
10 July/August 2009 Published by the IEEE Computer Society 0272-1716/09/$25.00 © 2009 IEEE

Applications Editor: Mike Potel
www.wildcrest.com

A Virtual Environment for Teaching Social
Skills: AViSSS

Justin A.
Ehrlich
and James
R. Miller,
University of
Kansas

Being a teenager in today’s world is tough.
Physical changes, academic demands, and
peer pressure impact teenagers’ develop-

ment, shaping who they are and who they become.
Even though middle school and high school curri-
cula don’t focus on social-skill development, much
of what our children learn regarding social behav-
ior is in the context of school or its extracurricular
activities. For many typical adolescents, the devel-
opment of appropriate social skills can be demand-
ing. For those with Asperger’s syndrome (AS), an
Autism Spectrum Disorder (ASD), mastering social
skills is much harder and can be a determining fac-
tor in the individual’s school success.

The challenge confronting individuals with AS,
their families, and their educators is how to teach
appropriate social skills in an environment where
these skills can be generalized. Equally important
is providing an educational experience in which
individuals with AS aren’t ostracized but are made
to feel safe, even when they fail to make appropri-
ate choices in a given social situation.

Students with AS are often visual learners, and
research has shown they can learn social skills
through computer-based exercises. Researchers
have suggested virtual environments as an effec-
tive way to teach social skills to individuals with
ASDs.1 Using a virtual environment as a safe
zone to teach social skills can provide opportuni-
ties to practice various situations without much
tension or anxiety. Toward that end, we’ve devel-
oped AViSSS (Animated Visual Supports for Social
Skills), a 3D virtual environment.

The Challenges of AS
AS is a developmental disability defi ned by impair-
ments in social interactions and restrictive, repeti-
tive patterns of behavior, interests, and activities.
Individuals with AS lack appropriate social skills,
have a limited ability to take part in reciprocal
conversation, and don’t seem to understand many
of the unwritten rules of communication and
social conduct that their peers seem to naturally

learn through observation. These characteristics
signifi cantly impact their ability to demonstrate
social and emotional competence, including self-
awareness, controlling impulsiveness, working co-
operatively, and caring about others.2

A primary social-skill concern for adolescents
with AS is their inability to select appropriate
problem-solving skills to handle a situation. De-
fi ning the problem accurately can be the fi rst step
in solving problematic situations. Unfortunately,
the lack of understanding about cause and ef-
fect makes problem-solving diffi cult. In addition,
problem-solving skills must be generalized in various
ways across settings and people. For an individual
with AS who has restrictive patterns of interest
and behaviors, applying rules across settings, peo-
ple, and situations is quite problematic.

For example, students with AS might memorize
sequences or information but might not be able to
use that knowledge when needed. They might also
be able to apply their skills in one situation but not
in a different setting or with different people.

Choosing a Rendering Engine
Before we implemented the project, we reviewed a
variety of existing environments to select a starting
point that wouldn’t force us to start from scratch.

Second Life
One of the fi rst environments we considered was
Second Life (https://join.secondlife.com), a virtual
social world anyone can join and in which any
organization can “set up shop.” We quickly discov-
ered two major unsolvable issues: the inabilities to
protect students in an uncontrolled environment
and to remove any social consequences in an in-
herently social environment.

Game-Based Alternatives
Another alternative was a traditional game en-
gine that handles 3D rendering, animations, and
operating logic. Most engines follow the same
model, which is to allow the developers to create

 IEEE Computer Graphics and Applications 11

a scripted environment that can be passed to the
game engine logic. Because games incur high de-
velopment costs and produce significant revenue,
modern game engines are expensive.

Often, older-generation engines are open source
or free for academic use, but full functionality of-
ten comes at the expense of inferior graphics. We
considered using an open source solution such as
id Tech 3, which powered Quake 3 Arena (www.
idsoftware.com/business/techdownloads). How-
ever, we were hesitant because it’s older and doesn’t
take advantage of the latest hardware or support
high-resolution textures on high-resolution mod-
els. Likewise, missing code from release’s GNU
General Public License (GPL) version, particularly
the required skeletal animation system, limits de-
velopment options.

We also considered free-for-academic-use engines
such as Unreal Engine 2 (http://udn.epicgames.com/
Two/UnrealEngine2Runtime.html), which powered
Unreal Tournament 2003. However, only part of
that code is open. Although the engine allows for
extensions and some modifications, the full source
is expensive. We need full control of the applica-
tion, including the logic of the menu and the game
itself. Another concern was licensing. We wanted
as few restrictions as possible, but using the Un-
real Engine 2 would bind us to the noncommercial
clause or force us to purchase a costly license.

Finally, much of the sophistication of game
engines deals with collision detection and other
simulated physics. AViSSS needed none of that.

OGRE
We finally chose OGRE (Object-Oriented Graphics
Rendering Engine; www.ogre3d.org), a 3D render-

ing engine that abstracts the complexities of ren-
dering 3D meshes and animations from low-level
3D APIs. There’s absolutely no application-specific
logic tied to OGRE; instead, its design lets you
build an application on top of its rendering engine.
This gives us the flexibility to write AViSSS as we
see fit, while delegating the graphics to OGRE.3

Another attractive feature is the licensing; OGRE
uses the GNU Lesser General Public License (LGPL).
As long as we keep AViSSS separate and dynamically
linked to the OGRE libraries, we can distribute it
however we see fit. We want the options of releasing
our software as open source, keeping it closed and
proprietary so that we have exclusive distribution
rights, or a mixture of both. Another advantage is
that OGRE works on all three of our target plat-
forms: Mac OS, Windows, and Linux.

AViSSS
We designed AViSSS to simulate everyday real-world
situations. AViSSS has a collection of virtual envi-
ronments such as hallways, restrooms, and caf-
eterias. Environments have multiple scenarios; a
scenario can have several situations, each involving
a problem the student must address. For example,
in the gymnasium scenario, a user who dislikes ex-
ercise must first choose whether to participate in a
physical activity. Once the user chooses the correct
response (that is, to participate), he or she must deal
with the overwhelming noise and commotion.

Scenarios are basically decision trees encoding
social narratives. Each nonterminal node in a deci-
sion tree represents a choice to make. In some situ-
ations, such as in Figure 1, the student must choose
a behavior; in others, such in Figure 2, the student
must select an object. Typically, only one such

Figure 1. A
situation from
the classroom
environment
in AViSSS
(Animated
Visual Supports
for Social
Skills). Here,
the user is
sitting at his
or her desk,
presented with
a situation
and a choice
to make. For
the scene to
continue, the
user must
select one of
the presented
possibilities.

12 July/August 2009

Applications

choice is appropriate. Making choices advances the
student through the tree. Leaf nodes represent the
final outcome of a given set of decisions.

Figure 3a shows a decision tree for a hallway
scenario; Figure 3b is a screenshot of this environ-
ment in AViSSS. The program presents four pos-
sible responses, one of which is clearly the best.

If the user makes a wrong decision, the applica-
tion explains why that decision was poor. The stu-
dent sees textual dialogue and hears a prerecorded

message. Then, the last scene replays, and AViSSS
asks the user to make a better decision, this time
with the previous decision grayed out.

When the user makes the correct decision, the ap-
plication selects the next node, and the environment
changes to start the next situation. The application
then displays a new list of alternatives. This con-
tinues until the application reaches the path’s end.
The application then displays the student’s score, ac-
companied by verbal feedback, and lets the student

(a)

(b)

Figure 2. Two
situations in
which the user
selects objects
with the
mouse. (a) In
the bathroom
situation, the
user must
select the
empty stall
that’s clean
and not out
of order. (b)
On the school
bus, the user
must pick an
appropriate
seat after
learning that
the user’s usual
seat has been
taken.

 IEEE Computer Graphics and Applications 13

Start
This option will show the entire

path of this scenario
✓

Somebody bumps
into you and does
not say anything

Somebody is blocking
your locker

You can’t open
the locker

Done

Somebody bumps
into you and says

“Excuse me”

Action
A

Action
B

Action
C

Action
A

Action
B

Action
C

Action
A

Action
B

Action
C

Done

Action
D

Action
A

Action
B

Action
C

Action
D

(a)

(b)

Figure 3. The
hallway locker
scenario:
(a) decision
tree and (b)
screenshot.
The screenshot
shows AViSSS
at the left child
of the decision
tree’s root. The
decision tree
is traversed
depending
on the user’s
decisions.

14 July/August 2009

Applications

continue to the next scenario, which might be in an-
other environment. For instance, after the hallway,
the student enters the restroom scenario.

Our experts precisely picked each problem in
each scenario to deal with a specific problem area
for adolescents with AS. We’ve categorized each
problem for administrative purposes. AViSSS lets
the administrator (for example, a teacher) running
the application choose the problem categories. The
system records every response to give feedback to
the administrator on the student’s progress. This
gives the administrator as much control and infor-
mation as needed to successfully help the student.

Technical Design
Figure 4 illustrates our basic architecture, derived
from the standard Model-View-Controller pattern.4
OGRE is a view component, whereas the OGRE
SceneManager is the model. The main control-
ler runs a game loop, each pass of which gathers
and processes user input, updates the correspond-
ing model, and finally asks the view to render the
models. At each time step, the models move and
synchronize the camera, animations, objects, and
the overall environment. Crazy Eddie’s GUI System
(CEGUI; www.cegui.org.uk) is an OGRE plug-in
that uses OGRE to render the user interface. The
OGRE view, when called by the controller, renders
everything in the SceneManager and CEGUI.

The models keep track of the data constituting
the scene. They store the scenarios, the current
location in the current scenario, camera positions
and angles, characters, 3D mesh object pointers,
and animations. The models all sit on top of the
SceneManager, which consists of the current 3D
meshes and their positions. Each model that con-
trols a 3D mesh object contains a corresponding
managerial object with a pointer to that 3D mesh
object in the SceneManager. The SceneManager

only manages static meshes that make up the
scene at a given frame; it doesn’t contain any logic
for that scene. The OGRE view can only render the
scene as stored by the SceneManager. For a mesh
to have dynamic functionality, such as animation
or movements, its model’s managerial object must
calculate the changes and modify the mesh’s posi-
tions and frames in the SceneManager.

For instance, if a character is walking in a certain
direction, the CharacterManager model keeps track
of the corresponding character object’s angle, speed,
current position, animation, and pointer to the 3D
mesh, whereas the SceneManager stores the actual
3D mesh and position. The GameManager will call
the CharacterManager to increment all the charac-
ters at a certain time. Then, the CharacterManager
will use each character object’s current position, an-
gle, velocity, and animation frame to update its next
position, angle, velocity, and animation frame. Next,
each character object modifies the corresponding 3D
mesh in the SceneManager using the new animation
frame, angle, and positions.

Our controller consists of two basic input con-
trollers and three support controllers. The first ba-
sic controller is the InputHandler, which processes
keyboard events from the OGRE view. It directs
the SceneManager to change the user’s direction
or position accordingly.

The second is the MenuManager, which con-
trols the menu model. It handles menu choices
and user decisions, both coming from the CEGUI
view. When it receives menu choices, it updates its
menu accordingly from the various other models.

When the MenuManager receives a decision, it
first calls the GameManager to change the envi-
ronment. The GameManager takes the decisions
and queries the StateManager to determine which
actions to perform on the basis of the script. The
StateManager returns the actions to the Game-

MenuManager

InputHandler

DirectX or
OpenGL

OGRE
SceneManager

Object-Oriented
Graphics Rendering

Engine (OGRE)
View

Crazy Eddie’s
GUI System

(CEGUI)

ScenarioManager

SceneManager

SoundManager

GameManager

StateManager

OpenAL
engine

CharacterManager

Model

Controller

Figure 4. A
Model-View-
Controller
(MVC) diagram
of AViSSS. The
MVC at the
bottom center
represents the
corresponding
objects and
their support
objects.

 IEEE Computer Graphics and Applications 15

Manager, which parses and interprets them to de-
termine the next necessary steps. Each action is a
command to change something in the model. A
correct decision might change the user’s orienta-
tion (SceneManager), switch to the next situation
(StateManager), or move and animate a character
to a different location (CharacterManager). The
GameManager uses these commands to call the
various models to update their data. It sends any
new menu changes back to the MenuManager,
which updates its decision model accordingly.

The MenuManager then tells the CEGUI view
to update its display. The OGRE and CEGUI views
render themselves after each game loop increment
if the SceneManager undergoes changes. The OGRE
view uses the SceneManager’s mesh data structures
to gather the latest scene created by the models to
render the world appropriately using OpenGL or
DirectX. To render the menu on top of the OGRE
view, the MenuManager uses its own SceneManager
instance, which contains a user interface object.

Additional Libraries
We tried to use existing libraries as much as pos-
sible so that we could focus on our application’s
functionality. Because OGRE is only a graphics
renderer, we had to include a few more libraries
for needed functionality. For example, we needed
an audio engine for sound effects and dialogue.
We chose OpenAL (http://connect.creativelabs.
com/openal/default.aspx), a cross-platform API for
sound that conveniently uses the LGPL. OpenAL
can play Ogg files natively. Ogg files are like MP3s,
except they use open source technology.

We also needed an XML reader. We needed some-
thing simple to let us read the pathway scripts,
and we didn’t want to write our own XML parser.
For this, we used TinyXML (www.grinninglizard.
com/tinyxml), a basic XML parser written by Lee
Thomason licensed under the zlib license.

Scripts
For each scenario, AViSSS follows a script. The
scripts, created by AS specialists Hyo Jung Lee,
Sheila Smith, Sean J. Smith, and Brenda Myles, are
based on prior research on pathways. Each script
services a number of targeted skills within an en-
compassing environment.

The scripts use a custom-built language describ-
ing the path to follow and telling AViSSS what to
render, which models to load, which sounds to
play, and which animations to use. This allows
AViSSS to be completely customizable for any situ-
ation or environment. The scripts initialize the en-
vironment by creating lights, loading models, and
positioning the camera. Our scripting language’s
logic lets users follow different paths (or reverse
the current path) on the basis of their choices.

Each script consists of an XML file. Each situ-
ation is represented by an XML element and a
named state, and is numbered with an ID. Figure
5 shows the script portion implementing the root’s
right child in Figure 2a.

Each state contains the decision buttons’ text
along with the corresponding 3D scene. Each deci-
sion is a branch telling the scripting engine which
state to select next. If the user chooses the correct
decision, the application proceeds to the next state.

Although our implementation of the script is
deterministic, the script doesn’t have to be. We’ve
designed the scripting engine to allow for more-
complex, nondeterministic paths. For example,
if a child made a wrong decision, AViSSS would
present one of several paths, each with a different
consequence and state.

The Advice Center
Children with AS are in great need of an advice
center—an inner voice intentionally formed to
make daily decisions. However, they have difficulty
forming one without external assistance. Once

<state index="2" expression="neutral" speak="Somebody bumps into you and
 does not say anything." action="boy01 delay 1 animateEnd walk animateOnce Idle1
 showButtons" decisions="4" skill="1" situation="0">
 <desc index = "0" input="1" description="I will be mad at him." output="5"
 value="3" animationsOnSelection="Explain1;Talk"
 soundOnSelection="Teacher_Talk1.ogg" descriptionOnSelection="He did not
 mean to bump into you, so you shouldn't get mad."/>
 <desc index = "1" input="2" description="I will tell him not to run in the
 hallways." output="5" value="-2" soundOnSelection="Teacher_Talk2.ogg"
 animationsOnSelection="Explain1;Talk" descriptionOnSelection="It is not
 your place to give orders."/>
 <desc index = "2" input="3" description="I will tell him, 'I'm going to tell
 my mom.'" output="5" value="-1" soundOnSelection="Teacher_Talk4.ogg"
 animationsOnSelection="Explain1;Talk" descriptionOnSelection="You must
 work out your own solution, besides your mom is not here."/>
 <desc index = "3" input="4" description="I will ignore him and keep going on
 my way." output="6" value="0"/>
</state>

Figure 5. The
script portion
(in XML)
implementing
the root’s
right child in
Figure 2a. We
developed
our scripting
language
specifically for
a decision tree
model.

16 July/August 2009

Applications

they do form one, they consult it for correct deci-
sions for daily situations. This querying requires
extra mental processing, compared to a typical
adolescent using innate problem-solving skills.

To help students form advice centers, AViSSS in-
corporates a simulated advice center in the form of
an iconic image and prerecorded narration talking
through every decision. Once the user makes a deci-
sion, the advice center explains why or why not the
choice was correct. At the end of every scenario, the
advice center provides a brief summary connecting
the school situation with additional examples out-
side school to generalize the learned skills.

Evaluation
We completed a formative evaluation of AViSSS
involving a team of AS researchers, visualization
experts, adolescents with AS, and their parents.
The tests were all qualitative in dealing with the
functionality and the content of the materials. We
distributed the AViSSS application to the team to
review and interact with. We asked them ques-
tions regarding their initial response and the ap-
plication’s perceived effectiveness. A meeting was
held for the team to voice any concerns, insights,
questions, or feedback. This not only let us gain
insight from AViSSS’s intended target audience but
also helped the users better understand our direc-
tion and goals. This evaluation has been very posi-
tive in that we’re hitting on the most problematic
areas for adolescents with AS. Feedback regarding
the interface has led to changes that better accom-
modate our subjects.

One notable change has been the addition of the
advice center. Originally, a virtual teacher inter-
acted with students when they made an inappropri-
ate choice. We soon learned that students with AS
generally didn’t respond well to that teacher. They
appeared to perceive teachers as being uninterested,
impatient, and ill equipped to deal with them. As
a result of the formative evaluation, we decided to
design decision feedback to foster advice centers.

Furthermore, project staff are about to imple-
ment a multiple-baseline research study to ex-
amine this tool’s effectiveness. In particular, this
study will try to answer three questions: Does
AViSSS effectively teach social skills to individuals
with AS? Do skills learned via AViSSS generalize
to the school and community setting? Do partici-
pants view the tool as an effective, efficient tool
for social-skills training?

Depending on our initial offerings’ success,
we might add nonschool environments—for

example, a mall, a movie theater, home life, or a
public pool. We designed AViSSS and its scripting
language to enable plug-ins allowing new environ-
ments, content, and functionality. We’ll develop
and release a scenario-and-level editor, with which
users can create their own environments, such as
the student’s own school or home.

We want to eventually add a module allow-
ing a more user-controlled experience. Although
the AViSSS scripting is needed to guide subjects
through the paths in an intentional, ordered fash-
ion, giving them some freedom to explore envi-
ronments would be beneficial. This would increase
their enjoyment of the experience and perhaps al-
low greater generalization of the scenarios. This
will require applying rule-based scripts to each vir-
tual character to allow for appropriate responses.
It will also require controls for interacting with
the environments.

Another possible direction for future develop-
ment is to use alternative input devices (such
as a Wii controller). In addition, eye tracking
would be advantageous in teaching individu-
als with AS good eye contact, which frequently
proves a challenge.

References
 1. P. Mitchell, S. Parsons, and A. Leonard, “Using Virtual

Environments for Teaching Social Understanding to
6 Adolescents with Autistic Spectrum Disorders,” J.
Autism and Developmental Disorders, vol. 37, no. 3,
2007, pp. 589–600.

 2. S.E. Gutstein and T. Whitney, “Asperger Syndrome
and the Development of Social Competence,” Focus
on Autism and Other Developmental Disabilities, vol.
17, no. 3, 2002, pp. 161–171.

 3. G. Junker, Pro OGRE 3D Programming, Apress, 2006.
 4. S. Burbeck, “Applications Programming in Smalltalk-80:

How to Use Model-View-Controller (MVC),” Univ.
of Illinois at Urbana-Champaign (UIUC) Smalltalk
Archive, 1992; http://st-www.cs.uiuc.edu/users/smarch/
st-docs/mvc.html.

Justin A. Ehrlich is a doctoral student in the Uni-
versity of Kansas Department of Electrical Engineer-
ing & Computer Science. Contact him at jaehrlic@
ku.edu.

James R. Miller is a professor in the University
of Kansas Department of Electrical Engineering
& Computer Science. Contact him at miller@eecs.
ku.edu.

Contact editor Mike Potel at www.wildcrest.com.

