
Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

257

freeform: A Tool for Teaching the Mathematics of Curves and Surfaces

James R. Miller

University of Kansas, jrmiller@ku.edu

ABSTRACT

We describe the structure and use of an interactive modeling and visualization tool
used to help students understand various important concepts in curve and surface
design. This paper describes those aspects of the tool related to NURBS curves, but
Bezier and Hermite curves are also supported as are Bezier and B-Spline surfaces. The
focus of this paper is almost exclusively on those features of the tool used to visualize
the mathematics of NURBS curves and surfaces, especially focusing on an integrated
visualization of how weights and knots affect the blending functions and, through
them, the curve. It is currently packaged as a standalone C++ program using OpenGL,
running on Macintosh and linux operating systems. A port to Windows is underway,
but as a part of a larger effort to redesign and better package a Java-JOGL-Swing
version, access to which will be placed in the public domain using Java Web Start.

Keywords: CAD education, visualizing B-Spline functions, curve & surface design.
DOI: 10.3722/cadaps.2010.257-267

1 INTRODUCTION

Over the past several years, we have developed an interactive tool called freeform that is used to
demonstrate the mathematics of curve and surface design primarily for students in our graduate
Geometric Modeling course. All of the students in the course have programming expertise as well as
basic knowledge of the mathematics of 3D graphics (points and vectors in affine and projective
spaces, affine transformations, etc.). Most are also familiar with OpenGL, and many, if not most, have
used one or more open source or commercial CAD design tools supporting the creation and
manipulation of freeform curves and surfaces. The intent of this course is to give them more in-depth
understanding of the underlying mathematics and algorithms that they have been employing at a user
level. They demonstrate their knowledge with a combination of written homework and programming
projects.

The course is taught as a graduate level computer science course, but it is also actively advertised
to graduate students in other departments. It frequently draws some from mechanical engineering as
well as occasionally from mathematics and aeronautical engineering. The engineering students
appreciate the chance to understand the underlying mathematics and algorithms of design packages
they typically use as it removes the veil of “black magic” and helps them better understand what they
can and cannot do. At the same time, it helps them to become better users of CAD packages [8]. The
computer science students (and, to a certain extent, the mathematics students) are exposed to a
realistic vehicle for exploring numerical programming issues, mathematical function spaces, and other

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

258

such issues that they all too frequently only study in the abstract. Many are simply motivated by a
desire to better understand the technology. The class is usually sufficiently small so that all the
students get to know each other, and they are able to share their respective expertise.

The freeform program supports parametric curves and surfaces defined as blended sums of
control points:

curves:
0

()
n

i i
i

C u F u P

 (1)

tensor product surfaces:
0 0

, () ()
n m

i j ij
i j

S u w F u F w P

 (2)

It also supports sketching ordered collections of point-vector pairs to generate piecewise Hermite
curves.

We try to emphasize the importance of understanding how blending functions determine general
properties of curves and surfaces, while the control points determine the shape of a particular
instance. This intuition is sometimes easier to convey with some classes of curves and surfaces (e.g.,
Bezier) than it is with others (e.g., NURBS). For example, the fact that design handles such as knots and
weights affect the blending functions themselves can be a stumbling block. To help with the
development of this understanding, freeform includes an integrated and interactive visualization of
how adjusting knots and weights affect the shape of the blending functions as well as that of the
curve. In side-by-side windows, users watch the shape of the functions and the shape of the curve
change in response to interactive knot and weight adjustments. As will be illustrated below, other
features of freeform present visualizations of the relationship between spans and control points as
determined by the knot vector.

As the scope and features of this tool have evolved, we have been using it in a more fundamental
way in the course. While doing so, we have observed much greater engagement on the part of
students, better performance on homework and exams, much stronger ability to handle more complex
and detailed questions, and, perhaps most interestingly, much better questions raised in class.

2 OTHER VISUALIZATION-BASED SPLINE EDUCATIONAL TOOLS

While we know of no educational tool with the breadth of coverage of ours, others do exist which
present visualizations of various sorts specific to B-Splines. Ones with which we are familiar are
described below.

Lerios describes a program called scurvy that was written to illustrate the dependence of B-Spline
curves on control point positions and knot vector sequences [5]. No attempt to visualize the basis
functions is mentioned, nor does scurvy as described support rational B-Splines. There are also some
visualization aids described that allow the user to see what portion of a B-Spline curve will be affected
if a particular control point is moved.

Chang developed a tool using Mathematica that allows a single non-rational B-Spline curve to be
manipulated [1]. A button is used to toggle between showing the blending functions and showing the
curve. Sliders can be used to adjust the knot values.

Demidov offers web pages with Java applets that demonstrate qualitatively how knot placement
affects B-Spline basis function shapes [2]. No quantitative knot values are shown, and it is difficult to
experiment with knots of multiplicity greater than 1. It is also difficult to relate blending functions to
control points or positions on curves to points on the blending functions or even spans in parameter
space.

Unlike the previous two examples, Fisher describes a tool that focuses on control point weights in
NURBS curves [4]. They present weighted control points as points in projective space and illustrate
how the curve is generated by projecting the projective space curve points back to the affine plane.
There is little or no mention of knots, visualization of basis functions, or ability to alter knot spacing
for their curves.

By and large, all these tools allow only a single planar curve and permit visualizations of limited
aspects of the curves and/or basis functions. Our goal was to develop a comprehensive set of

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

259

visualizations that allowed the user to understand deeply the relationship between knots, basis
functions, control points, weights, and curve shape. Moreover, we also wanted to be able to illustrate
common algorithms in a context sufficiently rich so that not only their operation, but also their
application could be appreciated. This requires the ability to store and manipulate several 3D curve
and surface instances at once.

3 THE DESIGN OF FREEFORM

The freeform program was designed first and foremost as a teaching tool, not as a production curve
and surface design tool. Most notably, this means certain features are very limited or missing
altogether. For example, there are relatively few ab initio curve and surface creation mechanisms.
There is no support for matching curvatures at specific positions or other similar precision design
tools. There are only limited sketching input facilities.

Supported curve creation operations include:
 Interpolation:

o Create a degree n Bezier curve exactly interpolating an ordered collection of n+1
points. (A few options are provided for selecting how parameter values are associated
with the points.)

o Create a piecewise cubic Hermite curve interpolating an ordered set of n+1 point-
vector pairs.

 Least squares approximation: Create a degree m Bezier curve which is the least squares
approximation to a collection of n points, where m<n. (A few options are provided for selecting
how parameter values are associated with the points.)

 Shape approximation: Use an ordered set of n+1 points as the control polygon for a degree n
Bezier or Rational Bezier curve; alternatively, use the ordered set as the control points for a
degree p B-Spline, or rational B-Spline (NURBS) curve, p≤n.

The points and/or point-vector pairs can be digitized or read from a file.

Supported surface creation operations include:
 Generate a regular n+1 x m+1 array of points on a plane to be used as control points for a

Bezier or NURBS surface.
 Create a NURBS surface as, for example, a ruled surface, sum surface, or revolution surface.

There is a simple text file format that can be read by freeform to import geometry. Geometry can be
saved by freeform in this format for later re-loading. Its format is also sufficiently simple so as to be
readily generated by other applications to allow geometry from those sources to be imported into
freeform.

Several features are included in freeform that would likely not be visible at the user interface in
production design systems, or at least not as directly as they are here. Some of these features are
listed below. We will discuss these in detail in the next section.

 spinner controls for setting the knot values of the current B-Spline, including allowing knots to
assume any multiplicity;

 spinner controls for adjusting weights of the current B-Spline;
 separate side-by-side displays of normalized and unnormalized B-Spline basis functions that,

along with the separate display of the corresponding curve, are dynamically updated as
weights and/or knots are adjusted;

 several passive highlighting techniques discussed below that are designed to help the student
visualize several important concepts including the spans affected by a given control point as
well as the set of control points affecting a given span;

The rest of the paper focuses almost exclusively on NURBS curves and associated visualizations from
the perspective of a student trying to master the relationships among the blending functions, control
points, weights, and knot vectors in order to better understand the underlying NURBS representations
and algorithms.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

260

4 USING FREEFORM TO VISUALIZE NURBS CURVES

Our general approach when teaching this material is to cover the detailed mathematics and proofs in
parallel with the more intuitive and interactive visualizations presented in this section. The goal is to
interpret the visual properties we discover as geometric manifestations of corresponding
mathematical properties of the blending functions and curves that we derive. Eventually we try to
build the intuition that allows students to look at a visualization of some aspect of a curve’s geometry
and be able to describe it in terms of what the knots and weights (and hence blending functions) must
be; and vice versa: be able to see some mathematical result or expression and be able to predict what
the visual manifestation of it will be.

4.1 Preliminaries: Creating a Curve; Basic Control Point – Knot – Blending Function Associations

A top-level dialog window allowing the student to create instances of curves and specify how certain
manipulations are to be interpreted is shown in Fig. 1.

Fig. 1: Basic curve control window.

When a student clicks the “Add disjoint NURBS” button, a NURBS curve with the indicated properties
is created and displayed. Using the properties settings as displayed in the Curve Controls window of
Fig. 1., an open, periodic, cubic B-Spline with ten control points will be created, all of whose weights
are 1. As illustrated in Fig. 2(a)-(c)., side-by-side windows are then presented so the student can see the
curve, the knot vector and weights, and the basis functions.

Fig. 2: After creation of a cubic NURBS curve, side-by-side windows present (a) the curve, (b) the weight
and knot controls, and (c) the Basis Functions.

We shall use the following notation and conventions when discussing NURBS curves and the various
visualizations supported by freeform: the curve is of degree p, order k=p+1; it employs n+1 control

points and utilizes a knot vector,
0
, ,

n k
u u

U .

In the basis function window, a solid white rectangle outlines the parametric domain. The
alternating light and dark gray vertical bands emphasize the parametric spans. In Fig. 2(c) this is

u
p
 u

3
 3 u u

n1
 u

10
 10 . This parametric domain generally makes sense to the student at this

point because we have already derived the proof that the blending functions N
j , k

, i k 1 j i are

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

261

the only non-zero order k blending functions defined over the parametric interval u
i
 u u

i 1
, and

that these k functions sum to 1. Between the proof and this visualization, students come to
understand the idea that every span of an order k B-Spline curve has exactly k non-zero blending
functions active, and hence the shape of each span is determined solely by the corresponding set of k
control points. Moreover, it is then clear to the student that the parametric domain must start at knot

u
p

because that is when we first have k active blending functions. It ends at knot u
n1

because we do

not create an (n+1)-th blending function (there is no (n+1)-th control point for it to blend), hence we no

longer have k non-zero blending functions for u u
n1

.

Fig. 3: Some passive highlighting in the side-by-side windows: (a) the curve with its break points, (b) a
segment highlighted in brown with control points colored to match their blending functions, and (c) the
active blending functions colored to match the control point colors.

To make this connection more concrete as well as to better illustrate exactly what control points
affect a given span, we employ a passive highlighting scheme operating in unison across the curve
geometry and blending function windows. As a prelude, we request that span break points be
displayed. (See the check box in Fig. 2(b)) The student then sees the image of Fig. 3(a). As the student
passively moves the cursor over a span, that span is highlighted in brown, and the portion of the
control polygon defined by the k control points corresponding to the k non-zero blending functions is
highlighted using a color scheme tied to that of the blending functions (Fig. 3(b)). We can also see in
Fig. 3(b) that all other control polygon legs in the curve geometry window have been grayed out;
similarly, all portions of all blending functions in the blending function window outside of the
corresponding span have been grayed (Fig. 3(c)) – all to emphasize the connection between the
parameter and coordinate spaces.

One use of the display in the curve geometry window is to make clear to the student that any
change to the highlighted control points will change the shape of the highlighted span; conversely, in
order to adjust the shape of that highlighted section, it is necessary to adjust the position of one or
more of the highlighted control points.

The closely related concept is that all control points (other than the first p and the last p) have
influence over k consecutive spans. Additional passive highlighting schemes are used to convey this
idea as well as to visualize how much of the curve is affected by the first p and last p control points.

In Fig. 4(a)., the student has positioned the cursor over control point P
5
. All elements of the display

have been grayed out except the indicated control point and the k spans it affects. Meanwhile, the
blending functions in the adjacent blending function window have all been grayed out except for the
corresponding blending function. The function and the point have been assigned the same color to
make the connection obvious. Fig. 4(c)-(d) illustrates the same idea for an initial control point whose
influence extends over only 2 spans since its blending function starts two spans before the start of the
active parametric domain.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

262

Fig. 4: Passive highlighting in the side-by-side windows to illustrate the connection between control
points and affected spans: (a) an interior control point affecting all k spans, (b) its blending function
whose domain is entirely within the curve parametric domain, (c) one of the first p control points with
the two spans it influences highlighted, (d) its blending function whose domain includes two spans
outside the parametric domain of the curve.

4.2 Closed Curves

To this point, students have seen only uniform knot spacing and the periodic blending functions they
generate. It generally only takes a little explanation and a simple demonstration of moving the
positions of the final p control points on top of the positions of the first p to show them how a closed

C
p1

curve can be created. Selecting the “closed” radio button shown in Fig. 1 and creating a new curve
then illustrates how this can be done automatically.

Fig. 5: Illustrating the effect of knot adjustment: (a) knot u
8

is decreased in magnitude, increasing the

maximum value of N
5

while decreasing the maximum value of nearby blending functions, (b) the

curve draws closer to control point P
5

as a result, (c) using the blending function probe to examine the

new maximum value of blending function N
5
.

4.3 Nonuniform Knot Spacing and Clamped Curves

As a first step towards exploring nonuniform spacing, the slider of an interior knot, u
8
, is adjusted.

The students watch as various curve spans grow and shrink in arc length; simultaneously they can see

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

263

how the spans in the blending function window grow and shrink (Fig. 5(a)-(b).). More significantly, the
relative influence of various control points in the adjacent spans of the curve rise and fall at the same

time. Fig. 5(c)., for example, shows how control point P
5

has more influence in those spans after the

knot adjustment since its blending function (N
5, k

) grows while others (e.g., N
4 , k

) diminish. Students

observe the curve drawing closer to P
5

as a result.

Fig. 6: Illustrating the effect of knot multiplicity: (a) u
7
 u

8
, (b) u6 u

7
 u

8
, (c) control point P

5
is

interpolated as a result.

We then drop u
8

even more until it equals the value of u
7

(Fig. 6(a).). A zero-length span has been

introduced, and even though the passive control point span highlighting (e.g., Fig. 4(a).) appears to

indicate that control point P
4

now only influences three spans, it is obvious to the students that it still

affects four because they have watched one of the spans gradually shrink until its length is zero. We
also point out to the students that this knot vector configuration has caused the curve to become

tangent to the P
5
 P

6
control polygon leg – this result being the necessary geometric consequence of

the fact that only N
5

and N
6

are non-zero at the duplicated knot.

We then demonstrate increasing the multiplicity to p k 1 3 , this time interactively increasing

u
6

until u6 u
7
 u

8
. The students watch as blending function N

5
spikes to a value of 1 at the

repeated knot while the curve pulls into and interpolates P
5
. (See Fig. 6(b)-(c).)

It is natural to ask – and students typically do at this point – what happens if the knot is repeated
again (and again and again…). After trying to extend their understanding to guess the answer, we

demonstrate the effect by setting u
5

equal to the knot whose multiplicity was previously three to yield

the displays of Fig. 7. Students see blending function N
4

spike to 1 at u u
5
, then immediately drop

to 0; meanwhile, N
5

starts at 1 at u u
5

and then gradually tapers down to 0. The resulting broken

curve is then intuitive.

Fig. 7: Creating an interior knot with multiplicity k, breaking the curve: (a) two blending functions
spike to 1 at the repeated knot, (b) the curve is broken into two pieces.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

264

Describing how to generate B-Splines that interpolate their initial and final control points is fairly
straightforward at this point. Combining an understanding of how duplicated knots allow
interpolation of arbitrary control points with the fact that the parameter range of the curve starts at
the k-th knot and ends at the (n+1)-th knot, it is not surprising that k initial and k final duplicate knots
lead to endpoint interpolation, and we introduce the common term “clamped B-Spline” to describe B-
Splines with this property. We generally start with an unclamped B-Spline and interactively adjust the
initial and final knots to have multiplicity k so that students can watch the curve gradually draw near
the first and last control points, ultimately interpolating them.

One slightly confusing issue that arises at this point relates to the specific control point that gets
interpolated when knots are repeated the appropriate number of times. When first introducing the

idea in the context of repeated interior knots, we discover the rule that says: if u
i

is the first of

p k 1 repeated knots, then control point P
i1

is interpolated at parameter value u u
i
. But things

are a little different at the start since we have u0
 L u

k 1
, but control point P

0
is interpolated. There

are various ways to explain this, but we have found it convenient to explain it in the context of another
mystery: exactly how many knots are really needed to describe an order k B-Spline with n+1 control
points?

Students are frequently assigned readings from different sources, and the “how many knots are
required?” question often arises in that context. For example, a student will read in Farin’s book [3]
that an order k B-Spline with n+1 control points requires n+k–1 knots. They then read in Piegl & Tiller
[6] that there are n+k+1 knots! Is there a typographical error? Is one of them wrong? We demonstrate
that neither is really wrong by showing that the actual value of the first and last knot are irrelevant to
the shape of the curve. We demonstrate this fact in freeform by observing that, as we drag the first
and last knot around, no part of the blending functions inside the parametric domain change;
similarly, the curve shape is completely unaffected as we modify those two knot values. The geometry
of Fig. 8. illustrates a clamped order 5 B-Spline along with its blending functions. Fig. 8(a). shows the
curve, and Fig. 8(b). shows the corresponding blending functions as determined by the knot vector
whose first and last knots have multiplicity k=5. As we interactively decrease the first knot and/or
increase the last knot, students see that we modify the initial (final) span of the corresponding
blending functions, but we do not modify any blending function in any way within the defined
parametric domain of the curve. It is then no surprise when they also observe that the shape of the
curve remains unaltered as those two knots are modified.

Fig. 8: The actual value of the first and last of the n+k+1 knots of a B-Spline do not affect the shape of
the B-Spline curve: (a) blending functions for an order 5 clamped B-Spline, (b) the corresponding curve,
(c) the blending functions after decreasing the first and increasing the last knot.

In summary, strict interpretation of the recursive definition of the basis functions most naturally leads
to the use of n+k+1 knots. On the other hand, typical implementations of evaluation algorithms that
start by locating the only non-zero order 1 basis function at a given parameter value and then work up
to the appropriate order k function will never actually use knot 0 or knot n+k. This observation,
coupled with the fact that the curve shape is unaffected by the first and last knot provide the
justification for saying only n+k–1 knots are required. Of course care must be taken when interfacing
with programming APIs like OpenGL or geometric data base representations (IGES, STEP; commercial
ones like ACIS; etc.) to make sure that relevant conventions are observed. Some of these expect only
n+k–1 knots; others require n+k+1.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

265

4.4 Weights and Rational B-Splines

The B-Spline controls shown in Fig. 2(b). show spinners allowing weights of the control points to be
modified. This intuition is easy to convey: increasing weights draws the curve projectively towards the
given control point. We introduce the standard curve representation:

,
0

,
0

n

i k i i
i

n

i k i
i

N u w P

C u

N u w

(3)

Particular values of the weights in conjunction with specific knot vector and control point placement
allow the conic curves to be exactly represented. Fig. 9 illustrates matching ninety degree conic section
arcs with the indicated weight assignments. (These are actually rational Bezier curves, but students
understand by this time how to generate a rational B-Spline representation of a rational Bezier curve.)

Fig. 9: Matching a hyperbola, parabola, circle, and ellipse with rational curves.

The main additional intuition at this point is to understand the basis functions. We introduce two
standard equivalent mathematical representations for the NURBS curve. The first employs what we call
“unnormalized blending functions” (the conventional blending functions multiplied by the weights):

 , ,
U
i k i i kN u w N u (4)

The curve representation remains defined in affine space and becomes:

,
0

,
0

n
U
i k i

i
n

U
i k

i

N u P

C u

N u

(5)

The second representation employs what we call “normalized blending functions” and are only applied
to control points embedded in projective space using their weights:

 , , ,P
i i i i i i i iP w x w y w z w (6)

,

,

,
0

i i kN
i k n

j j k
j

w N u
N u

w N u

(7)

Using Eqn. (6) and Eqn. (7), the NURBS curve is defined in projective space as:

 ,
0

n
P N P

i k i
i

C u N u P

 (8)

In freeform, we allocate one display window for the collection of Ni,k
U

functions, and one for the set of

Ni,k
N

. These windows, displayed in Fig. 10, are titled “Unnormalized B-Spline Basis Functions” and

“Normalized B-Spline Basis Functions”, respectively.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

266

Fig. 10: The geometry of Fig. 8 after increasing the weight of P
3

and decreasing the weight of P
7
.

From Eqn. (4) it is clear that the Ni,k
U

functions will not in general sum to 1. In fact, individual

functions may exceed 1 as can be seen in Fig. 10. Modifying weight w
i
affects only Ni,k

U
; all other

functions remain unchanged. By contrast, the normalized Ni,k
N

functions allow students to see exactly

how the influence of other points decrease (increase) as w
i
increases (decreases). In the example of Fig.

10., students can observe how continuous increases to w
3

cause corresponding continuous decreases

in all blending functions that are non-zero over a parametric interval which overlaps that of N3,k
N

.

Therefore, the influence of the corresponding control points on the curve decreases, something that is

readily observed by watching the curve as the weight w
3

increases.

4.5 Other Features

Several other features of freeform permit students to see the operation of important algorithms like
knot insertion, conversion of a B-Spline to an equivalent piecewise Bezier, and others. There are also
various interactive tools for restricting mouse-based dragging of points to given axes, coordinate
planes, or control polygon legs. A marker can be moved through the Basis function window while the
corresponding B-Spline point is traced along the curve. While doing so, successive spans along with
the control points determining their shape are highlighted as in earlier examples.

5 CURRENT STATUS AND PLANS

The freeform program is used to a limited extent late in our undergraduate senior-level graphics class
in which the focus is less on the mathematics and more instead on intuition. The goal is to teach the
basics of curve and surface modeling at a user level and possibly interest some students in taking the
graduate Geometric Modeling class in which the program is used extensively. In that course, the goal is
to understand the mathematics and algorithms much more deeply.

The current implementation has evolved over several years and is written in C++ using OpenGL
and the GLUT for basic display, and the glui [7] for most user interface widgets. An effort is currently
underway to clean up the user interface, make some things more consistent and move the higher level
code to Java, Java OpenGL (JOGL), and Swing. The goal is to then deliver the application over the
internet via Java Web Start.

Computer-Aided Design & Applications, 7(2), 2010, 257-267
© 2010 CAD Solutions, LLC

267

6 SUMMARY

We have described the use of a portion of freeform, a curve and surface modeling tool developed first
and foremost as an educational tool to help students understand the mathematics of curves and
surfaces, especially B-Splines and rational B-Splines. Reaction from students in various classes has
been positive, and performance on homeworks, projects, and exams has exhibited significant
improvement as the tool has evolved and been used more extensively.

REFERENCES

[1] Chang, Y.-S.: B-Spline Curve With Knots, http://demonstrations.wolfram.com/ BSplineCurve
WithKnots/.

[2] Demidov, E.: An Interactive Introduction to Splines, http://www.ibiblio.org/e-
notes/Splines/Intro.htm.

[3] Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, fifth edition, Morgan Kaufmann
Publishers, San Diego, CA, 2002.

[4] Fisher, J.; Lowther, J.; Shene, C.-K.: If You Know B-Splines Well, You Also Know NURBS!,
Proceedings SIGCSE 2004, March 3-7, 2004, Norfolk, VA, pp. 343-347.

[5] Lerios, A.: B-Spline Curve Visualization, http://graphics.stanford.edu/courses/cs348c-95-
fall/software/scurvy/.

[6] Piegl, L.; Tiller, W.: The NURBS Book, second edition, Springer, New York, 1997.
[7] Rademacher, P., GLUI User Interface Library, http://www.cs.unc.edu/~rademach/glui/.
[8] Saakes, D.: Hit and Render: Teaching CAD Visualization to Product Designers, Computer-Aided

Design & Applications, Vol. 3, Nos. 1-4, 2006, pp. 315-322.

