones be used only after it has been determined that 
a nonplanar curve will result [12]. In this paper we describe how geometric 
approaches can be used for nonplanar intersections as well, and we note several 
advantages that arise from using these approaches. 

We consider here only the so-called natural quudrics [7], that is, the sphere, 
cylinder, cone, and plane. These are by far the most commonly occurring quadric 
surfaces used in modeling mechanical objects. The methods described herein can 
be employed with many of the remaining quadrics as well. As we observe later, 
however, some additional techniques will be needed for some of them, and there 
may well come a point at which a purely geometric approach ceases to be practical 
or even possible. 

The work involved in intersecting quadric surfaces consists of the following 
three steps (the second and third are only required if the intersection is non- 
planar): 

-Detect and represent conic sections. 
-Derive the parametric representation of the curve using the parameter space 

of a ruled quadric surface. 
-Determine critical points in parameter space such as where the curve turns on 

itself, intersects itself, or tends to infinity. 

The first step is really optional in the algebraic approach, but it is typically 
performed since these curves are more effectively handled in this fashion [14]. 
As we shall see, the second step is the easiest. Finally, the third step involves 
determining the topology and extent of the intersection curve and is probably 
the most important aspect of ensuring a robust intersection algorithm. 

Section 2 summarizes the salient aspects of the algebraic approach and provides 
important background for the geometric approaches discussed later. Section 3 
introduces the geometric representations with which we shall be dealing, as well 
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as some notation that will be used throughout. The possibilities of hybrid 
approaches are briefly considered (and then dismissed) in Section 4, and the role 
of conic sections are described in Section 5. The heart of the paper is Section 6, 
where the geometric approaches to nonplanar intersection curves are fully devel- 
oped. Section 7 is a summary of the results. 

2. THE ALGEBRAIC APPROACH 

2.1 Representations and Methods 

Any quadric surface can be represented as the set of all points in three- 
dimensional space satisfying the second-degree polynomial equation 

AX’ + By2 + Cz2 + 2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy + 2Jz + K = 0 (1) 

for suitable values of the coefficients A . . . K.SettingA=B=C=-K=land 
D = E = F = G = H = J = 0, for example, defines a unit sphere at the origin. 
The coefficients “numerically encode” the type of the surface, as well as its 
position, orientation, and size. Dresden [3] discusses methods for determining 
the type of a quadric surface given its coefficients. 

Equation (1) is typically written in matrix form as 

P&P’ = 0, (2) 

where 

P = (x7 Y, 2, l), 

(A D F G) 

Q= 
DBEH 

GHJK 

Given any two quadric surfaces represented by their matrices Q, and Q2, we can 
construct a family of quadric surfaces that are linear combinations of the two 
surfaces. This family is called the pencil of the two original surfaces and is 
defined as 

Q = &I - AQz (3) 

for arbitrary real X[3]. For our purposes there are two interesting properties 
related to the pencil. If the surfaces corresponding to Q1 and Qz intersect, then 
each quadric surface in the pencil intersects Q1 and Qz along their curve of 
intersection. (This is easily verified by considering some point P on the intersec- 
tion curve of Q1 and Q2 and showing that it must also be on the quadric surface 
Q defined by (3) for any arbitrary real value X.) The second property of interest 
is that there is at least one ruled surface in the pencil of any two quadrics. 
(A ruled surface is one that can be characterized as a collection of straight lines, 
for example, a cylinder or a cone.) This is not intuitively obvious. For a proof, 
see [9] or [ll]. 

Ruled quadrics are of interest since they are easily parameterized, and one can 
express quadric surface intersection curves exactly and parametrically by using 
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the parameterization scheme for a ruled quadric in the pencil. The two most 
common parameterizations used on the ruled quadric are based on rational 
polynomials [lo, 111 and trigonometric functions [14]. A rational polynomial 
parameterization for a unit cylinder whose axis is the z-axis, for example, is 

W, r) = b(r), y(r), 4s)) = 
( 

1 - r2 
1, *, s 

1 
, 

and a trigonometric parameterization for the same cylinder is 

P(s, t) = (x(t), y(t), z(s)) = (cos(t), sin(t), s). 

Computing polynomials is faster than computing trigonometric functions, and 
it is easier algebraically to locate zeros of polynomial functions. However, the 
polynomial parameter must vary from r = --03 to r = +w to sweep out entire 
circular cross sections. It is therefore common in practice to use two such 
polynomials, each varying the parameter from r = -1 to r = +l and sweeping 
out half of the circular cross section. This makes intersection curve bookkeep- 
ing more complex, however, since artificial breaks in the parameterization are 
introduced. 

A trigonometric parameterization need only vary its parameter from t = --a to 
t = +a to sweep out entire circular cross sections. Moreover, the periodicity of 
trigonometric functions actually simplifies bookkeeping related to calculating 
and storing intersections. On the subject of finding zeros of functions, geometric 
approaches will be possible for most of the situations that we shall encounter. 
When an algebraic approach must be used, there are straightforward mappings 
between the trigonometric and rational polynomial parameters. (For the cylinder 
example, we have r = tan(t/2).) 

Largely in the interests of simplified bookkeeping, trigonometric parameteri- 
zations are used for the geometric schemes developed in this paper. Since we are 
only dealing with the natural quadrics and nonplanar intersections, we need only 
consider the cylinder and cone as parameterization surfaces. The algebraic 
approach deals with these surfaces in canonical position and orientation; they 
are therefore described as [14] 

Cylinder of radius r (Figure 1): 

x = r * cos(t), 

y = r * sin(t), (4) 
z = s. 

Cone with half-angle (Y (Figure 2): 

x = s * tan(a) * cos(t), 

y = s * tan(a) * sin(t), 
z = s. 

(5) 

Intersection curves can be described in terms of the parameterization surface as 

a(t)s2 + b(t)s + c(t) = 0. (6) 

To compute the functions a, b, and c once the parameterization surface has been 
selected, one of the intersecting quadrics is transformed to the local coordinate 
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system defined by the parameterization surface. The ruled surface parameteri- 
zation ((4) or (5)) is then substituted for x, y, and z in the transformed implicit 
equation (1) of the quadric. The resulting equation is then manipulated into the 
form of (6). 

The a, b, and c functions derived in this fashion for the algebraic approach 
are [14] 

Cylinder (from (4) substituted into (1)): 

a = C, 

b(t) = 2Er sin(t) + 2Fr cos(t) + 25, 

c(t) = Ar2 cos2(t) + Br2 sin”(t) + 2Dr2 sin(t) cos(t) 
+ 2Gr cos(t) + 2Hr sin(t) + K. 

Cone (from (5) substituted into (1)): 

a(t) = A tan2(a)cos2(t) + B tan2(a)sin2(t) + C + 20 tan2(a)sin(t)cos(t) 
+ 2E tan(cy + 2F tan(a)cos(t), 

(7) 

b(t) = 2G tan(a)cos(t) + 2H tan(a) + 25, (8) 

c = K. 

Once these functions have been developed, the range(s) of t values on the 
parameterization surface that correspond to points on the intersection curve 
must be determined. These are bounded by critical points on the curve, that is, 
places in the t direction of the parameter space where the intersection curve 
turns back on itself, crosses itself, or goes to infinity. In the algebraic approach, 
these points must be determined by an algebraic analysis of eqs. (7) or (8), which 
seeks values of t for which s tends to infinity or the discriminant (b2 - 4ac) 
vanishes. This leads to a partitioning of parameter space on the basis of the 
solutions to fourth-degree polynomials. 

Once these critical points are determined, one marches along the intersection 
curve by selecting successive values for t between the critical points, substituting 
each value into (7) or (8), determining corresponding values for s by solving the 
quadratic equation (6), and calculating a point on the intersection curve using 
the resultant (s, t) pairs. When substituted into (4) or (5), (s, t) will yield a point 
ACM Transactions on Graphics, Vol. 6, No. 4, October 1987. 



Nonplanar Quadric Surface Intersection Curves l 279 

in the local coordinate system of the ruled quadric, which must then be trans- 
formed back to world coordinates by the inverse of the transformation used 
earlier. 

The form of (6) will be simplified if one or more of a, b, and c is constant or 
identically equal to zero. We have already seen constants arising in (7) and (8). 
Other situations yielding constants will appear in Section 6. If either a or c is 
identically zero, the intersection curve parameterization is linear in s. We shall 
see examples of this later as well. Whether or not any of these simplifications 
occurs depends not only on the relative position and orientation of the intersect- 
ing quadrics, but also on the specific parameterization surface used. As a result, 
some ruled surfaces are better suited as parameterization surfaces than others. 
Levin [lo, 111 outlines an algebraic technique that will find the best such ruled 
quadric in the pencil under many conditions. A natural fallout of the geometric 
techniques we shall examine later is that the best such surface will always be 
determined from a purely geometric analysis. Indeed, in our context it will always 
be one of the two surfaces involved. 

2.2 Problems with the Algebraic Approach to Intersections 

Consider first conic section curves in the Icy-plane. Conic sections can be repre- 
sented algebraically via (1) with z = 0. (Equivalently, they can be represented 
with the 3 x 3 matrix determined by removing the third row and third column 
of Q in (2).) Wilson [15] cites experience with IGES, which has shown that 
algebraic representations of conic curves are extremely sensitive to small pertur- 
bations in the coefficients. This is manifested in two critical ways. First, small 
changes in coefficient values can cause large changes in the locations of points 
satisfying the conic equation. Second, it is often important to be able to determine 
the type of a conic section (circle, ellipse, etc.) from its algebraic coefficients. 
Unfortunately, this determination is numerically unstable because it depends 
critically on whether various functions of the coefficients are precisely zero, 
positive, or negative. Small perturbations in the coefficient values will therefore 
not only induce large changes in the points satisfying the conic equation, but will 
also actually change the type of the conic section. 

Transformations are common operations in modeling systems, which, because 
of their floating-point implementation on a computer, produce the effects of 
perturbations in coefficients. Wilson’s results show a continuing degradation in 
numerical accuracy with each transformation applied. Moreover, tonics that were 
correctly classified according to their type before any transformations were 
applied were often incorrectly classified after the application of transformations. 

Wilson’s results are specifically for tonics, but there is every reason to believe 
that they will be similar for quadrics [15]. The representations and analytical 
approaches are exactly analogous. This is all particularly troublesome in the 
context of doing intersections using the algebraic approach. Aside from the 
normal (and frequent) use of transformations during the course of modeling, 
transformations are an integral part of the intersection operation in the algebraic 
approach. Recall that an intersecting quadric must be transformed into the local 
coordinate system of the parameterization surface before eqs. (7) or (8) and 
corresponding critical points can be determined. Points generated from the 
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application of these equations must then be transformed back to global coordi- 
nates. Worse yet, the parameterization surface type must be determined from 
the algebraic coefficients determined by (3) (again in the context of transforma- 
tions) in order to determine which of (7) or (8) applies. As noted above, this 
determination is numerically unstable. 

Geometric approaches for representing and intersecting quadrics minimize 
these numerical problems. Small changes to the data stored in the geometric 
approach induce correspondingly small changes in the positions of points on the 
surface. Moreover, it is impossible for such perturbations to change the type of 
a surface since, as we shall see in the next section, surface types are stored 
directly and need not be determined by algebraic analyses. We shall also see in 
Section 6 that transformations are never required for any aspect of the intersec- 
tion operation. 

In addition to the numerical problems described above, the selection of reason- 
able tolerances to zero is also quite difficult in the algebraic approach. As a simple 
example, consider the important problem of determining whether a particular 
intersection curve represented by (7) or (8) is linear in s. As we shall see in 
Section 6, C in (7) is related to differences involving squares of cosines. K in (8) 
is related to differences involving squares of distances. Armed only with the 
algebraic equations, however, one would tend to use the same tolerance to zero 
for both. This is a simple example of a more difficult general problem with the 
algebraic approach. It is often necessary to determine when various complex 
expressions involving the algebraic coefficients A . . . K are zero. Determining 
an appropriate tolerance to zero for these expressions is extremely difficult since 
it is generally impossible to relate these expressions to anything spatial. If the 
geometric approach is used, however, these expressions are developed in terms 
of spatial quantities (vectors between points, radii, etc.) for which meaningful 
tolerances to zero are immediately obvious. 

3. GEOMETRIC REPRESENTATIONS 

In the geometric approach, surfaces are defined as a surface type code plus a 
type-dependent combination of scalars, points, and vectors. These parameters 
size, position, and orient the surfaces. The three surfaces of interest in this paper 
are specified as (see Figures 3-5) 

“sphere,” B, r (center, B; radius, r), 
“cylinder,” B, w, r (axis point, B; unit axis vector, w; radius, r), 
“cone,” B, w, a (vertex, B; unit axis vector, w; half-angle, (Y). 

We need additional vectors for the cylinder and cone to support parameterizations 
on those surfaces. These vectors will be identified as u and v. The only require- 
ment on them is that u, v, and w form a mutually perpendicular set of unit 
vectors. These extra vectors can be calculated and stored when needed, in 
particular, they need not be provided as input to the surface-surface intersection 
algorithms. 

We shall follow the basic approach of Levin and use a ruled surface in the 
pencil of the two quadrics being intersected to parameterize the intersection 
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Fig. 3. Sphere centered at B with ra- 
dius r. P represents an arbitrary point 
on the sphere. 

P 
Y 

Ek r IL 
B 

Fig. 4. Cylinder with axis defined by 
point B and unit vector w with radius r. 
u and v are arbitrary unit vectors per- 
pendicular to w and each other. P rep- 
resents an arbitrary point on the surface. 

Fig. 5. Cone with vertex B, unit axis 
vector w, and half-angle (Y. u and v are 
arbitrary unit vectors perpendicular to w 

and each other. P represents an arbitrary 
point on the surface. 

curve. The similarity ends there, however, since we shall use a coordinate-system- 
independent parameterization for the ruled surface and surface-type-dependent 
implicit equations for the other surface (instead of the generic equation (l)), and 
perform purely geometric analyses to determine the intersection curve topology, 
critical points, and various special cases. The a, b, and c functions that will 
result from this process will have obvious geometric interpretations, which will 
be exploited to predict, for example, the situations under which one or more of 
the functions is constant or identically zero. 

Figure 4 illustrates the geometric parameters for a cylindrical parameterization 
surface. Its parametric representation is 

where 

P(s, t) = y(t) + SW, (9) 

y(t) = B + r(cos(t)u + sin(t)v). 

For each t, y(t) is a point on a circle of radius r centered at B with normal W. 

The geometric parameters for a conical parameterization surface are pictured 
in Figure 5. Its parametric representation is 

where 

P(s, t) = B + s(6(t) + w), (10) 

6(t) = tan(a)(cos(t)u + sin(t)v). 

For each t, 6(t) is a vector of length tan(a) perpendicular to the cone axis W. 
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b 

Figure 6 

.* = (P - B) . (P - B), 

b2 = ((P - B) . w)*, 

c2 = u2 - b2. 

b 

Figure 7 

b=(P-B) w +b’=((P-B). w)‘, 

b= )I’-Blcosa*b2=cos2a(P-B) . (P-B). 

With P being used as the variable position, the implicit equations of the three 
surfaces of interest can be written as (see Figures 3-5) 

Sphere: (P - B) . (P - B) - r2 = 0, (11) 
Cylinder: (P-B). (P-B)-((P-B). w)‘-r’=O, (12) 
Cone: ((P-B) * w>2 - cos2(cr)(P - B) . (P - B) = 0, (13) 

Equation (11) simply states that the square of the distance between P and B 
must equal the square of the sphere radius. Equation (12) uses the Pythagorean 
theorem to express that the square of the distance between the point P and the 
line (B, w) must equal the square of the cylinder radius (Figure 6). Finally, 
eq. (13) expresses the requirement that the angle between the vectors (P - B) 
and w must be (Y (Figure 7). 

4. HYBRID APPROACHES 

One could develop a hybrid algebraic/geometric approach. This would take one 
of two forms. The coordinate-system-independent parameterizations of (9) and 
(10) could be substituted into (1) and manipulated into the form of (6). We would 
retain the advantage of handling all quadric surfaces in a unified fashion (there- 
fore minimizing the amount of code required), and we would have eliminated the 
need to transform surfaces into and generate points out of the canonical coordi- 
nate system of the parameterization surface. Unfortunately this yields a, b, and 
c functions, which still cannot be understood geometrically and would therefore 
still require algebraic analyses for critical point determination. It also turns out 
to be more expensive to generate points along the curve when it is represented 
in this manner. Moreover, Wilson’s results [15] indicate that this could be the 
worst choice from a numerical point of view, depending on how curves and 
surfaces were actually stored in the database. 

Alternatively, the canonical coordinate-system parameterizations (4)-(5) could 
be used in the surface-type-dependent implicit equations (ll)-(13). This totally 
sacrifices the objective of common treatment for all quadrics, however, and once 
again requires transformations into and out of the canonical coordinate system. 
Whereas some geometric insight can be gleaned from the resulting a, b, and c 
functions, it is somewhat obscured because of the need to express the equations 
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using the x, y, and z point coordinates and vector components instead of the 
coordinate-system-independent form of (11)~(13). 

Of the four possible approaches (purely algebraic, the two forms of hybrids just 
mentioned, and purely geometric), only the first and last offer benefits outweigh- 
ing their disadvantages. We therefore conclude that neither of the hybrid 
approaches merit further consideration. 

5. DETECTION OF CONIC SECTION AND ISOLATED POINT 
INTERSECTIONS 

Whereas the thrust of this paper is the development of new methods for the 
computation of nonplanar quadric surface intersection curves, some remarks are 
in order relative to the larger environment in which these computations must 
exist. As noted earlier, when quadric surfaces intersect, either conic sections or 
nonplanar curves will result. Conic sections occur quite frequently and should be 
detected and reported as the result whenever possible. There are a variety of 
reasons for this, including the following: 

--It is frequently the case that points and derivatives must be computed along 
quadric surface intersection curves (e.g., for drawing, numerically intersecting 
the curve with another, offsetting during tool path generation). If the actual 
intersection curves are conic sections, these quantities can generally be computed 
faster and more accurately if the curves are directly represented as conic sections. 

-The representation of conic sections is generally more compact than the 
general form of eq. (6). 

-Several graphics devices directly support higher order graphical primitives 
such as circles and ellipses. Communication with these devices can be simplified, 
and common local graphics operations, such as zooming, can be performed with 
more acceptable results if the application knows that it is dealing with conic 
sections. 

-Machine tools often have circular interpolation capability. If portions of a 
pocket in a part have areas of circular cross section, then the N/C machining 
interface can exploit that capability if the underlying modeling system has 
detected that a circular intersection curve resulted from the quadric surface 
intersection operations used to define the geometry of the pocket. 

-These intersections are a critical operation in boundary evaluation in solid 
modelers. It is important during boundary evaluation to detect when two different 
pairs of surfaces have intersected in the same curve. The most frequently 
occurring of such situations involve conic sections. If these curves are detected 
and stored as tonics, this determination can be performed more reliably since 
(1) the type of the curve is directly captured, (2) the representation is not a 
function of the intersecting surfaces, and (3) scalar parameters (e.g., radii) can 
often be copied directly to the generated curve records, thereby minimizing the 
effect of round-off error on subsequent comparisons. 

The system developer is the recipient of another nice side benefit. As we shall 
see, there are many special cases regarding the parametric form of general quadric 
surface intersection curves (e.g., situations in which a and b are both zero, either 
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Table I. Sample Configurations Yielding Conic Sections 

Surface 
combination 

Cylinder-sphere 

Geometric configuration 

Sphere center on cylinder axis; identical radii 

Sphere center on cylinder axis; 
Sphere radius > cylinder radius 

DCA” = sum of radii OR 
DCA = cylinder-radius - sphere-radius (radii 

not identical) 

Resulting conic section 
and/or point 

Tangent circle 

Two-circle intersection 

Tangent point 

Cylinder-cylinder Axes parallel; 
DBAb = sum of radii OR 

Tangent line 

DBA = max radius - min radius 

Axes parallel; Two-line intersection 
max radius - min radius < DBA < sum of radii 

Axes intersect; identical radii (Figure 8) Two-ellipse intersection 

Cylinder-cone Axes identical 

Angle between axes = cone angle: vertex on 
cylinder (Figure 9) 

Two-circle intersection’ 

Ellipse and tangent line 

Axes intersect; a pair of rulings on each is 
tangent to the other (Figure 10) 

Two-ellipse intersection 

Cone-sphere Sphere center on cone axis; Two-circle intersection’ 
Distance sphere center to vertex < sphere radius 

Sphere center on cone axis; Two-circle intersectioni 
Sphere radius < distance sphere center to vertex 

< sphere radius/sin(cone angle) 

Cone-cone Axes identical; half-angles different 
Shared tangential ruling 

’ DCA = distance between sphere center and cylinder axis. 
b DBA = distance between axes. 

Two circles 
Ellipse and tangent line 

’ One on each half of the double cone. 
d Both on the same half of the double cone. 

identically or for a specific value of t). Most of these special cases arise in 
conjunction with intersections involving conic section curves. If conic sections 
were simply represented as any other quadric surface intersection curve, the code 
generating points along the curve would have to be much more complex in order 
to detect and handle each of these special cases adequately. 

Several situations in which spheres, cylinders, and cones intersect in conic 
sections or isolated points are given in Table I. Some of the configurations are 
illustrated in Figures B-10. Table I is not complete; it is simply an attempt to 
illustrate some of the ways in which tonics can appear. Conies arise in quadric 
surface intersections under a wide variety of conditions, many of which are by 
no means obvious. A complete characterization of when they do arise and 
algorithms for computing them are described in [5], where the algebraic approach 
is exploited as an analytical tool to determine when planes arise in the pencil of 
two intersecting quadrics. 
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Fig. 8. Cylinder/cylinder =+ two ellipses. 

Fig. 9. Cone/cylinder + ellipse + line. Fig. 10. Cone/cylinder =+ two 
ellipses. 

6. GEOMETRIC APPROACHES TO QUADRIC SURFACE INTERSECTION 
CURVE ANALYSIS 

In this section we develop geometric techniques for handling intersections 
involving cylinders, spheres, and cones. Section 6.1 deals with the cylinder 
as a parameterization surface, and Section 6.2 considers the cone. When a cone 
and a cylinder are being intersected, either surface may be used as the parame- 
terization surface. As we shall see, the preferred choice depends on the specific 
cone and cylinder involved. We therefore address cone-cylinder intersections 
separately in Section 6.3. (We need not consider the plane as a parameterization 
surface since the only situations in which it can be used yield conic sections, 
which are separately detected as described in Section 5.) 

For each of the possible pairs of surfaces, our analysis will proceed as follows. 
We begin by substituting the parametric form of the parameterization surface as 
presented in (9) and (10) into the implicit equat;ons for the other surface (ll)- 
(13). We then manipulate the resulting equation until it is in the form of (6). 
The resulting functions a, b, and c will have obvious geometric interpretations. 
For now we note the following: 

-a basically depends on the relative orientations of the intersecting quadrics. 
Since spheres have no orientation, they will never influence the form of a. 
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-b will always be written as b(t) = 2b’ . X(t), where X(t) is a vector 
(identically the cylinder axis for cylinder-sphere intersections) and b’ is a 
constant vector that is normal to the surface not being used as the parameteri- 
zation surface, at least in some geometric configurations. It is often a normal in 
all but degenerate configurations. For this reason zeros of b are sometimes 
important in determining topology and critical points. 

-c is the implicit equation of the other surface evaluated at y(t) (when the 
parameterization surface is the cylinder) or the cone vertex (when the parame- 
terization surface is the cone). This is the most concrete of the three general 
classifications. The expressions for c in (7) and (8) can easily be interpreted in 
this fashion. Since y(t) is the circle on the parameterization cylinder at s = 0, 
we can substitute (4) (with z = 0) into (1) and obtain c(t) as in (7). The vertex 
of the canonical cone described in (5) is (x = 0, y = 0, z = 0). Plugging this into 
(1) yields K, the value of c shown in (8). 

Under certain conditions, important special cases of the a, b, and c functions 
arise. For example, the intersection curve is linear in s if one of a or c is 
identically zero. The situations giving rise to these special cases are discussed in 
the context of the geometric interpretations behind the a, b, and c functions for 
the specific pair of surfaces. 

Finally, the analysis for a given pair of surfaces is concluded by showing how 
the intersection curve topology and critical points can be determined from a 
geometric analysis of the surfaces involved without the need to solve polynomials 
of degree higher than 2. There are three possible intersection curve topologies: 
a single closed branch, a figure eight, or two closed branches (see Figure 11). In 
cone-cylinder and cone-cone intersections, the branches can be open, tending to 
infinity at the ends. In Sections 6.2.2 and 6.3.3 we shall see how to handle these 
situations properly. 

To distinguish the scalars, points, and vectors defining the parameterization 
surface from those defining the other surface, a “p” subscript is used for the 
parameterization surface and an “0” subscript for the other surface. 

6.1 Using the Cylinder as the Parameterization Surface 

6.1.1 Cylinder-Sphere. Substituting (9) into (11) results in 

(y(t) - B, + swp) . (y(t) - B, + swp) - rX = 0. 

Rearranging into the form of (6), we find 

a = 1,. 
b = 2b' . w,, 

b' = II, - B,, 
c(t) = (y(t) - B,) * (-f(t) - &J - 2. 

(14) 

The curve can be linear in s only if c(t) is identically zero. Since c(t) is the 
implicit equation of the sphere evaluated at y(t), it can be identically zero only 
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(4 

(b) 

(c) 

Fig. 11. (a) One-branch intersections. (b) Figure-eight intersections. (c) Two-branch intersections. 

if the entire circle defined by y(t) is on the sphere. This is only possible if 
the center of the sphere is on the axis of the cylinder, but that would have 
resulted in a conic section intersection which would have been detected and 
handled earlier. As long as B, and B, are distinct points, b’ will always be a 
normal to the sphere at B, (or at the perpendicular projection of B, onto the 
sphere). 

Once we have determined that the cylinder and sphere intersect in a space 
curve, we compute the distance (d) between the sphere center and the cylinder 
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axis and proceed as follows: 

if r. > rp then 
if d = (r, - rp) then 

figure-eight intersection using all of cylinder parameter 
space (Figure Ilb) 

else if d < (I-, - rP) then 
two disjoint intersection curve branches using all of 

cylinder parameter space 
else 

single intersection curve branch; 
determine critical points (see below) 

else 
single intersection curve branch; 
determine critical points (see below) 

When critical points must be determined, there will be two of them, and they 
correspond to the two cylinder rulings that are tangent to the sphere. We can 
determine these t values by considering a plane containing the sphere center that 
is perpendicular to the cylinder axis. This plane will cut the cylinder and sphere 
in the two circles illustrated in Figure 12. A standard circle-circle intersection 
yields the points PI and Pz. We compute the values of t corresponding to these 
points, and we are done. 

6.1.2 Cylinder-Cylinder. Substituting (9) into (12) results in 

(-f(t) - Bo + SW*) * (y(t) - Bo + SW,) - ((y(t) - B, + SW,) . w,J2 - rz = 0. 

From this we obtain 

a = 1 - (w, . w,)2, 
b(t) = 2b’ . (y(t) - Bo), 

b’ = w, - (w, . w,)w,, 

c(t) = (-t(t) - &J . (y(t) - B,) - ((y(t) - BJ . wJ2 - 6 

(15) 

If w, = fw,, then a, b’, and b are identically zero, and we are left with a 
quadratic equation in t (i.e., c(t) = 0). Geometrically, this means that the 
two cylinders are parallel, in which case we know that they are either identical, 
disjoint, or intersect in one or two lines. The lines, if any, correspond to the 
solutions of c(t) = 0. If w, # +w,, a is positive, and no difficulties could arise 
during curve evaluation. 

When nonzero, b’ is a normal to the cylinder along rulings contained in the 
plane containing w0 and w,. The function c(t) can be identically zero 
(independent of a and b) only if the circle defined by y(t) lies entirely on the 
other cylinder, that is, only if the cylinders are identical. 

Note that either cylinder can be used as the parameterization surface. Two 
branch and figure-eight intersections are the only situations for which there will 
be a significant difference. In both of these cases, the radii of the two cylinders 
must be different or a two-ellipse intersection would have resulted. If the 
parameterization cylinder is the larger of the two, then three (or four) critical 
points exist on the parameterization cylinder, depending on whether the topology 
is a figure-eight (or two-branch) intersection. The two values of s corresponding 
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Fig. 12. Cutting a cylinder and a sphere with a 
plane perpendicular to the cylinder axis. 

to a given t yield two points on the same branch. If the parameterization cylinder 
is the smaller of the two, then the only critical point is the tangent point of a 
figure-eight intersection, and the two values of s corresponding to a given t yield 
two points on opposite branches. Using the smaller cylinder is therefore easier 
initially for generating the representation of the intersection curve (all of its 
parameter space is used), but the larger cylinder will likely lead to more efficient 
point generation algorithms, since each t will yield two points on the same 
intersection curve branch. 

As we did with cylinder-sphere intersections, we consider the two radii and 
the distance between the two axes to determine the topology. Critical point 
determination is slightly more complex, however. Consider a plane contain- 
ing the axis of the cylinder not being used as the parameterization surface 
and the vector perpendicular to the two axes. (Recall that we know that the 
axes are not parallel.) This plane cuts the cylinder not being used as the 
parameterization surface into two lines. These lines will either fail to intersect 
the parameterization cylinder, or they will intersect it (either tangentially or in 
two distinct points). If one or both of the lines intersect the parameterization 
surface, the t values for the intersection point(s) are the desired critical points. 
If neither line intersects, then we have a two-branch intersection with the smaller 
cylinder as the parameterization surface. No critical points need to be determined 
in this case, since all of its parameter space corresponds to positions on the 
curve. The way in which the two line-cylinder intersection results indicate the 
critical points is summarized in Table II. 

6.2 Using the Cone as the Parameterization Surface 

Recall that when the cone is used as the parameterization surface and its vertex 
is on the other surface, the parameterization is linear in s (because c = 0). Partly 
for this reason, our analysis of intersections involving cones is based on consid- 
ering, in turn, the three possible relative vertex locations: on, inside, or outside 
the other surface. 

It is often important to determine when b(t) is zero. Since b(t) is equivalent 
to a rational quadratic, the zeros could simply be determined by solving the 
equivalent polynomial. There is a geometric approach, however. Whenever the 
cone is the parameterization surface, b(t) is of the form (b(t) = 2b’ . (6(t) + 
w,)). If b’ is the zero vector, b(t) will be identically zero. Otherwise, b(t) will be 
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Table II. Determination of Critical Points for Cylinder-Cylinder Intersections 

Line 1 

Do not 
intersect 

Tangent 

Two-point 
intersection 

Line 2 

Do not intersect 

Two-branch intersection; 
all of parameterization 
cylinder t values used” 

Tangent 

Figure-eight intersection; 
all of parameterization 
cylinder t values used; 
tangent point yields t 
value of figure-eight 
cross point” 

Two-point intersection 

One-branch intersection; 
intersection points yield 
starting/ending t values 
on parameterization 
cylinde?’ 

Impossible; this would 
have yielded a two- 
ellipse intersection 

Figure-eight intersection; 
Line 2 intersections 
yield starting/ending t 
values for curve on 
parameterization 
cylinder; tangent point 
yields t value of figure- 
eight cross point’ 

Two-branch intersection; 
first branch is between 
tl and tz, second is 
between ta and t,. 
(tl and tz are t values for 
Line 1; t3 and t, are for 
Line 2) 

’ Parameterization cylinder radius < other cylinder radius. 
b Either radius may be larger than or equal to the other. 
’ Other cylinder radius < parameterization cylinder radius. 

zero at values of t corresponding to cone rulings that are perpendicular to b’. 
These rulings, if any, can be located directly by intersecting the cone with the 
plane (B,, b’). Zero, one, or two lines will result, the t values of which will be 
the zeros of b(t). 

In mechanical CAD/CAM, one is normally only interested in one-half of the 
double cone defined by the geometric parameters. (We assume this half is the 
one in the direction of w.) Since the mathematical representations describe both 
halves, extra work is required to describe only those portions of intersections 
with the appropriate half. There are two ways that this could be done. The 
intersection curve could be generated in its entirety and later intersected with 
(trimmed to) the plane (B, w). Since curve-surface intersections are a common 
operation in boundary evaluation anyway, this is certainly a viable approach. 
Alternatively, extra work could be expended in the initial intersection operation 
to throw away intersection curve branches or portions thereof that do not lie on 
the desired half of the cone(s). 

Methods for the former approach are not the subject of this paper, so they will 
not be considered further. We describe methods for the latter approach in the 
remainder of this paper, but do not necessarily advocate this approach in practice. 
The extra work generally consists of operations performed after critical points 
have been determined and is therefore easily ignored if the former approach is 
to be used in a given implementation. 
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6.2.1 Cone-Sphere. Substituting eq. (10) into (11) we obtain 

((B, - B,) + s(6(t) + w,)) . ((B, - B,) + s(6(t) + w,)) - rf = 0. 

Since 6(t) is a vector of length tan(cr,), 6(t) + 6(t) = tan’(cY,) and we obtain 

a = tan2(a,) + 1, 
b(t) = 2b’ . (6(t) + w,), 

b’ = B, - I?,, (16) 

c = (B, - B,) . (B, - B,) - rf. 

As with cylinder-sphere intersections, a is never zero. b(t) is identically zero 
only if the vertex of the cone and the center of the sphere are coincident. This 
yields a pair of circles (one on each half of the double cone) and is therefore not 
of interest to us here. The c term is, of course, identically zero if the cone vertex 
is on the sphere. This yields a linear parameterization and is the only special 
case of (16) we need consider. As long as B, and B, are distinct points, b’ will 
always be a normal to the sphere at B, (or at the perpendicular projection of B, 
onto the sphere). 

6.2.1.1 Cone Vertex on Sphere. The parameterization is linear in s, and all 
of parameter space will be used to trace out the curve. We shall exploit the fact 
that b’ is the normal to the sphere at the cone vertex to determine the intersection 
curve topology and whether the curve passes through the vertex. Note that b(t,) 
= 0 implies that the ruling defined by t = to is tangent to the sphere at the cone 
vertex. Since b(t) is equivalent to a rational quadratic, there can be at most two 
zeros of b. If there are no b zeros, the intersection curve is disjoint from the 
vertex and of course lies entirely on one-half of the cone, as in Figure 13. If there 
is one b zero, then the curve passes through the vertex once, but remains on one- 
half of the cone, as in Figure 14. If there are two zeros, then the curve passes 
through the vertex twice and is a figure eight with one loop on each cone half, as 
in Figure 15. 

6.2.1.2 Cone Vertex inside Sphere. This is the simplest cone-sphere inter- 
section scenario. The sphere intersects both halves of the double cone, and all of 
the cone parameter space is used to sweep out the intersection. It is straight- 
forward to return the branch on the desired half of the cone, that is, the one 
with positive values of s. 

6.2.1.3 Cone Vertex outside Sphere. The analysis for this case proceeds by 
considering the relationships among three angles (see Figure 16): 

0 < a < 90: cone angle, 
0 < 0 < 90: in the plane of the cone axis and sphere center, an angle between 

a line from the vertex tangent to the sphere and a line from the 
vertex through the sphere center, 

0 < 4 < 180: angle from the cone axis to the line from the vertex through the 
sphere center. 
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Fig. 13. No b zeros =+ no tangent rulings. 

Fig. 14. One b zero + one tan- Fig. 15. Two b zeros + two 
gent ruling. tangent rulings. 

Fig. 16. View of sphere and cone in plane of cone axis and sphere 
center. 

There are five major cases, one of which has three subcases: 

~=a+& There is a single tangent point of intersection; the sphere is outside 
the cone. 

4=cY-e: There is a single tangent point of intersection; the sphere is inside 
the cone. 

c$>a+e: The sphere and cone do not intersect; the sphere is outside the cone. 

$<a--8: The sphere and cone do not intersect; the sphere is inside the cone. 

Otherwise: The sphere and cone intersect in a space curve. The exact nature of 
the intersection is determined by 

0 = (Y + 4: figure-eight intersection occupying all of the cone 
parameter space (see Figure 17); 
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(4 (b) 

Fig. 17. (a) 0 = 01 + C#J. (b) Result. 

lb) 

Fig. 18. (a) 0 > 01 + 4. (b) Result. 

fl> (Y + 4: two-branch intersection occupying all of the cone 
parameter space (see Figure 18); 

0 < (Y + 4: one-branch intersection or the sphere intersects both 
halves of the double cone (see Figure 19). This is the 
only situation for which limits of the cone parameter 
space are needed. These critical points correspond to 
the values of t defining cone rulings tangent to the 
sphere. The point of tangency, the sphere center, and 
the cone vertex define a right triangle from which it is 
straightforward to determine the distance from the 
vertex to the tangent point along a ruling. This distance 
determines a pair of circles (one on each half of the 
cone) whose intersection with the sphere yields the 
desired points. 

6.2.2 Cone-Cone. When two cones are intersected, either can be used as the 
parameterization surface. If the vertex of one is on the other, we use it since the 
curve parameterization will be linear in s. If neither vertex lies on the other cone, 
but the vertex of one is inside the other, we choose it as the parameterization 
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0 

(a) 

Fig. 19. (a) 0 c a + 4. (b) 

(b) 

(4 
(c) 0 < o( + 4. (d) Result. 

surface since critical point determination is easier. Finally, if neither vertex lies 
on or in the other cone, we arbitrarily select one to be the parameterization 
surface. 

We derive the general parametric form of the cone-cone intersection curve by 
substituting (10) into (13) to obtain 

((@p - m + s(6(t) + wp)) * WI2 
- cos2(a,)((Bp - I?,) + s(a(t) + w,)) . ((BP - B,) + s(a(t) + w,)) = 0. 

From this we determine 

a(t) = ((6(t) + w,) . w,)2 - cos2(cY,)(tan2(a,) + 1) 
cos2(ao) 

= ((W) + wp) * wld2 - --&g, 
P 

b(t) = 2b' . (s(t) + w,), (17) 

b' = ((B, - B,) . w,)w, - cos2(a,)(Bp - B,), 
c = ((BP - B,) * wcJ2 - cos2(a,)(Bp - B,) * (Bp - B,). 

a(t) is identically zero if and only if the axis vectors are parallel and the angles 
are the same; that is, the cones are identical except for position. This will yield 
a conic section [5], so we do not consider it further here. a(t) is equivalent to a 
rational quartic; there can therefore be up to four zeros. At these zeros, the 
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(a) 

Figure 20 

(b) 

intersection curve transitions from infinity on one half to infinity on the other 
half of both cones. These zeros, therefore, subdivide the normal one-branch, two- 
branch, or figure-eight intersections into pieces which connect at infinity (see 
Figure 20). Geometrically, the zeros of a correspond to parameterization cone 
rulings that intersect the other cone only once. Of course, it is important to find 
these zeros during the course of intersecting the cones, and we shall see shortly 
how these zeros can be located geometrically without solving a fourth-degree 
polynomial equation. 

b(t) is identically zero if and only if the cone vertices are identical. In this 
case, the intersection is just a point or a collection of up to four rulings. We are 
therefore not interested in this case per se; however, we shall return to it shortly 
in the context of locating the zeros of a(t). 

It can be shown that, if B, is on the other cone, b’ is parallel to the cone 
normal along the ruling containing B,. Parameterization cone rulings tangent to 
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Figure 21 

(or contained by) the other cone therefore force b(t) to zero when B, is on the 
other cone. When B, is not on the other cone, b’ is merely a vector in the plane 
containing B,, B,, and w,, but it is not normal to the cone. 

As usual, c is zero if and only if B, is on the other cone. Note that a(t) and 
b(t) can go to zero simultaneously only if c is zero. We shall see in Section 6.2.2.1 
that this happens at the t corresponding to a shared ruling between the cones. 

We again proceed by considering the three possible relative locations of the 
parameterization cone vertex: on, inside, and outside the other cone. In all three 
cases, we need to know where a(t) is zero. We can locate these points geometri- 
cally as follows. On examining (17), we observe that, if the cones share a vertex 
(i.e., B, = B,), then b(t) is identically zero and c is zero. Equation (6) describing 
the quadric surface intersection curve then becomes (a(t)s2 = 0). This is obviously 
satisfied when s = 0, but it is also satisfied for rulings defined by values of t at 
which a(t) = 0. Therefore, finding the zeros of a is equivalent to finding the lines 
of intersection of the two cones (B,, w,, alp) and (B,, w,, a,). We can find these 
lines geometrically in the following manner: Construct a circle on the first cone 
at some distance d along a ruling, as in Figure 21. Each line of intersection 
between the cones must intersect this circle exactly once. The intersection points 
will, of course, also lie on the other cone and must be at the same distance d from 
the vertex. This suggests the construction of two circles on the other cone, each 
at a distance d from the vertex along a ruling, one on either side of the vertex 
(Figure 21). Each of these circles can intersect the original circle up to two times. 
The resulting points (a maximum of four) can be used along with the vertex to 
find the intersection lines (equivalently the t values satisfying a(t) = 0). 

6.2.2.1 Parameterization Cone Vertex on Other Cone. When the parame- 
terization cone vertex is on the other cone, the intersection curve parameteriza- 
tion is, of course, linear in s. There are two primary subcases to consider on the 
basis of whether the vertex of the other cone is also on the parameterization 
cone. If it is, the cones share a ruling and also intersect in another curve that, 
passes through the shared ruling. If the ruling is shared tangentially, the other 
curve is an ellipse [5], so we do not consider that case further here. If it is not 
shared tangentially, then the other curve is a space cubic. We now consider the 
original two subcases in turn, assuming for the former that the ruling is not 
shared tangentially. 
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When the vertex of the other cone is on the parameterization cone, there will 
be at least two zeros of a(t).’ One will be at the shared ruling (ti), and the 
remainder will be at places where the space cubic goes to infinity. b(t) will have 
precisely two zeros: one at tl and one where the space cubic passes through the 
vertex of the parameterization cone (t2). All of parameter space will be used to 
trace out the curve, with the exception of the a zeros not equal to tl. These zeros, 
therefore, define intervals on the intersection curve. To restrict the intersection 
curve to the positive half of both cone,, Q we consider an expanded set of intervals 
defined by 

-the a zeros not equal to tl, 

-t2, 

-the t value of the other cone’s vertex on the parameterization cone. 

Each of these intervals will be entirely on one or the other half of both cones. 
When the vertex of the other cone is not on the parameterization cone, we 

have a situation analogous to that described in Section 6.2.1.1. That is, the basic 
type of the intersection curve is determined by the number of b zeros. If there 
are none, then the intersection curve is totally disjoint from the parameterization 
cone vertex. If there is one, then the curve passes through B, once, but stays on 
one half of the cone in the neighborhood of the vertex. If there are two, then the 
curve passes through the vertex twice and is a figure eight with one loop on each 
cone half. 

We next consider the zeros of a. If there are none, then all of parameter space 
is used to trace the curve, and we need only test a single point on the curve (two 
for a figure eight) to determine what portion of the curve lies on the positive half 
of both cones. If there are a zeros, then these zeros cause the intersection curve 
(or branches of a figure eight) to be split across both halves of both cones, 
connecting at infinity. The zeros therefore define intervals, as described earlier, 
that are entirely on one or the other half of both cones. 

6.2.2.2 Parameterization Cone Vertex inside Other Cone. In this case it is 
not important where the vertex of the other cone is with respect to the parame- 
terization cone. (We do assume, however, that it is not on the parameterization 
cone or we would be in the case covered by Section 6.2.2.1.) This case is 
individually considered, since we know a priori that all of the parameter space 
will be used to sweep out the curve (with the exception of the a zeros, if any); so 
the generation of the result is relatively easy. The intersection will basically be 
two disjoint branches. If there are no a zeros, all that needs to be done is to test 
a point on each branch to see whether it lies on the positive half of both cones 
(Figure 22a and b). 

If there are a zeros, then one or both branches will again be split across both 
halves of both cones, connecting at infinity (Figure 22~). Every parameterization 
cone ruling will intersect the other cone at least once. There can be up to four 

’ Note that a(t) does not depend on vertex positioning. Here we are dealing with the case in which 
both vertices are on the other cone, however. This imposes a constraint on relative orientation 
(two rotational degrees of freedom are lost), and a(t) does depend on the relative orientation of 
the cones. 
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(4 (b) 

Fig. 22. (a) No a zeros. (b) No a zeros. (c) Two a zeros. 

rulings that only intersect once; these correspond to the zeros of a. Each 
parameterization cone ruling that intersects the other cone twice is intersecting 
both intersection curve branches; that is, it determines a point on each branch. 
The four or fewer rulings that only intersect once determine a point on one of 
the branches and are asymptotic to the other. Intervals are therefore defined by 
pairs of a zeros at which the sign of b is the same. The rationale for this is as 
follows. a and b cannot be simultaneously zero since c # 0 (recall (6)). For a 
given value of t, we obtain s from the quadratic formula as 

s = -b(t) f ~(b(W - 4a(t)c 

2a(t) ’ (18) 

Suppose that a(&) = 0 and b(t,) > 0. The two values of s are s = O/O and 
s = -2b(t,)/O. The latter is the root for the branch that has gone to infinity, and 
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the former corresponds to the single intersection point of the parameterization 
cone ruling with the other cone, which can be determined as s = -c/b(&). Once 
the intervals have been determined, the branches are defined by an interval along 
with a f flag indicating which sign to use when evaluating s from (18) along the 
interval. Each branch can then be tested for being on the positive half of both 
cones. 

6.2.2.3 Both Vertices outside Other Cone. Unlike the previous two cases, in 
this case there may be intervals of parameter space not used to sweep out the 
intersection curve. Geometrically, there will be sets of parameterization cone 
rulings that do not intersect the other cone at all. Algebraically, the discriminant 
(b(t)’ - 4a(t)c), which was always nonnegative in the previous two cases, may 
be negative over ranges of t here. Critical points are therefore determined not 
only from the zeros of a, but also from the zeros of the discriminant. The 
discriminant is again equivalent to a rational quartic, but we can avoid solving 
the quartic algebraically by considering its geometric significance. 

A parameterization cone ruling defined by t = to will either fail to intersect the 
other cone, intersect it once nontangentially, intersect it once tangentially, or 
intersect it twice. (By the assumptions of this section, it cannot be contained by 
the other cone.) If it does not intersect, the discriminant is negative. If it intersects 
once nontangentially, the angle between the line direction vector and the cone 
axis vector must be the cone angle, which means that a(t,) = 0. Intersecting once 
tangentially implies there is a double root at the intersection point; therefore the 
discriminant is zero. Finally, if the ruling intersects twice, the discriminant must 
be strictly greater than zero. 

Since tangent rulings correspond to discriminant zeros, we can find the zeros 
of the discriminant geometrically by finding the tangent parameterization cone 
rulings, if any. We parametrically define a tangent plane to the cone not being 
used as the parameterization surface as follows. The plane base point is B,. To 
determine the plane normal, we recall that (6(t) + w,) is a vector along a ruling 
where it is understood that 6(t) here involves uO, v,, and LY,. The derivative of 
(6(t) + w,) with respect to t yields a tangent vector along the ruling. If we cross 
the vector along the ruling with the tangent vector, we get a normal to the cone 
as a function of t, which we shall use as the tangent plane normal: 

n(t) = (6(t) + w,) x f (6(t) + wJ 

= (tan(a,)(cos(t)u, + sin(t)v,) + w,) X (tan(a,)(-sin(t)u, + cos(t)v,J) 
= tan2(cYo)wo - (tan(a,)u, cos(t) + tan(Lu,)v, sin(t)). 

This can be expressed as the equivalent rational quadratic 

n(r) = tan2(Cyo)wo - (tan(a,)u,[+f$] + tan(a,)v,[&]). 

Any line tangent to the other cone must be contained in a plane (B,, n(r)) for 
some r. Since we are looking for parameterization cone rulings tangent to the 
other cone, we seek tangent planes containing B,. That is, we solve 

(B, - B,) . n(r) = 0. 
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This is a quadratic equation that will yield 0, 1, or 2 planes tangent to the other 
cone containing B,. If n is the number of planes determined and p [ ] is the array 
of planes, we can proceed as follows to compute the m discriminant zeros and 
store them in an array d[ 1: 

m := 0 
for i := 1 to II do 

intersect p[i] with the parameterization cone 
if intersection is a single point (i.e., the vertex) then 

ignore plane p [i] 
else [ intersection must be one or two lines ] 

for each intersection line, L do 
m:=m+l 
d[ml := t value of L on parameterization cone 

end for each 
end for 

Intersection curve branches will lie between the discriminant zeros; these zeros 
therefore define intervals that will be further subdivided by a zeros, if any. 
Intervals or subintervals with negative discriminants are discarded. The remain- 
ing ones can then be checked for being on the positive half of both cones. 

6.3 Intersecting a Cylinder and a Cone 

In cylinder-cone intersections, either the cylinder or the cone can be used as the 
parameterization surface. As we shall see, the “better” choice (in terms of 
computational efficiency, one parameterization or the other being linear, or ease 
of analysis) depends on their relative position and orientation. We shall therefore 
decide which surface to use as the intersection operation proceeds. This section 
begins by developing the general form of the intersection curve parameterization 
using first the cylinder, then the cone as the parameterization surface. Then we 
examine an approach to performing cone-cylinder intersections that includes 
selection of the better parameterization surface. 

6.3.1 Using the Cylinder as the Parameterization Surface. We derive the gen- 
eral parametric form of the cone-cylinder intersection curve using the cylinder 
as the parameterization surface by substituting (9) into (13). This results in 

((y(t) - B, + SW*) * wJ2 - cos2(%)(r(t) - B3 + SW&d 
* (y(t) - B, + swp) = 0. 

From this we find 

a = (w, . w,)’ - COS~((Y~), 
b(t) = 2b’ * (-l(t) - m, 

b’ = (w, . wo)w - cos2bcJwp, 
09) 

c(t) = ((y(t) - BJ * wd2 - cos’bo)(r(t) - &) . (-f(t) - &h 

a will be zero if and only if the angle between the axes is the same as the cone 
angle. It is only possible for b(t) to be identically zero if B, is in the plane of 
y(t), and b’ is perpendicular to this plane (i.e., parallel to w,). This is only 
possible if W, and w, are either parallel or perpendicular, but a cannot be zero in 
either case. Therefore, no special cases arise when b(t) is identically zero. Note, 
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however, that when a is zero and the cone vertex is on the cylinder, there will be 
a to such that b(t,) = c(t,,) = 0. This is also observed in Section 6.3.2 and discussed 
in Section 6.3.3. 

It can be shown that if w, is parallel to a cone ruling, then b’ is the normal to 
the cone along that ruling. Otherwise, b’ is not a normal to the cone. 

Since c(t) is the cone implicit equation evaluated at y(t), it can be identically 
zero only if the whole circle defined by y(t) is on the cone. This would have been 
detected earlier in the intersection operation, since the cone-cylinder intersection 
would have been a pair of circles, one on each half of the cone. 

6.3.2 Using the Cone as the Parameterization Surface. To derive the paramet- 
ric form of the intersection curve using the cone as the parameterization surface, 
we substitute (10) into (12) to obtain 

((B, - B,) + s(6(t) + w&J) . ((B, - B,) + s(W) + w,)) 
- (((B, - B,) + s(6(t) + w,)) . w,)’ - rZ = 0. 

From this we find 

a(t) = tan2(cY,) + 1 - (w, . (6(t) + w,))2, 
b(t) = 2b’ . (6(t) + w,), 

b’ = (B, - B,) - ((4 - 8,) . w)wo, (20) 

c = (B, - B,) . (B, - B,) - ((B, - B,) . w,)2 - rz. 

a(t) is nonnegative for all t and could only be identically zero if (w, . (6(t) + 

w,))~ were identically (tan2(a,) + 1). The only vectors whose dot product with 
(6(t) + w,) could be any constant are those parallel to w, (hence I 6(t)). If w, 
were such a vector, a would be identically tan2(a,), not zero. 

b(t) is identically zero only if the cone vertex is on the cylinder axis, but a(t) 
and c are both nonzero in this case, so it is not of great interest. b’ is a normal 
to the cylinder along rulings contained in the plane containing B,, B,, and w,. It 
will be zero if B, is on the cylinder axis. 

If the angle between the axes is equal to the cone angle, then there will be a to 
such that (6(k) + w,) is parallel to w,, and a(&,) = b(L) = 0. We examine this 
case further in Section 6.3.3. 

6.3.3 An Approach to Cone-Cylinder Intersections. In this section we present 
an approach to intersecting a cone with a cylinder. The main steps in the analysis 
are independent of the parameterization surface to be used. Indeed, one of the 
objectives of the analysis here is to determine which surface should be used. For 
the purposes of this section (6.3.3 and its subsections) only, we subscript labels 
for the various defining parameters with “cyl” and “con” instead of the usual “p” 
and “0.” 

There are two observations that we exploit in this section. The first is that 
(6(t) + w,,,) defines a “cone of vectors,” which is the set of all vectors at an 
angle acon from w,,,. The second is that the following three statements are 
identical (i.e., if any is true, it implies that the other two are true): 

-The angle between the cone and cylinder axes is aCon. 
-There is a t such that (6(t) + w,,,) 11 wCYl. 
-If the cone vertex is on the cylinder, the cylinder and the cone share a ruling. 
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6.3.3.1 Cone Vertex on Cylinder. The cone parameterization is always linear 
in this case, so we use it as the parameterization surface. All of its parameter 
space will be used to sweep out the curve. Once again, we have a situation 
analogous to that described in Sections 6.2.1.1 and 6.2.2.1. That is, the number 
of b zeros determines the intersection curve topology and whether the curve 
passes through the vertex. We compute the angle between the axes (4) and 
proceed as follows: 

if no b zeros then 
intersection is bounded, disjoint from the vertex, and lies 
entirely on one half of the cone 

else if one b zero then 
if 4 = acon then 

intersection is a shared tangential ruling plus an ellipse 
(Figure 9) 

else 
intersection is bounded, passes once through the vertex, 
and lies entirely on one half of the cone 

else ( two b zeros ) 
if 4 = a,,, then 

intersection is a shared nontangential ruling plus a space 
cubic which passes once through the vertex and goes to in- 
finity on both cone halves (Figure 23) 

else 
intersection is a figure eight with loops on each cone 
half, connecting at the vertex 

The t values corresponding to the shared rulings in the previous discussion are 
the t, values noted in Sections 6.3.1 and6.3.2. 

6.3.3.2 Cone Vertex inside Cylinder. Both halves of the double cone will 
intersect the cylinder in this case. The cone parameterizatiqn cannot be linear, 
but there are no critical points to determine on it since all of its parameter space 
will correspond to actual positions on the intersection curve. Our choice of 
parameterization surface is therefore the cone, unless the angle between the 
axes (9) is a,,,, in which case we chose the cylinder since its parameterization 
will be linear. The analysis proceeds as follows: 

if 4 = a,,, then ( use the cylinder ) 
intersection is two disjoint unbounded branches, one on each 
cone half (Figure 24) 
( compute cylinder parameter space t values where curve goes 

to infinity ) 
n := component of w,,, perpendicular to wCY1 
intersect cylinder with the plane (Bcon, n) + two rulings 
compute the t values for the rulings on the cylinder 

else ( use the cone ) 
intersection is two disjoint bounded branches, one on each 
cone half 

6.3.3.3 Cone Vertex outside Cylinder. Our analysis in this case begins by 
considering the angle 4 between the axes. Consider Figure 25, where we are 

ACM Transactions on Graphics, Vol. 6, No. 4, October 1987. 



Nonplanar Quadric Surface Intersection Curves l 303 

Figure 23 

Figure 24 

looking along a vector prependicular to the two axis vectors: 

if 4 < acon then 
{ every cylinder ruling intersects both cone halves ) 
intersection is two disjoint bounded branches, one on each 
cone half, using all of cylinder parameter space 

else if $J = (Y,,, then ( cylinder parameterization is linear ] 
intersection is one bounded branch on one cone half using all 
of cylinder parameter space 

else 1 do > a,,, I 
intersection is bounded and is determined by explicitly com- 
puting discriminant zeros in a manner analogous to that de- 
scribed in Section 6.2.2.3 (see below) 

When explicitly computing discriminant zeros, as in Section 6.2.2.3, we could 
use either surface as the parameterization surface. Let us first consider the cone. 
We need to find cone rulings tangent to the cylinder, so we begin by specifying a 
generic cylinder tangent plane. Such a plane can be defined as (y(r), y(r) - Bcyd, 
where the use of “r” as the parameter signifies use of the rational polynomial 
parameterization. In order for one of these tangent planes to contain cone rulings, 
the vertex of the cone would have to be on the plane. This leads us to seek 
solutions to the equation 

(y(r) - &,,) . (y(r) - &,I) = 0. 
This is a quartic polynomial, so we turn our attention to the cylinder to see 
whether we can do better. To use the cylinder as the parameterization surface, 
we need to find cylinder rulings tangent to the cone. We saw in Section 6.2.2.3 
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Fig. 25. View of cone-cylinder intersection in plane with normal derived from cross product of 
the two axis vectors. 

that the generic cone tangent plane is (B,,,, n(r)). For one of these planes to 
contain a cylinder ruling, we only require that n(r) I wCYl. This leads us to seek 
solutions to the equation 

n(r) . wcyl = 0. 

This is a quadratic equation determining 0, 1, or 2 cone tangent planes that could 
contain cylinder rulings. If n is the number of planes determined and p [ ] is the 
array of planes, we can proceed as follows to compute the m discriminant zeros 
and store them in an array d[ 1: 

m .- 0 
fo;-i := 1 to n do 

intersect p[i] with the cylinder 
if there is an intersection then 

( intersection must be one or two rulings ) 
for each intersection line, L do 

m:=m+1 

a[m] := t value of L on cylinder 
end for each 

end for 

The remainder of the analysis is then identical to that described in Section 
6.2.2.3. 

7. SUMMARY 

We have examined two approaches to the representation and intersection of 
quadric surfaces: an algebraic one and a geometric one. Both are viable only 
because we are dealing with quadrics. The number of intersection possibilities is 
relatively small for these surfaces, and we know from Levin that there is a ruled 
quadric in the pencil of any two intersecting quadrics. 
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In the algebraic approach, a single representation is used (the symmetric Q 
matrix of (2)), and a single intersection algorithm that produces intersection 
curves represented in the form of (6) is developed. The types of the quadric 
surfaces, the topology of intersection curves, and critical points on those curves 
are all determined by an algebraic analysis of these common forms. Although 
this is attractive mathematically, these models must be captured inside a com- 
puter, where floating-point numbers are not represented with infinite precision. 
Unfortunately, many of the basic decisions that must be made relative to these 
surfaces and their intersection curves in modeling systems depend critically on 
solutions to fourth-degree polynomial equations and on whether certain quan- 
tities calculated from the surface equation coefficients and the a, b, and c 
functions are zero, positive, or negative. Since expressions involving the surface 
equation coefficients have no apparent geometric significance, meaningful toler- 
ances are at best extremely difficult to derive and apply to these tests. As a direct 
result, these approaches have been fraught with numerical instabilities. 

In the geometric approach, unique representations are employed for each 
surface type. This is a combination of points, vectors, and scalars that define the 
position, orientation, and size of the surface. For each surface pair, tailored 
algorithms that exploit the knowledge of the types and instancing parameters of 
the surfaces involved are developed to determine not only the type of the result, 
but also critical point information. All tests for various topological conditions 
are in terms of geometric parameters for which meaningful tolerances are easily 
derived. Moreover, scalar parameters such as radii are not numerically embedded 
in the representation, as they are in the algebraic approach. This means, for 
example, that they are not affected by round-off error during transformations. 
This further contributes to numerical stability. 

The primary disadvantage of the geometric approach is an increased amount 
of code and special-case handling. Experience with a C implementation of these 
methods does not indicate an extraordinary volume of code, however. Intersec- 
tions involving all possible combinations of the natural quadrics (including the 
plane) were implemented along with some conic-conic and conic-quadric inter- 
sections as needed by the analysis. The implementation required approximately 
7000 lines of code. 

When developing methods based on the enumeration of cases, it is obviously 
important to make sure that all of them are covered. There are three basic types 
of special cases that must be considered: detecting conic sections (and/or isolated 
point intersections), detecting linear parameterizations, and locating parameter 
values at which the intersection tends to infinity. (These are not mutually 
exclusive.) It is also important to capture the topology of the intersection 
correctly. Formal methods based on the use of the algebraic approach as an 
analytical tool are presented in [5] for the detection of tonics in quadric surface 
intersections. Unfortunately it is not clear how one could be as formally rigorous 
for these other aspects of the intersection operation. The strong geometric insight 
realizable with these approaches, as well as experience with a wide range of test 
cases ranging from pathological to “normal” to randomly generated, provide some 
measure of confidence. 

There are many different geometric algorithms that could have been developed 
for each of the situations described. The point is that such approaches are 
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possible and, at least with the natural quadrics, avoid the need to solve polyno- 
mials of degree higher than 2. 

These methods can be generalized somewhat. When dealing with the natural 
quadrics, either the cone or the cylinder is always involved when nonplanar 
intersections arise. We therefore do not need to appeal to the pencil (3) to find a 
ruled parameterization surface. Extending these methods by supporting addi- 
tional ruled quadrics would be fairly straightforward. Introducing additional 
quadrics that are not ruled, however, requires the development of methods to 
determine an appropriate parameterization surface by examining the pencil of 
two intersecting quadrics. 

The advantages of the geometric approaches to quadric surface intersections 
as described in this paper can be summarized as follows: 

-Intersection curve topology and critical point information can be determined 
from geometric analyses, avoiding the need to solve fourth-degree polynomials. 
This is not only faster computationally, but also more robust numerically since 
we can directly compute geometrically the roots, if any, of critical functions. 

-We can employ direct geometric reasoning instead of algebraic analyses to 
determine intersection topology, critical points on curves, the presence of conic 
sections, and degenerate situations, such as one or more of a, b, and c being zero, 
either identically or for a given value of t. Tricky topological situations, such as 
the vertex of a cone being on another surface with a disjoint intersection 
elsewhere, can be detected without danger of interpreting the region of the vertex 
as another small intersection curve branch. 

-No additional work is required to find the best parameterization surface. In 
the algebraic approach, considerable work is required to find a good (not neces- 
sarily the best) surface. Note that the determination of the best surface depends 
not only on the types of the surfaces involved, but also on their instancing 
parameters. 

-There is no need to determine transformations to represent a quadric in the 
local coordinate system of the parameterization surface. This minimizes round- 
off error, storage requirements, algorithm complexity, and execution time. 

-When generating points on the intersection curve, fewer floating-point 
operations are required for the geometric approach than for the algebraic ap- 
proach. The difference is not overwhelming. It varies from a couple of percentage 
points for cylinder-cylinder and cylinder-cone (using the cylinder as the para- 
meterization surface) to about 40 percent for cylinder-sphere and cone-sphere. 
It is therefore very much a secondary consideration. The presence of this speed 
advantage should not be surprising since there are many constants in (14)-(17) 
and (19)-(20) and many other terms that appear in more than one of a, b, and 
c. Furthermore, while evaluating the a, b, and c functions, y(t) or (6(t) + w,) is 
computed and of course need not be recomputed when finding P(s, t) from (9) 
or (10). For the algebraic approach, recall that a final matrix multiplication is 
required after an (n, y, z) is computed from (4) or (5). The algebraic approach is 
a general scheme that works when any quadric surface intersects the given ruled 
parameterization quadric. It pays a penalty for this generality by, in some sense, 
always handling the most complex case. 
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