
Implementing and using computer graphics and 
modeling systems rely on mathematical operations on
points and vectors. Part 1 of this tutorial in the previous
issue (May/June 1999) described the basic language and
tools of vector geometric analysis. Here, Part 2 shows 
how to use those concepts to derive and implement 
common graphics and modeling operations that 
maximize speed and numerical reliability.

In Part 1 of this tutorial I described the basic
language of vector geometry and made cer-

tain claims about its effectiveness when deriving geo-
metric expressions for important algorithms in
computer graphics and geometric modeling.1 Here I

provide specific examples of using
these techniques, showing repre-
sentative derivations and resulting
computer code. The C++ code
illustrates the use of the primitive
point, vector, and matrix operations
given in Part 1. Taken together, this
article and its companion represent
a condensed version of a technical
report with expanded applications.2

Recall we describe as vector geo-
metric that class of techniques based
on representing and manipulating
intrinsic relationships between
objects independent of any coordi-
nate system, such as the centroid of
a group of points or the vector nor-
mal to two others. By contrast, coor-
dinate-based approaches generally
operate by comparing and manipu-

lating individual x, y, and z coordinates of points. For
example, a particular algorithm may select one of two
points based on whose z coordinate is larger.

It turns out that vector geometric techniques work
best when operating on objects whose position and ori-
entation with respect to the current coordinate system
remain completely general, and when no axis of the
coordinate system has any special relationship to the
current problem of interest. Coordinate-based methods

work better when we either know a priori that the geom-
etry occupies a known, simple position in the coordi-
nate system, or we preprocess it so that it does.

First I’ll review required mathematical concepts and
tools, then look at using these tools to generate the affine
transformations that implement certain common mod-
eling transformations. I’ll quantify my claims that you
can easily develop computer implementations of these
methods and that they maximize numerical reliability
and speed. Finally, I’ll illustrate a few sample applica-
tions of vector geometry outside the context of model-
ing and viewing transformations.

A quick review and more
The first half of this tutorial1 developed a characteri-

zation of points and vectors as well as the set of opera-
tions well defined on them. We saw that we apply a
general affine transformation X to affine points as

X(Q) = MQ + t

where M represents a 3 × 3 matrix capturing the trans-
formation’s rotation, scale, and shear aspects, and t, a
vector in the associated vector space, describes the trans-
lation component. If we embed Q in projective space,
we can express this same transformation as

Graphics systems such as Programmer’s Hierarchical
Interactive Graphics System (PHIGS)3 and OpenGL4 use
this convention.

We also saw that we can apply this same affine trans-
formation to vectors as

X(v) = Mv (1)

Note that we don’t use the translation vector t when
applying the transformation to vectors.
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My main focus in this article is to
show how we can derive M and t
from various types of transforma-
tion specifications. The fact that
Equation 1 doesn’t depend on t
enables a generic method of com-
puting t for a given transformation.
For example, suppose we have
determined the 3 × 3 matrix M that
represents the effect of some affine
transformation on vectors. Suppose
further that we know a fixed point 
F of the transformation. Without
knowing anything about what the
affine transformation does, we can
mechanically compute the translation component t in
terms of the fixed point F:

X(F) = F = MF + t ⇒ t = F − MF (2)

Determining fixed points for modeling transforma-
tions proves trivial. Any point on a rotation axis, for
example, is a fixed point of the corresponding rotation
affine transformation. Thus we focus on characterizing
how a transformation affects vectors. We can then
mechanically complete the specification of the corre-
sponding affine transformation for points by using a
fixed point as indicated above.

Example 1: A mirror affine
transformation

Mirror transformationscommon modeling opera-
tionsflip the “handedness” of geometry. For example,
if I have a model of the left rear door of a car, I can apply
a mirror transformation to obtain the geometry of the
right rear door. We can construct a general mirror trans-
formation from a combination of rotation, translation,
and scale transformations. However, since it’s such a
common operation and since specifying the mirror
plane directly proves so much simpler than determin-
ing and assembling the required component rotation,
translation, and scaling transformations, we treat it
directly here.

We define the mirror transformation by specifying a
plane in space to use as the mirror. Defining this mirror
plane typically involves specifying a point B on the plane
and a vector n perpendicular to the plane, as illustrated
in Figure 1a. Recall that we can’t assume the plane has
any particular relationship with respect to the coordi-
nate axes. In our car example, the designer would give
us the plane that cuts the car in half, splitting the dri-
ver’s and passenger’s sides. That is, B would represent
some point in the middle of the car, perhaps where the
hood ornament attaches to the hood. The vector n
would represent a vector pointing from the left side of
the car to the right side. (As required, the transformation
we derive stays the same if the vector points instead from
the right side to the left side.) The mirror transforma-
tion will then map a point on one side of the plane to its
mirror image on the other side, as shown in Figure 1a.

Goldman stated without proof a 4 × 4 matrix defined
only in terms of B and n that represents this transfor-

mation.5 The remainder of this example illustrates how
to use the vector geometric tools we have studied to
derive this matrix. The example here concludes with
sample C++ code implementing the formula.

As explained in the previous section, we focus first on
how to mirror a vector. The expressions we derive and
the subsequent computer implementation become
somewhat easier if we use a unit vector for the plane
normal. We therefore begin by computing n̂, the unit
vector in the direction of n. (In the computer imple-
mentation, we check at this point to make sure that n
is not a zero vector—the only error condition or special
case that can arise.)

We can write an arbitrary vector v as the sum of two
vectors, one parallel to and the other perpendicular to
the unit plane normal n̂. As indicated in Figure 1b, the
mirror transformation has the effect of negating the
component parallel to n̂; it leaves the component per-
pendicular to n̂ unchanged. Therefore,

We compute the components of v parallel and per-
pendicular to n̂ as v||=(v⋅n̂)n̂ and v⊥=(v−(v⋅n̂)n̂).
Substituting these expressions into the equation above,
we find

A direct implementation of this equation most effi-
ciently mirrors an individual vector v. If instead we need
a matrix representation (for example, for use as a mod-
eling transformation matrix in a graphics pipeline), then
we need to write the dot product operations in matrix
form. It’s straightforward to demonstrate that we can
write this as

X(v) = Mv

where

“I” represents the 3 × 3 identity matrix, and “⊗” is the
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tensor product operator. The tensor product (n̂ ⊗ n̂) is
a 3 × 3 matrix in which the (i, j)th element is ni nj. 
That is, if we consider n̂ as a column vector, then
n̂ ⊗ n̂=n̂ ∗ n̂T. Finally, we compute t using Equation 2
with F set to the mirror plane point, B.

By now it should be clear that the claim made earlier
holds. That is, Mand t remain unaffected if −n̂ replaces ̂n.

In the earlier technical report2 I showed C++ class
definitions for points, vectors, and matrices with meth-
ods and overloaded operators implementing the basic
operations in Part 1 of this tutorial.1 Using these defin-
itions, we can write a C++ function that creates the 
3 × 3 matrix M and the translation vector t for this affine
transformation:

bool BuildMirrorTransformation(
aPoint B, aVector n,
Matrix3x3& M, aVector& t)

{   aVector nHat;
double length =

n.normalizeToCopy(nHat);
if (length < tolerance)

// a zero vector was
// provided for n. We
// cannot proceed.
return false;

Matrix3x3 T =
Matrix3x3::tensorProductMatrix

(nHat,nHat);
M = Matrix3x3::IdentityMatrix –

2.0*T;
// The point B is a fixed point
// of the transformation, hence:
t = B - M*B;
return true;

}

Example 2: A general rotation affine
transformation

We define a rotation transformation in 3D affine space
as a rotation by an angle θ about an axis passing through
a point B with direction given by a unit vector ŵ. (See
Figure 2.) Goldman5 stated the following formula with-
out proof:

where

As with mirror transformations, a derivation of this
formula begins by considering an arbitrary vector v and
characterizing the rotation of its components parallel
and perpendicular to ŵ.2 (See Figure 3.) In this case,
the parallel component remains unchanged, while the
effect on the perpendicular component can be charac-
terized with a 2D geometric analysis as indicated in the
middle of Figure 3.

I’ll refer to the computer-based implementation of
these expressions in the next section when discussing
ease of implementation, robustness, and computation-
al efficiency.

On efficiency, simplicity of
implementation, and robustness

This approach to developing modeling transforma-
tions relies solely on vector geometric analysis. As a
major benefit, the final computer code you write ends
up much simpler, more compact, and free of nasty spe-
cial-case handling. It typically involves fewer arithmetic
operations as well.

I won’t obsess here with exhaustive operation counts,
but I will make some general observations to justify the
claim that this method usually requires fewer arithmetic
operations. Consider the general rotation matrix M pre-
sented in Example 2. Given the sine and cosine of the
rotation angle (required by any approach), it takes 36
multiplies and 19 adds for a completely dumb imple-
mentation of this equation. By “dumb” I mean that we
don’t try to exploit any special properties of the terms
such as the symmetry of ŵ⊗ŵ, the zeros in the W
matrix, or the fact that we can actually generate cos θ I
with no multiplications. If instead we symbolically
expand this equation and implement the result, we can
compute M with just 15 multiplies and 10 adds. Com-
puting the translation vector t then requires an addi-
tional 9 multiplies and 9 adds. Therefore the total
required to compute (M, t) equals 45 multiplies and 28
adds for the dumb approach, or 24 multiplies and 19
adds for the optimized approach.

The traditional coordinate-based algorithm described
in the standard texts embodies a “reduce to the previ-
ously solved problem” approach. It works by combining
primitive affine transformations to achieve more gener-
al ones. The cost for concatenating two affine transfor-
mations is 36 multiplies and 27 adds, approximately 90
percent the cost of our “completely dumb” implementa-
tion and 50 percent more expensive than our optimized
general implementation. Remember, however, this com-
pares between a complete computation of the rotation
matrix using the results of the vector geometric analysis
as shown in Example 2 versus a single concatenation of
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a pair of affine transformations. The
traditional “reduce to the previous-
ly solved problem” approach re-
quires several concatenations of
affine transformations. To do a rota-
tion about a general axis in space, for
example, you need to combine seven
affine transformations (that is, per-
form six concatenations of affine
transformations). Therefore, creat-
ing a general rotation matrix would
require 216 multiplies and 162 adds.
Clearly, this proves far more expen-
sive than the vector geometric
approach.

As we saw in Part 1 of this tutori-
al,1 the traditional approach is even
more complex in that you must
“guard” the construction of the var-
ious matrices by checking for certain
special cases like distances comput-
ed for denominators being zero or
nearly zero. By contrast, once we
determine that we haven’t gotten
the zero vector for a rotation axis
(analogous to the initial test in the
BuildMirrorTransformation
function of Example 1), we don’t
need any special-case detection to
implement our vector geometric
equation for M. Therefore, while it’s
true that we can best implement generating a “primi-
tive” rotation about the x-, y-, or z-axis by directly writ-
ing code to construct the appropriate matrix, anything
more general is best done with a direct implementation
of the equation given in Example 2.

Viewing transformations
The examples above illustrate applying vector geo-

metric analysis to generating modeling transformations.
We can apply these same techniques to generate so-
called “viewing transformations,” the affine transfor-
mations that map world coordinates to the “eye
coordinate system” used in computer graphics systems.
No mathematical difference exists between modeling
and viewing transformations—both simply transform
geometry from one coordinate system into another. The
difference is purely conceptual and relates to the inter-
face presented, either to a programmer or to an end user.
That is, modeling and viewing transformations typical-
ly differ in terms of the most natural way to specify the
desired transformation. For example, rather than
instructing the graphics system to rotate and then trans-
late geometry, the graphics programmer (or end user)
wants to say “I am standing here and looking in that
direction. What do I see?”

Instead of an eye coordinate system, PHIGS employs
a slightly more general coordinate system called the
view reference coordinate system (VRC).3 The primary
difference is that the eye’s position need not lie at the
origin of VRC. In PHIGS, the so-called view orientation
transformation maps world coordinates to VRC. You

would define it by specifying a view reference point V, a
view plane normal vector n, and an up vector v.3 From
n and v, we compute the three mutually perpendicular
unit vectors defining the VRC axes as measured in world
coordinate space:

Notice that v̂ will be a unit vector in the direction of
the component of v perpendicular to n̂. We thus com-
pute the final axis direction as

Given these mutually perpendicular unit vectors, we
write the 3 × 3 matrix M of the affine transformation
describing the view orientation operation as

Now, what about t? In general, there exists no fixed
point of a view orientation transformation. However,
the view reference point V is defined as the origin of
VRC, hence it must get mapped to (0, 0, 0). That is,

X(V) = (0, 0, 0) = MV + t ⇒ t = −MV

M =
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We transform geometry into the viewing coordinate
system because this coordinate system has a special rela-
tionship to the display device.6 Exploiting these special
properties can make rendering operations considerably
more efficient and simpler to write. Subsequent analy-
sis is therefore best accomplished using coordinate-
based schemes that exploit the special properties built
into the viewing coordinate system. See elsewhere for
further details and examples.2,6

Other common operations
We can easily express many other queries and opera-

tions common in graphics and geometric modeling
using similar applications of vector geometric tech-
niques. We frequently need computations involving dis-
tances and signed distances between various
combinations of points, lines, planes, and other basic
curves and surfaces. The first two examples here show
C++ code using vector geometric operations for two
common distance queries. Derivations for these and
similar queries appear in the literature.2,7,8 I leave others
as an exercise.

We can characterize a plane in space by a point B on
the plane and a vector n perpendicular to the plane (for
example, the mirror plane of Figure 1a). Given such a
plane, we define the signed distance of an arbitrary
point Q from the plane as the actual distance if Q lies on
the side of the plane to which n points and the negative
of this distance if it lies on the other side. We can write
a C++ routine using the point and vector utilities
described in the earlier technical report2 and imple-
menting this definition as

bool signedDistancePntPlane(
// the point:
aPoint Q,
// the plane:
aPoint B, aVector n,
// the computed signed distance:
double& signedDist)

{  aVector nHat;
double length =

n.normalizeToCopy(nHat);
if (length < tolerance)

// a zero vector was provided
// for n. We cannot proceed.
return false;

signedDist =
aVector::dot( (Q-B) , nHat );

return true;
}

We can define a line in space by a point B on the line
and a vector w specifying the direction of the line (for
example, the rotation axis of Figure 2). We frequently
need to compute the distance between an arbitrary point
Q and the line. We could adopt an approach based on
the Pythagorean Theorem by considering the right tri-
angle formed by B, Q, and the perpendicular projection
of Q onto the line. In the following code, however, we
compute the component of the vector (Q−B) perpen-
dicular to w, then return the length of this vector:

bool distancePntLine(
// the point:
aPoint Q,
// the line:
aPoint B, aVector w,
// the computed distance:
double& distance)

{  aVector wHat;
double length =

w.normalizeToCopy(wHat);
if (length < tolerance)

// a zero vector was provided
// for w. We cannot proceed.
return false;

aVector vParallel, vPerpendicular;
wHat.decompose( (Q-B),

vParallel, vPerpendicular );
distance =

vPerpendicular.length();
return true;

}

It’s frequently necessary to compute a unit vector per-
pendicular to a surface at a given point on the surface.
Intersection computations and rendering algorithms
offer two examples of the use of this utility. Suppose we
wish to compute the outward pointing normal to a cylin-
derdefined by its axis (B,ŵ) and radius rat a point
Q on the cylinder’s surface. The implementation would
be identical to what we just saw in distancePntLine,
except that rather than computing the length of 
vPerpendicular at the end, we would normalize it
and return it as the unit outward pointing normal. Fur-
thermore, if Q didn’t precisely lie on the cylinder, the
normal so computed would be the normal for the point
on the cylinder closest to Q. This extended notion of
“normal at Q” only fails if Q lies on the cylinder’s axis,
that is, if vPerpendicular is the zero vector.

A slightly more complicated but still relatively
straightforward example finds the outward pointing
normal to a right circular cone at a point Q on the cone
different from the vertex. Up to a sign, the desired nor-
mal is the component of the cone axis vector perpen-

Tutorial

72 July/August 1999

w
Q

V

4 Finding 
the outward
pointing normal
to a right circu-
lar cone at a
point Q.



dicular to the ruling containing Q. In Figure 4, the red
vector along the cone ruling represents wParallel;
the red vector pointing into the cone represents 
wPerpendicular.

bool normalToCone(
// the point:
aPoint Q,
// the cone axis (vertex=V):
aPoint V, aVector w,
// the computed outward
// pointing normal vector:
aVector& normal)

{  aVector ruling = Q - V;
double d = ruling.normalize();
if (d < tolerance)
// Q is at the vertex. We
// cannot proceed.

return false;
aVector wParallel, wPerpendicular;
ruling.decompose( w,

wParallel, wPerpendicular );
d = wPerpendicular.normalizeToCopy

(normal);
if (d < tolerance)
// Q is on the cone axis -OR-
// w is the zero vector. We
// cannot proceed in either case.

return false;
// Invert the normal if necessary.
// (The outward pointing normal
// must point away from the cone
// axis.)
if (aVector::dot(w,ruling) > 0.0)

normal  =  -normal;
return true;

}

Conclusion
Somewhat more detailed derivations of the examples

presented here as well as those for other transforma-
tions and operations appear in my earlier technical
report.2 That report also describes coordinate-based
schemes for those situations they better suit.

We have seen that vector geometric approaches prove
most appropriate in situations where we can make no
assumptions about how geometry relates to coordinate
systems. Vector geometric methods operate by express-
ing coordinate-system-independent relationships
between points and vectors. Not only did these expres-
sions not rely on special configurations of the geometry
with respect to each other or to the coordinate system,
but also their implementations in computer code didn’t
require special-case handling in the event that such spe-
cial relationships occurred. This proved a powerful ana-
lytical technique that led to highly efficient and robust
computer implementations.

However, some situations benefit from transforming
geometry into special coordinate systems where we can
exploit the system’s orientation to dramatically simpli-
fy and accelerate certain types of imaging operations.
Examples include clipping algorithms, visible line and

visible surface determination, and intensity depth cue-
ing. You can find technical details on implementing
those operations in standard references.4,6 �
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